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Abstract. In this paper, we present a new local search algorithm for solving

the Quadratic Assignment Problem based on the Kernighan-Lin heuristic for the .
Graph Partitioning Problem. We also prove that finding a local optimum for-
the Quadratic Assignment Problem, with the neighborhood structure defined in

the algorithm, is PL‘g-complete. The greatest advantages of the algorithm are

its simplicity and speed in generating high quality solutions. The algorithm has

been implemented amd tested on an IBM 3090 computer with a variety of test’
problems of dimensiéns up to 100, including many test problems available in the

literature and a new set of test problems with known optimal permutations.

Subject classifications: analysis of algorithms: computational com-
plexity, suboptimal algorithms; facilities/equipment planning: discrete location.
Other key words: combinatorial optimization, graph partitioning, poly-

nomial-time local search.

Introduction. The Quadratic Assignment Problem(QAP)
belongs to a class of combinatorial optimization problems that have
many practical applications but are computationally difficult to
solve. Givena set N = {1,2,...,n} and n x n matrices F = (f;;) and
D = (dx), the problem is to find a permutation p of the set N that
minimizes oo
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. In the framework of the classical location problem, the set N
describes a set of n sites on which n facilities are to be located. The -
matrix F = (f;;) is the flow matrix, where f;;, i,j € N, represents
the flow of materials from facility { to facility ;. The matrix D
= (du) is the distance matrix, where di, i,j € N, represents the
distance from location k to location ! [8]. In addition to its applica-
tion in facility location problems (2, 3, 8], the QAP has been found
useful for such applications as problems in scheduling {5] the back-
board ermg problem in electronics {25}, and even the assignment

of 1 runners to a relay team [6)]. Other a.pphcatlons ma,y be found in
[4 9, 11]

The QAP has shown itself to be a very difficult problem com-
putationally. This problem, of which the Traveling Salesman Prob-
lem is a special case [10], is NP-hard. Furthermore, the problem
of finding .an e-approximate solution is also NP-hard [21]. Prob-
lems. of size n > 15 are not practically solvable to optimality [16,
20]. Consequently, many heuristic methods have been developed to
solve the QAP [1, 23, 24, 26, 27]. Most of these methods use alocal
search algorithm where the local search depends on the formulation
of the problem and a neighborhood structure. A local search algo-
rithm starts with an initial feasible solution and successively moves
to neighboring solutions until no further improvement is possible.
To characterize the complexity of solving combinatorial optimiza-
tion problems such as the QAP with local search algorithms, a
Polynomial-time Local Search (PLS) class has been defined [7] that
captures the structure of NP problems at the level of their feasible
solutions and neighborhoods. Similar to NP- completeness, the con-
cept of PLS-completeness has been defined to capture the class of
the hardest problems in PLS. For certain NP-complete problems,
the corresponding PLS problems have already been shown to be
PLS-complete {7, 22]. In regard to the complexxty of local search,
see also [17] and [19]. ;

In Section 1 of this paper, we propdse-,a new local search algo-
rithm for.the QAP based on the Kernighan-Lin heuristic algorithm
for the Graph Partitioning Problem (GP). In Section 2, we show
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that the QAP with the neighborhood structure defined by the local
search algorithm is PLS-complete by reduction from the GP with
the Kernighan-Lin neighborhood. We implemented and tested the
algorithm on an IBM 3090 computer using a variety of test prob-
lems of sizes up to 100. Computational results are reported in
Section 3.

'1. A new local search algorithm. In this section, we de-
scribe a new local search algorithm for the QAP and establish
the connection between the new algorithm and the Kernighan-Lin
heuristic algorithm for the Graph Partitioning Problem (GP).

