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Abstract. In this paper, we present a new local search algorithm for solving 
the Quadratic Assignment Problem based on the Kernighan.Lin heuristic for the. 
Graph Partitioning Problem. We also prove that finding a local optimum for 
the Quadratic Assignment Problem, with the neighborhood.structure defined in 
the algorithm, is PLi·complete. The greatest advantages of the algorithm are 
its simplicity and sPfed in generating high quality solutions. Tlie algorithm has 
been implemented alnd tested on an IBM 3090 computer with a variety of test" 
problems of dimensions up to 100, including many test problems available in the 
literature and a newi set of test problems with known optimal permuta.tions. 

Subject classifications: analysis of algorithms: computational com· 

plexity, suboptimal algorithms; facilities/equipment planning: discrete location. 

Other key words: combinatorial optimization, graph partitioning, poly· 

nomial·time local search. 

Introduction. The Quadratic Assignment Problem(QAP) 
belongs to a class of corn binatorial optimization problems that have 
many practical applications but are computationally difficult to 
solve. Given a set N = {l, 2, ... , n} and n x n matrices F = (Iij) and 
D = (d,ill ), the problem is to find a permutation p of the set N that 
mInImIZeS 

n n 

C(p) = L Lfijdp(i)p(j). 

i=l j=1 
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In the framework of the classical location problem, the set N 
describes a set of n sites on which n facilities are to be loeated.' The 
matrix F = (/ij)is the flow matrix, ~herefij, id EN, represents 
the flow of materials from facility i to facility j. The matrix D 
= (dlel) is the distance matrix, where dlel, i,j e N, represents the 
distance fro~ location k to location I [8]. In addition to its applica­
tion in facility location problems [2, 3, 8], the QAP has been found 
useful for such applications as proble~s in scheduling [5], the back­
board wiring pro~iem in ~lectronics [25], ,?>nd even the assignment 
of runne~s to a, relay team [6]. Other appiications may be found in 
[4,9,11]. 

The QAP has shown itself to be a very difficult problem corn..: 
putationally. This problem, of which the Traveling Salesman Prob­
lem is a special case [10], is' NP-hard. Furthermore; the problem 
of .findingan e-approximate solution is also NP-hard [21]. Prob­
le~s: of size n > 15 are not practically solvable to optimality [16, 
20]. Consequently, many heuristic methods have been developed to 
solve the QAP [~, 23, 24, 26, 27]. Most of these methods use a local 
search algorithm where the local search depends on the formulation 
of the problem and a neighborhood structure. A local search algo­
rithm starts with an initiaJfeasible solution and successively moves 
to neighboring solutions until no further improvement is possible. 
To characterize the complexity of solving combinatorial optimiza­
tion problems such a.s the QAP with local search algorithms, a 
Polynomial-time Local Search (PLS) class has been defined [7] that 
captures the structure of NP problems at the level of their feasible 
solutions and neighborhoods. Similar to NP-completeness, the con­
cept of PLS-completE'!ness has been defined to capture the class of 
the hardest problems in PLS. For certain NP-complete problems, 
the corresponding PLS problems have already been shown to be 
PLS-complete [7, 22]. In regard to the complexity of local search, 
see also [17] and [19]. 

In Section 1 of this paper, WE.: propose a new local search algo­
rithm for· the QAP based on the Kernighan-Lin heuristic algorithm 
for the Graph Partitioning Problem (GP). In Section 2, we show 
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that the QAP with the neighborhood structure defined by the local 
search a.lgorithm is PLS·complete by reduction from the GP with 
the Kernighan-Lin neighborhood. We implemented and tested the 
algorithm on an IBM 3090. computer using a. variety of test prob­
lems of sizes up to 100. Computational results are reported in 
Section 3 . 

. i. A new local search algorithm. In this section, we de­
scribe a: new local search algorithm for the QAP and establish 
the connedion between the new algorithm and th~ Kerriighan-Lin 
heuristic algorithm for the Graph Partitioning Problem (GP). 

The local search algorithm for the QAP starts with a. random 
permutation.as a current permutation. For a current permutation 
Po, a sequence of permuta,tions, Pl. ... ,Pl,is constructed in a greedy 
sense. Each of the permutations in the sequence is obtained from 
the previous one-by swapping (interchanging) two assi~nments and 
has cost lower than the current permutation. A local. search is 

. performed in· the sequence, replacing the current permutation by 
thepermutation'with the lowest cost in the sequence (the algorithm 
stops.if the seque~te is empty for the current permutation). In the 
description of thei local search algorithm· below, instead of using 
the cost C(Pk) of~ permutation Pkin the sequence of permutations' 
corresponding toa current permutation Po, we use the cumulative 
gain G(k) ofthe permutatioD'Pk, where G(k) = C(PO)-C(Pk). Hence, 
the larger is the cUI~ulativegain of a permutation, the lower is the 
cost. 

