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Abstract. This paper is devoted to the application of adapt­
able difference schemes for the simulation of propagation and in­
teraction of focused laser beams. New effective processes for the 

solution of stationary nonlinear optics problems are proposed. Sim­
ulation results on real experiment data show the advantages of such 

schemes and iteration processes. 
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Introduction. A new method of theoretical study-com­
putational experiment-is more and more often applied in var­
ious fields of nature sciences, usually simultaneously with ex­
tensive phy~~cal experiments. The present work treats the 
numerical aspects of computational experiment in nonlinear 
optic. It should be noted, that the numerical simulation in 
this field of physics is used rather widely and a reliability of 
computational experiments results is guaranteed by the ex­
istence of mathematical models, that adequately describe a 
real nonlinear optical process. It is well known, that exten­
sive experiments with powerful lasers is a very complicated 
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and. often expensive task, because we have to deal with ex­
tremely fast processes, giant power of laser's beam, overcome 
a difficulty of registration of intermediate experiments results. 
The method of computational experiment gives us an oppor­
tunity to simulate all the processes thoroughly and to do a 
preliminary optimization of the experimental devices parame­
ters, too. This not merely accelerates scientific investigations, 
but also helps to save energetic and material resources. A de­
velopment of computational experiment method will depend 
heavily on the appearance of a new generation of computers, 
what in its turn will stimulate the evolution of the new even 
more sophisticated numerical methods. 

The present paper deals with the two main problems. 
The first is the application of adaptable difference schemes for 
the simulation of propagation and interaction of focused laser 
beams. The second problem is the construction of effective 
interactive processes for the solution of stationary nonlinear 
optics problems, such as phase conjugation (optical wavefront 
reversal) in stimulated backscatter. 

1. Equations. The dimensionless equations for the 
transient backward stimulated Brillouin scattering (SBS) are 
(Zel'dovich et al., 1985) 
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where EL, Es - the complex pump (laser) and Stokes beams, 
respectively. In the case of cylindrically symmetric beams 
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Boundary conditions are given separately at two end points of 
an interval 

eL(O, r, t) = d:,(r, t), es(L, r, t) = e1(r, t) (1.4) 

eL(z,R,t) =0, es(z,R,t) =0, (1.5) 
8 8 

r 8r eL(z, 0, t) = 0, r 8r es(z, 0, t) = 0. 

The appropriate initial conditions are given at t = to. Under 
steady state conditions, when t ---+ 00 and 

el(r,t) = ei,(r), e1(r,t) = e1(r), an = 0, 

the complex pump and $BS backscatter amplitudes satisfy the 
parabolic equations (Zel'dovich et al., 1985) 

(1.6) 

(1.7) 

and boundary conditions 

e L ( 0, r) = e l( r ), e s( L, T) = e 1 ( r ) . ( 1. 8 ) 

The separated boundary conditions (1.8) cause main dif­
ficulties for a numerical solution of the problem (1.6)-(1.8). In 
the case of focused Gaussian beams used as boundary condi­
tions for e L ( Z , T, t), e s( z , 1', t), the solution of a linear diffraction 
equation, given in dimellsionless form 
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2 ·bu A Z-+~.LU=O, 
bz 

(1.9) 

u(O,r) = exp (_r; (1 + iy)) (1.10) 

is a function 

1 
u(z,r) = Z • Z x 

1- - + z-f ZR 

( _r2 (1 1 )) 
x exp -2- w2 (z) + i R(z) . 

(1.11) 

In this expression the spot size w( z ),the radius of curvature 
R( z) and the parameter Z ware defined by 

2 (z) 2 2 • f - 2z + z/ Zw f 
w (z) = 1 - -1 + z ,R( z) = 1-' z w = 1 12 . l-z4w + 
If the lens focal length 1 < L ~ 1, then at z = Zw the function 
u (z, r) changes very rapidly and dense spatial mesh must be 
taken to convey the oscillations of the solution accurately. The 
difference schemes on adaptable spatial mesh are used in our 
paper to overcome such difficulties. 

It is well known, that the conservation of energy quanti­
ties is very important for nonlinear optic problems. Simulating 
the qualitative features of nonlinear evolution, equations is a 
desirable attribute of the discretization schemes. 