The local search algorithm for the QAP starts with a random
permutation-as a current permutation. For a current permutation
Po,-a sequence of permututions, p;,...,pr, is constructed in a greedy
sense. Each of the permutations in the sequence is obtained from
the previous one by swapping (interchanging) two assignments and
has cost lower than the current permutation. A local search is
. performed in-the sequence, replacing the current. permutation by -
the permutation with the lowest cost in the sequence (the algorithm
stops.if the sequente is'empty for the currént permutation). In the
description of the local search algorithm  below, instead of using
the cost C(pi) of 4 permutation p; in the sequence of permutations -
corresponding to a current permutation py, we use the cumulative
gain G(k) of the permutation p;, where G(k) = C(po)~C(pi). Hence,
the larger is the cumulative gain of a permutation, the lower is the
cost. :

Algorithm 1: A Local 'Séarc}{ Algorithm for the QAP.
.Input:n,nxn mat:rices‘ F,D, and a permutation p of size n.
Qutput: A local optimal permutation p for the QAP.

1. Set po = p and calculate its cost C(p;). Set i = 0, ¢; = 0,
and G(i) = 0, where g; and G(i) are the, step gain and the
cumulative gain, respectively.

2. i = 1. Initially, select a pair of facilities such that, by ex-
changing their locations, a positive step gain is obtained,
i.e., g1 = C{po) = C(p1) > 0. I no such pair exists then go
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' to T, otherwise set G(1) = g;.

3. i =i+ 1. For each pair of facilities not already selected,
evaluate the step gain by exchanging their locations. Then,
select the pair with maximum gain ¢; = C(pi-1) — C(pi). If
all facilities have been selected then set i = i — 1 and go to 5.

4. Compute'the cumulative gain, G(i) = E',::‘l ge. If G(3) > 0;
then go to 3.

5. Select k, such that G(k) is maximum for 0 < k < i.
6. If £ > 0 then set po = p; and go to 2. '

7. We have reached a local optimum for the QA.P Set p = po
and output p and C(p). -

Now let us review the Kernighan-Lin heuristic algorithm for
the GP for an undirected graph G(V, E) (assuming |V| = 2nr) with
edge welghts w(e), e € E. For convenience, a partition of the set V
.always means a partition into two sets (A, B) with {A| = iBi \vi/2
in the rest of the paper. Then, the problem GP is to find a parti-
tion (A, B) of the set V with the minimum cost C(A, B), which is
defined to be the sum of the weights of all edges between A and
B. As one of the most successful heuristic algorithms for the GP,
the Kernighan-Lin heuristic starts with a random partition of the
set V. A sequence of partitions, (41, B,),-.., (41, B), is constructed
for a current partition (4o, Bo) in a greedy sense. Each partition’
(Ag,Br), 1 < k £ 1, in the sequence is obtained from the prevmus
one (Ap_,, Bk..;) by swapping one vertex in A;., with one vertex in
‘Bi-1 and has cost lower than the current partition. A local search
is performed in the set of partitions of this sequence, replacing the
current partition by the partition with the lowest cost in the se-
quence (the algorithm stops if the sequence is empty for the current
partition). Similar to the description of Algortihm 1, we use the
cumulative gain G(k) for a partition p;.

Algorithm 2: Kernighan-Lin heuristic for the GP. v

Input: n,G = (V, E) with V| = 2n, W = (wy;), and.a partition
’ (A4,B) of V. o

Output: A locally optimal partition (4, B) of V.
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" 1. Set Ag = A and By = B, obtain its cost C(4o, Bo). Set i =0
gi = 0, and G{3) = 0, where g; and G(i) are step gain and
cumulatne gain, respectlvely

“2i=1, «Inxt;ally, select a pair of vertices a; € Ap and b; € By
- such thé;t by‘ swapping them, the resulting partition (41, B1)
‘produces a posmve step gain g1, 1.e.,"g1- = C(Aq, Bo) — C(41,
B)>0. I such a pair does not exist then goto 7, otherwise

set G(1) = g;. ' :
3. i=i+1. Among the vertlces not selected so far, choose a’
pair a; € 4;_; and b € B, 1 and swap them to obtain 4; and
B; with maximum step gain ¢; = C(Ai1, Bi—1) —C(4:, B:). If
. all.the wvertices have been selectéd then set ¢ :_-, i—1and go

to 5.
4. Compute. the cumulative. ga.m G(z) =5 o H G() > 0;
then g0 to 3. '

5. Choose k; such that G(k) is mdxfmhm for0< k<.
6. If £ > 0 then set AO-A,, and Bo..B;e and go to 2.

7. We have reached a local optzmum for the GP; set A = Ao
and B = [BD Qutput 4, B and C(4, B). '

Comparmg the above algonthm with the, local search algo-
rithm for the QAP, one can easily see the s1m11ar1ty between them. -
Instead of working with partitions in the GP, we work with per-
mutations in the QAP. The reductlon from the GP to the QAP
in the next section reveals why ’che a.daptatlon of Kermghan Lin
aigorithm -to the QAP can be effective. Furthermore, extensive
computational results in Section 3 indjcate that the proposed local
search algorithm (Algorlthm 1) performs very well.

2. PLS-completeness and the QAP. For many comblna.to-
rial optimization problems, local search gives rise to some of the
most successful heuristics. A classical example in this regard is the
Linear Programming Problem-for which the Simplex method ‘can
be viewed as a local search algorithm, in which a local search step
is to go from the current basis to an adjacent basis which differs
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from the current one by one column vector. Based on the pivoting
rule, worst-case examples can be constructed that force the Simplex
method to take exponential time. Whether there can be a pivoting

‘rule under which the Simplex method takes only polynomial time
is a major open question. ,

In order to characterize the complexity of such local search
algorithms, a new complexity class, the Polynomial-time Local
Search class, was introduced and studied in [7]. A problem P is
in PLS if, for each instance z € I (the set of all instances), we have
a set of feasible solutions F(z) such that it is easy to decide whether
8 € F(z) for any solution s. Then, given z € I, we can produce a
feasible solution s € F(z) in polynomial time. Next, given z € I
and s € F(z) we can compute the cost C(s,z) of s in polynomial
time. In addition, every solution s € F(z) has a set of neighboring
sclutions N(s,z). Finally, given z € I and s € F(z), we can test in
polynomial time whether s is locally optimal, and if not, produce
a solution belonging to N(s,z) with a better cost value (A solution
s is locally optimal if it does not have a strictly better neighbor).

More formaily, a local search problem P in PLS is defined as
follows. Given an input z, find a locally optimal solution s € F(z).
For the problem P, the following three polynomla,l time algorithms
should also exist.

1. Algorithm A, on mput z €I, computes an initial fea51ble
" solution s € F(z).

2. Algorithm B, on input z € I and s € F(z) computes C(s, z).

3. ‘Algorithm C, on input z € I and s € F(z), either determines
that s is locally optimal or finds a better solution in N(s,z).

A problem P € PLS is PLS-reducible to another problem Q €
PLS, if there are polynomial time computable functions f and g,
such that f maps an instance z of ® to an instance f(z) of Q and
for any-locally optimal solution s for f(z), g(s,z) produces a locally:
optimal solution for z. A problem P in PLS is PLS-complete, if
every other problem in PLS is PLS-reducible to P.
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An example of a PLS-complete problem is the GP with the
Kernighan-Lin neighborhood structure defined in Algorithm 2 [7].
The Kernighan-Lin neighborhood of a partition for the GP can
be defined as follows. A swap of a partition (4, B) is a partition
(A',B'), where' A and A’ have a symmetric difference of 2, i.e.,
(4',B') is obtained from (4, B) by swapping one element of A with
one element of B. (4', B') is a greedy swap if C(4,B) - C(4',B') is
maximized over all swaps of (4, B). If in fact (4', B') is the lexico-
graphically smallest over all greedy swaps, we say that (4',B') is
the lexicographic greed swap of (4, B). Let (4i, B;) be a sequence of
partitions, each of which is a swap of the one preceding it, starting
from (Ag, By). We call it monotonic, if the differences of A; ~ A4 and
B; — By are monotonically increasing (that is, no vertex is switched -
back to its original set (4o, B;)). Finally, we say that a partition
(A’,B') is a neighbor of (4, B) if it occurs in the unique maximal
monotonic sequence of lexicczraphically greedy swaps starting with
(4, B). Note that such a sequence will consist of |V|/2+1 partitions,
with the last one equal to (B,A). Thus, each partition has |V|/2
neighbors. The -algorithm performs local search over this neigh-
borhood struc,ture,{r replacing the current partition by the partition