Lemma 1.1. The solution of (1.6)-(1.8) satisfies the 
relation of energy conservation 

(1.12) 



R.Ciegis 7 

where 
R 

IIul12 = (U, U), (U, V) = jru.(r )v*(r )dr. 

o 
For the proof of lemma it is sufficient to multiply the equations 
(1.6)-(1.7) by eL(z,r), es(z,r), respectively, and to add the 
real parts of the obtained equations. 

Remark 1.1. The analogous results are true for the 
solution of transient problem (1.1)-(1.5) (Ciegis, 1987; 1988). 

2. Difference scheme. We use a splitting method to 
construct the basic scheme 

u-u(-l) . u+u(-l) 
----'----'- - l.{lA = 0, (2.1) 

T 2 
aP - a a P + a . ~ * -- + a = zruv, (2.2) 

T 2 
--- ~ ~ u-u v-v -- = ira-pv, -- = ira-P*u, (2.3) 

T T 

a-P = 0, 5( aP + a), u = (u + u)O, 5, v = 0, 5(v + v), 

O'-a O'+a . * -- + a-- = zruv , (2.4) 
T 2 

v( -1) - v _ i{lA vi -1) + v = 0. (2.5) 
T 2 

The notations and conventions here are adopted as introduced 
by Samarskij (1983) 

1 
Au = -(fur)Tl U = u(Zj, rk, tn), 

r 
U= U(Zj,rk,t n+1), u(-l) = U(Zj_l,rk,tn ), 

Zj = Zj-l + T, tn = tn-l + T, rk = rk-l + h. 

Theorem 2.1. The scheme (2.1)--(2.5) preserves the 
conservation of energy 
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Ilul/ 2 + Ilv( _1)11 2 = Ilu( _1)11 2 + Il v 11 2 , (2.6) 

the solution of the difference problem (2.1)-(2.5) converges to 
a solution of the problem (1.1)-(1.5) in L2 norm as Q( T + 
h2 ln h). . 

Proof. Computing the inner product of both sides of 
(2.3) with u*, v*, respectively, summing up for r'i and taking 
the real part, we have 

(2.7) 

Analogously, from the equations (2.1), (2.5) it follows,that 

By the above equalities and from (2. 7)~ we hav6 (2.6). The 
proof that the solution of the difference problem (2.1)-(2.5) 
converges to the solution of the problem (1.1 )-( 1.5) is entirely 
similar to a method used by Ciegis (1988). 

Remark 2.1. The implementation of this scheme is non­
iterative and only the tridiagonal systems of equations are 
required to be solved at each time step. 

The following difference scheme is proposed to solve the 
numerical problem (1.6)-(1.8) 

u-u u+u 
-- - if.lA-- = 0, 

T 2 
v-v . AV+ v 0 -- + Zf.l -- = , 

T 2 

u-u = _Glv+vI 2 u+u, 
T 2 2 

v ~ ii = -G I it; ill' v; v 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 
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Theorem 2.2. The difference scheme (2.8)-(2.11) pos­
sesses the main conservation quantity 

(2.12) 

where 
N 

IIul12 = (U,U)h, (U,V)h = ~rjujv;h. 
j=l 

Proof. Computing the product of both sides of (2.10), 
(2.11) with (u + u)*, (v + v)*, respectively, subtracting the 
obtained equalities and taking the real part, we have equalities 

IUjl2 -lvjl2 = IUjl2 -lvjl2 , j = 1,2, ... ,N. (2.13) 

Summing up (2.13) for j = 1, N ,we get 

(2.14) 

From the above equalities and from (2.14), we obtain (2.12). 

Remark 2~2. A simple Taylor expansion reveals that 
local truncation errors for the difference scheme (2.8)-(2.11) 
can be bounded by C1 (7 + h2 lnh). 

3. The iterative procedure for (2.8)-(2.11). The fi­
nite difference scheme (2.8)-(2.11) gives us a nonlinear system 
of 2NM complex unknown quantities, where N, M--numbers of 
the grid points in rand z directions, respectively. In this pa­
per we propose several iterative procedures for the solution of 
this problem. 