with the lowest cdst in the neighborhood. ‘
In the remaiding part of this section, we show that the QAP

with the neighborhood structure defined in Algorithm 1 is PLS-
complete by reduétion from the GP with the Kernighan-Lin neigh-
borhood structure. First, we show that the local search problem
for the QAP is in PLS. Since the set of feasible solutions of the
QAP is the set of permutations, an initial feasible solution can
be produced in linear time. Computing the cost of a permutation
for the QAP can be done in polynomial time. The neighborhood
structure defined for the QAP in Algorithm 1 is quite similar to
the Kernighan-Lin neighborhood structure for the GP. For a given
permutation for the QAP, there are [n/2] neighbors. We can deter-
mine in polynomial time if the permutation is locally optimal, and
if not, produce a better permutation among the |n/2] neighboring
permutations. Hence, with this neighborhood structure, finding a
local optimum for the QAP is in PLS.
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", To prove that the PLS-completeness, we show that the GF is
PLS-reducible to the QAP. Given an instance of the GP of size
2n, we can create an instance of the QAP with the same size in
polynomial time. Furthermore, for each local optimal permutation
of the QAP, there is a natural local optimal partition for the cor-
responding GP, More specifically, suppose for the GP, the graph
G = (V,E) has edge weights w(e) and vertex set V with |V]| = 2n.
We construct, in polynomial time, an instance of the QAP with
2n x 2n matrices F = (f;;) and D = (di;) defined below:

fij=w(i,j) if (i,j)€E; otherwise f;; =0,
dyu=0 if ki€ A or-k1€ B; otherwise dy =1,
where A={1,2,...,n}, B={n+1,n+2,...,2n}.

This reduction defines a one-one correspondence between a permu-
tation pi of the QAP with a partition (A;, Bi) of the vertex set V
* of the corresponding GP. The set of facilities allocated to locations
1 to n in p; constitutes the set Ap. The set of facilities allocated
to locations n + 1 to 2n in p; constitutes the set B;. The cost of
pr for the QAP is exactly twice the cost of the partition (A, Bi)
for the GP. Let the partition corresponding to a permutation po
be (Aq, Bo), then a permutation pi is a neighboring permutation of
po if, and only if, (Ak, Bi) is a neighboring partitions of (Ao, Bo)-.
Hence, for any local optimal permutation of the QAP, the corre-
sponding partition is a local optimal partition for the GP and can
_be recovered in polynomial time. By definition, the local search
problem for the QAP with the neighborhood structure defined in
Algorithm 1 is PLS-complete. .

3. Computational results. We describe our computational
experiments with the local search algorithm. The experiments were
~designed to test the solution quality and the running time of the
algorithm. We used several classes of test problems including test
problems from Krarup and Pruzan {3], Nugent et al. [13], Skorin-
Kapov [24], and Steinburg [25]. A set of new test problems with
knowrr optimal permutations was also used. They were generated
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according to the test problem generator provided in [14, 12]. The
test problem can be classified as follows:

Table 1. Classification of test problems -

Class | Name n ( problem sizes )
1 Krarup 30, 30
2 Nugent . | 6,8,12, 15, 20, 30
3 Palubetskes ,10 20 30 40, 50 60, 70, 80 90, 100
4 Skorin-Kapov | 42, 49, 56, 64, 72, 81, 90
5 Steinburg _ 36, 36

For the test problems in rlasses 1, 2, 4, and 5, the éptimal per-
mutations are known only for problems of small sizes (< 15). The .
problems in class 3, with knovn optimal solutions, were generated
with two integer parameters w and z using a test problem genera-
tor attached in the appendix. For each problem size in class 3, we
generated 8 test problems using w =9 and z = 1,2, ...,8 respectively.
Since the optimal pbjective function value of the test problem pro-
duced by the sgene)(-a,tor is independent of z, the 8 problems for each
fixed size have thé same optimal objective function value. The de-"
tailed ‘algorithm for the test problem generator is attached in the
appendix. b

Our algorithm was implemented in Fortran and runi on an IBM
3090 computer. For the problems in classes 1, 2, 4, and 5, the algo-
rithm was run with 25 randomly generated starting permutations
which were obtained by using a random variable with uniform dis-
tribution in (0-1). For each problem size in class 3, the algorithm
was run on the 8 test problems with 25 randomly generated start-
ing permutations for each problem. The comput&tiion’a;l"results are
summarized in the Table 2. :

From Table 2, it can be observed that the results of our al-
gorithm are very promising in terms of both-solution qua.hty'aqd
running time. The data in the column MIN indicates that, for all
the test problems considered, the best solutions found are within
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Table 2. Computational results on IBM 3090

Class| n BKV TIME MIN ERRI AVG ERRz MAX ERR3

1 |30 88900 0.47 90460 1.75 94512 6.31 97060  9.18
30 91420 0.44 92380 1.05 95271 © 4.21 99100 '8.40
6 8  0.00 8 - 0.00 .91 5.81 "~ 94 - 9.30
'8 214 001 214 0.00 221 3.27 . 240 12.15
2 12 578  0.02 592 = 2.42 606 4.84 632 9.34
15° 1150 0.05 1150 0.00 1200 4.35 1286 11.83
20 2570 0.12 2602 1.25 2670 3.89 2736 6.46
130 6124 073 6180 0.91 6304 294 6418 4.80 |
10 1890 0.01 1890 " 0.00 1989 5.24° 2157 14.13
20 10260 0.16 10260 0.00 10904 6.28 11415 11.26"
30 28710 0.74 28710 0.00° 30303 5.55 31427 9.46
40 60840  2.29 60840 0.00 64041 5.26 - 66259 8.91
'3 50 110250  5.55 110564 0.28 115358  4.63 120027  8.87
60 169920 12.32 171116 0.70 177742 4.60 184129 8.36 |
TO 246300 23.10 249435  1.27 258437  4.93 266781  8.32

80 341280 46.95 343239  0.57 358232  4.97 369627  8.31
90 456570 72.33 460114 0.78 479826 = 5.09 493792 8.15
100 594000 116.71 598225 0.71 620442 4.45 642000 8.08
42 15812  2.01 16004 1.21 16287 3.00 16520 4.48
49 2338  3.49 23644 1.10 23932 2.33 24192  3.45
56 34458 7.40 34802 1.00 35259 2.32 35862 = 4.07
4 | 64 48498 13.04 48960 0.95 49460 1.98 50038 : 3.18
72 66256 25.58 66842 0.88 67379 1.69 - 67948 ~ 2.55
81 91008 44.36 91752 0.82 92535  1.68 93262  2.48
90 115534 69.58 116276 0.64 117544 1.74 118404 2.48
[3 36 9526 1.58 9738 2.23 10278 7.89 10816 13.54
36 15852  1.53 16442  3.T2 18847 18.89 22294 40.64

e BKV is the best known value for the corresponding problem. -

"o MIN, AVG, MAX are the minimum, average, maximum val-
ues obtained over all the runs for the corresponding problem..

e ERR1, ERR2, ERR2 are the ratios of (MIN-BKV), (AVG-
. BKV), (MAX-BKYV) over BKV in percéntages.

e TIME is the average CPU time in seconds over all runs ft;r
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4% of the best known values. The average solutions are, in gen-
eral, within 8% of the best known values. The algorithm dispié.yed
stable performance except for the problems in class 5. .