Method 1. The difference scheme (2.8)-(2.11) is re­
placed by the time dependent equations (2.1 )---(2.5) with boun­
dary conditions (1.8). These equations are simply integrated 
by a non-iterative algorithm (2.1)--(2.5) over many optical 
transits across the medium until a steady state is finally at­
tained. 
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'rVe will approximately estimate the computing time re­
quired to attain the fixed accuracy by this method. The corn­
puting time is proportional to the number of elementary op­
erations (addition, multiplication), used to solve the problem. 
The realization of one time step by a non-iterative finite dif­
ference scheme (2.1)-(2.5) requires O(NM) operations, i.e., 
it is economical. But the number of iterations (time steps) 
is roughly estimated by J{ = O(lvf). This, follows from the 
fact, that time dependent equations (2.1)-(2.5) are hyperbolic, 
and the time required by the wave to go once the interval 
o ~ z ~ L is equal to the length of this interval T1 = L 
(mesh size in time is equal to the mesh size in z direction for 
the finite difference scheme (2.1)--(2.5)). So, the amount of 
computer operations (computation time) for Method 1 is 

Q1 = J{Qo = eN lv12 (3.1) 

and it is too large to use this method in computational ex­
periments. The results of numerical experiments confirm the 
validity of estimation (3.1). 

Method 2. We propose to replace the problem (1.6)-
(1.8) by time dependent equations 

82u 8u . 2 
8tbz + 8z - lpfl.l..u = -G Ivl u, (3.2) 

82v 8v . ? 
~ + C + z/-lfl.l..v = -G 11l1~ v, (3.3) 
vtvz vz 

and to construct iteration procedures for the finite difference 
scheme (2.8)-(2.11) as time dependent difference schemes for 
the problem (3.2), (3.3). For example, we can get the iteration 
procedure 

US _ US us - 1 _ u s - 1 

-----+ 
T T 

(
-S-l s-l 
U -u 

+1' 
T 

(3.4) 
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.......... 8' ......... 8 
U -u Us - 1 _ Us - 1 

-----+ 
T T 

+'y (u'- 1 ~ U<-1 + G 1"·-1 ; ".-112 U·; it.) 
......... 8 """"'8 
V - V vs - 1 _ Vs - 1 

-----+ 
T T 

( VS - 1 _ Vs - 1 G.I US + US 12 VS + vs) 
+, T + 2 2 

VS _ VS Vs - 1 _ Vs - 1 
-----+ 

T T 

=0, 

=0, 

(
~S-l s-l 
V - V +, 

T 

. VS + VS) + ZJ.l~.l.. 2 = 0, 

11 

(3.5) 

(3.6) 

(3.7) 

where, is the mesh size of fictitious time (iteration parame­
ter). 

Theorem 3.1. The iteration method (3.4)-(3.7) is con­
vergent for , ~ ,0, G ~ Gb). 

The realization of one iteration step by (3.4)-(3.7) re­
quires Qo = Q( N M) operations, the total numb~r of itera­
tions required to attain the fixed accuracy is finite and does 
not depend on the mesh parameters h, T, so the computation 
time for Method 2 is estimated by 

Remark 3.1. If we choose the iteration parameter, = 1 
in the equations (3.4)':"'(3.7), we get a simple iteration proce­
dure, proposed by Ciegis, Norvaisas (1989). In that work it is 
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proved that such iteration method is convergent only for the 
limited values of a coupling coefficient G. 

Method 3. This method isa generalization of the iter­
ation procedure, proposed by Ciegis et al., (1989, 1990) 

US _ US US + US 
T - ipA 2 = 0, 

US _ u·~ _ _ Ivs- 1 + Vs-1 12 US + US ---- G , 
T 2 2 

VS - VS _ ~s ~s 1 US + US 12 VS + VS 
T - -')'( v ,V )G 2 2' 

,),(VS, VS) = Ivs- 1 + vS- 11
2 / Ivs + vSI2 , 

v's _ VS VS + VS 
-~. - + iJ.lA = O. 

T 2 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Theorenl 3.2. The iteration procedure (3.9)-(3.13) is 
conservative, i.e., for all s = 1,2"" solutions ~~, {, satisfy the 
energy conservation relation 

(3.14) 

Proof. From equations (3.10)-(3.12) we obtain the equa­
lities 

luJI2 -lvJl2 = luJI2 -lvJl2 . 
The remained part of the proof coincides with the proof of 
Theorem 2.2. 

The solution of nonlinear equation (3.11) could be found 
by the following procedure 

Revs = qRevS , Imvs = qirn,vs , (3.15) 

Ivs 12 = Ius 12 _ Ius 12 + Ivs 12 

q2 = (IvS I2 + lus I2 _ luS I2)/ IvsI2 . (3.16) 
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The realization of one iteration step by Method 3 with such 
a procedure (3.15)-(3.16) requires Qo = O(NM) operations. 
The convergence of iteration procedure is investigated by Cie­
gis and Norvaisas (1989). 