The algonthm seems to be very fast for the classes-of test prob--
lems considered. For example, consider the problems in the class
4. For the problem of size 42 in the class 4, Slsonn—Kapov reported
-th;a:t theconstruétion’ method the tabu search, and the simulated
annealing.used in [24] took 1.70, 30.65, and'42.06 seconds respec-
tively onan IBM 3083, while the algorithm proposed here took
only 2.01 seconds on an IBM 3090. For the problem of size 90, the
constructxon method, the tabu search, and the s1mula.ted ai:nealing
used in [24] took 30.18, 727.20, and 538.69 seconds respectively,
whlle the.local search algorithm took only 69.58 seconds. However,
similar to other heuristic-methods for the QAP, the running time
of the local search algerithm mcrea,ses rapldly as the size of the
problem mcreases .

- 4. Concludlng remarks. In this paper, we present a new
local search® algorithm -for the QAP based on the Kernighan-Lin
heuristic algorlth,m for the GP. We have shown that, based on the
neighborhood stfucture defined by the algorithm, the local search
for the QAP is PLS complete. The proposed algorithm was tested
on many classes of test problems. The computatioral results sug-
gest that the proposed local search algorithm is capable of com-
putmg high quality solutions quickly. In contrast to heuristics such
as tabu search and simulated annealing, another adva.ntage of the
algqnthm. is its simplicity and easy implementation.. The algorithm
dep:ends only on the starting permutation and does not depend on
any other parameters. The success of the algorithm stems from
the proper adaptation from the Kernighan-Lin heuristic algorithm
for the GP. In addition, the proposed local search algorithm can
be parallelized very efficiently. Computational results of a parallel
implementation of the local search algorithm and an exéét‘parallel
branch and bound algorithm are reparted in-[18]. s

We should a.lso ‘mention that, at.present, there are no known
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relation to the global optimum. From:the complexity point of view,
it can be shown that, if there exists a polynomial time algorithm
for checking whether.a.given permutation is.globally. opt;mal ‘then
P = NP [15].

Appendix: A test problexﬁ ‘generator: fI‘he problems in
class 3 of Table'1,-were. genorated .using the-test . problem. genemtor
ongmally reported in [14] and- subsequently: appeared :and used. in
[12]. For ready-reference, the algorithm: to generate test problems
is described below (for details, see [12]).- ‘

Algouthm 8 Gene:atmg Test Problems. Wlth Known Optx- :
mal Solutions.

Input ‘n, w, z, positive, ,mtegers, 0< 2z < w. v

Output:’ ‘n-x.n -matrices F .and D, an. opt;mal permutatlon p
and the-optimal cost. '

1. Construct the-matrix D .= (d,,), of v‘{hlch the. elements are

" the rectilinear -distances between the knots of the two di-
mensional grid r x.s, where rx s.= n."If (i, j)-are neighbering

‘knots then dij = 1.

2. Set fij =w, gij =2~ d,,forz,,a-l? »

. While there exist #,j € {1,...,n} such tha,t.g,-,:-vs 0 do.

4. Choose the pair I,m, such that di, = max{d;;}, where the
max is taken over every (i,j) for-which g;; < 0.;If no such_
pair exists, then go to 8. :

5. Randomly select.a grid point. k on one of the shortest ways
from [ to m, such: that, |:dix ~dms | < 1. Then, hoose a
random integer A € [0, z]. _

6. Set fim = A, fu.= fie-t+ (w.—:D), fmk"" okt (w — A) and
9im = gk = gme = 1.

7. Endwhile. i

8. Finally, generate-a-random-permutation p.as: the optimal
permutation.: Form: the-matri»: F.= (fi;) in.which-fij. = fuv,
where i = p(u), j-= p(v), §,j.= 1,2;..,n. .

9. Output - F = (fij), D.= (dij),.p, and the qptlmal cost
"w(Zz—l 4-1 *J) )

w
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