Remark 3.2. Method 3 could be supplemented by an 
additional technique of stabilization, where the replacement is 
performed after solving (3.9)-(3.13) 

Method 4. (shooting method). It is apparent from the 
equation (1.8), that some boundary values of u(r, z), v(r, z) at 
z = 0 or z = L are not given. To be able to solve the system 
(2.8)-(2.11) by the initial-value method,we have to guess the 
missing boundary conditions at the point z = O. Taking these 
missing boundary-values as parameters qj, we can write the 
boundary conditions 

(3.17) 

Applying the initial-value method, the solutions 
u(rj,zk,ql,"',qN), v(rj,Zk,Ql,"·,QN) may be found. By 
matching the solution v(rj, E, Ql,' .. , QN) at the point z = L, 
the following nonlinear algebraic equations 

(3.18) 

for q = (Ql, ... , Q N) are obtained. The problem is converted 
into solving the equations (3.18). The Newton-Raphson met­
hod can be used to :find the roots of equations (3.18). 

Remark 3.3. The computational time Method 4 is pro-
portional to O( N 2 M + N 3 ), i.e' i Method 4 is not 
economical. 
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Method 5. The Newton-Raphson method can be used 
to find the solution of the finite difference scheme (2.8)-(2.11) 

8 8-1 8 8 8-1 8 

Y= Y +78 p, V= V +T8 W, 

where p, ,,1 are obtained from the linear problem 

(3.19) 

(3.20) 

(3.23) 

The solution of a linear problem (3.19)-(3.23) could be found 
by the iteration procedure proposed in Method 2. 

4. Adaptable difference schemes. The mesh trans­
formation for the difference schemes (2.1)-(2.6), (2.8)-(2.11) 
is performed in the first step of splitting schemes, when the 
focused beams (1.10) are used as boundary conditions. 
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Method 1. The numerical solution of linear problems, 
corresponding to (2.1), (2.5), (2.8), (2.9), is based on the rep­
resentation of e( r, z) as a finite series 

p 

e(r,z) = Lcp(zo)Lp(z,r), ( 4.1) 
p=l 

where natural choice for the basis set Lp is the Laguerre­
Gaussian functions, which satisfy the equation (1.9), (1.10) 
exactly. The basis set Lp is complete and orthogonal, so the 
coefficients cp are obtained from the equality 

Inner products then are approximated by sums with the local 
truncation error 0(71,2). The mesh Wr (Z/+l) is rescaled accord­
ing to a focused beam's spot size w( z ). 

Remark 4.1. There is no fast transform algorithm for 
the numerical evaluation of (4.1), (4.2), so Method 1 is not 
economical if P is large. 

Method 2. Less universal, but economical are adapt­
able difference schemes, where a coordinate transformation is 
related to the exact solution (1.11) of a linear problem for the 
propagation of focused laser beam (1.9), (1.10). It should be 
noted, that only a deviation from the exact solution (1.11) 
is computed numerically by a difference scheme. The sim­
plest of such transfonnations is one originally due to Talanov 
(1970), more general transformation is proposed by Fleck et 
a1. (1976).For z ~ Zw we use the coordinate transformation 

r' = r/(l- Z/ZL), z' = z/(l - Z/ZL), (4.3) 

,., ') (z ) ( 1,2 ) 
U (z ,1' = U ( Z , r) 1 - --:- exp i. _)' Z L > Z W , 

"' L 2(z - "' L 
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where u'(:;', r') satisfies the same free propagation equation 
(1.9), but the radius of curvature in (1.10) is replaced by 

l/l' = 1/ f - 1/ Z L· (4.4) 

For z > Z W we use a similar coordinate transformation 

" / ( 2zw - z) Z =(2z vv-z) 1- ZL ' (4.5 ) 

( 
2 

) ( 2 ) " Zw - Z . r 
u = u ( z, r) 1 - exp -l ') ( _ _ )' 

ZL ~~W-";'-ZL 

at z = Zw we get an additional compatibility condition for 
u"(z,r) 

( 
,2 ) " " , . r u (z = z W, r ) = u (z = Z W, r ) expz _ _ . 

"'L-"'VV 
( 4.6) 

Remark 4.1. The parameter Z L \ove propose to take 
such that the spot size of transformed mesh at :; ;- :; ~v would 
be equal to the exact focused beam's spotsize w(zw) 

1- ZW/ZL = w(zw), ZL = f(l +w(zJ,v)). (4.7) 

Remark 4.2. The noniinear problem (1.6)-( 1.8) re­
mains the same after the Talanov's coordinate transformation, 
so this transformation was used for the numerical simulation 
of phase conjugation in stimulated backscatter. 

Method 3. The coordinate transformation (4.3)-(4.6) 
is different for Z ~ Zw and for z > Z~V and this is not conve­
nient for numerical simulation. The coordinate transfonnation 
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(4.8)-(4.9) has no such defect (see Ulrich, 1978) 

( 1-Z/f) r' = r/w(z), Zl = arctg z - f' , (4.8) 

'( I ') ( ) () (. r2 ( 1 - z / f)) u r,z =u r,zw z exp -z2w(z) z- f ' 

where ut(r', Zl) satisfies the parabolic equation 

SUi 
2i- + \7 .lU' - rI2u l(r', Zl) = 0 , 8z' 

with appropriate boundary condition. 
The standard mesh interval (Zi' Zi+ d is divided into 

smaller intervals at the first splitting step, if we use mesh 
transformation, given by Methods 2 and 3 for a construction 
of the adaptable finite difference scheme on the basis of scheme 
(2.1 )-( 2.5). This procedure increases' the accuracy of the dif­
ference schemes with a little increase of total computational 
time. 

Some results of numerical experiment in which the lin­
ear problem (1.9), (1.10) was solved by a standard difference 
scheme (2.1) and adaptable difference schemes of Method 2 
and 1,1ethod 3 are given in Table 1. The parameters of the 
problem were 

L = 0.1, R = 3.5, N =.60, lvl = 50, 

the global error c = Ilu -Yllc/(cQ + lIullc) is outlined in Table 1. 

Table 1 Results of numerical experiment 

f (2.1) Method 2 Method 3 
0.5 0.00132 0.00155 0.00219 
0.2 0.03232 0.00161 0.00345 
0.15 0.11035 0.00166 0.00500 
0.05 2.02534 0.00363 0.00561 



18 Numerical simulation 

REFERENCES 

Fleck, J .A., J .KMorris and M.D.Feit (1976). Time--dependent 
propagation of high energy laser beams through atmosphere. 
Appl. Phys., 10(2), 129-160. 

Ciegis, R. (1987). Differen.ce schemes for the problem offorced dis­
persion in simple mediums. Liet. mat. rink., 27(3), 550-560 
(in Russian). 

Ciegis, R (1988). Split-step method for the problem of forced dis­
persion. Liet. mat. rink., 28(2), 376-383 (in Russian). 

Ciegis, R. (1989). Numerical simulation of interaction of counter­
running focused laser beams. Liet. mat. rink., 29(3), 590-607 
(in Russian). 

Ciegis, R., and S.Norvaisas (1989). On the iterative methods for 
the solution of one stationary nonlinear optic problem. Liet. 
mat. rink., 29(1),160-170 (in Russian). 

Ciegis, R., G.Kairyte and S.Norvaisas (1990). Numerical method 
for one stationary nonlinear optic problem. Liet. mat. rink., 
30(1), 155-163 (in Russian). 

Samarskij, A. (1983). The Theory of Difference Schemes. Nauka, 
Moscow. 655pp. 

Talanov, V. (1970). On the focusing of a light in cubic mediums. 
JETP Letters, 11(4), 799-801. 

Ulrich,P.B. (1978). Thermal blooming offocused laser beams in the 
atmosphere. In J.W.Strohbehn (Ed.), Laser Beam Propagation 
in the Atmosphere. Springer-Verlag, New York-Heidelberg­
Berlin. pp. 278-386. 

Zel'dovich, B.Ya., N.F.Pilipetsky and V.V.Shkunov (1985). Prin­
ciples of Phase Conjugation, Vo1.42 of Springer Series in Optical 
Sciences. Springer-Verlag, Berlin. 273pp. 

Received November 1989 



R.Giegis 19 

R. Ciegis received the Degree of Candidate of Phys­
ical and Mathematical Sciences from the Institute of Mathe­
matics, Minsk, Acad. Sci. BSSR. He is a senior researcher 
at the Department of Numerical Methods, Institute of Math­
ematics and Cybernetics, Lithuanian Acad. Sci. His research 
interests include numerical methods for nonlinear problems. 