Algorithm 1: A LocalSearch Algorithm for the QAP . 

. Input: n, n X n matFicesF, D, and a permutation P of size n. 
Output: .A local optimal permutation 1? for the QAP. 

1. Set Po = P and calculate its cost C(po). Set i = 0, g, = 0, 
and, G(i) = 0, -where 91 and G(i) are the, step gain and the 
cumulative gain, respectively. 

2. i = 1. In~tially,select a paJr of facilities such that, by eJt­
changing their .locations, a positive step gain is obtained, 
i.e., 91 = C(po) -'C'(PI) > 0. If no such pair exists then go 
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• to i, otherwise set G( 1) = g1' 

3. i = i + 1. For each pair of facilities not already selected, 
evaluate the step gain by exchanging their locations. Then, 
select the pair with maximum gain 9i ::: C(Pi-l) - C(Pi). If 
all facilities have been selected then set i =i - 1 and go to 5. 

4. Compute' the cumulative gain, G(i) = E::~ gk. If G(i) > 0; 
then go to 3. 

5. Select k, such that G(k) is maximum for 0 ~ k ( i. 

6. If k > 0 then set Po = Pk and go to 2. 

7. We have reached a local optimum for the QAP. Set P ::: Po 
and output P and C(P) .. 

Now let us review the Kernighan.Lin heuristic algorithm for 
the GP for an undirected graph G(V,E) (assuminglVl= 2n) with 
edge weights w(e), e E E. For convenience, a partition of the set V 
.a.iways means a partition into two sets (A, B) with iAI = !Bl = 1V1/2 
in the rest of the paper. Then, tht:: problem GP is to find a parti· 
tiOD (A. B) of the set 1/ with the minimum costC(A., B), which is 
defined to be the sum of the weights of all edges between A and 
B. As one of the most successful heuristic algorithms for the GP, 
the Kernighan·Lin heuristic starts with a random partition of the 
set V. A sequence of partitions, (Al, Bd, ... , (A" B,), is constructed 
for a current partition (Ao,Bo) in a greedy sense. Each partition' 
(Ac, B1:),' 1 ( k ( I, in the sequence is obtained from the previous 
one (Ak_l, B~-d by swapping one vertex in Ak_l with one vertex in 
'Bk - 1 and has cost lower than the current partition. A local search 
is performed in the set of partitions of this sequence, replacing th~ 
current partition by the partition w~th the lowest cost in the 5~ 
quence (the algorithm stops ifthe sequence is empty for the current 
partition). Similar to the description of AIgortihm 1, 'Ye use the 
cumulative gain G(k) for a partition Pc' 

Algorithm 2: Kernighan-Lin heuristic for the GP. 

Input: n,G = (V, E) with Iv'l = 2n,W = (Wij), and.a partition 
(A,B) of v, 

Output: A locally optimal partition (A, B) of V. 
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1. Set Ao = A and Bo == B, obtain its cost C(Ao,Bo). Set i = 0, 
gi = 0, and G(i) = 0, where gi and G(i) are step gain and 
cumula.th~e gain, respectively. 

2. i = '1.' Init~ally, select a pair of vertices' al E Ao and bl E Bo 
such that, by' swapping thetp., the resulting pe.rtition (Ab Bd 
produces' a'posit~ve .step gain 91., i.e',"Ul = C(Ao, Ba) - C(Al' 
Bd> 0. tfsu~.h a pair d~s not exist then goto 7, otherwise 
set G(1:) =g1' . " 

3. i = i + 1. Among the vertices ijot selected so far, choose a' 
pair ai'E Ai-'i arid bi E Bi~l and swap th~m to obtain Ai and 
Bi with maximum step 'iain 9i =\ C(Ai_l> B i - l) - C(Ai"Bi). If 
all. the vertices have been . selected then set i ,= i-I and go 
to 5 . 

. 4. Compute. the cumulative gain G(i) = L:~~ 9le. If G(i) > 0;. 
then go to 3. 

5. Choos.e k, such that G(k) IS maxi'mum for O:E; k :E; i . 

. 6. If k > 0. then set Ao = Ale and Ba = Ble and go to 2. 

7. We havekea.ehed a local optimu~ for the GP; set A = Ao 
and B = /Ba. Output A, Band C(A, B). ' 

I . 

. Comparing the above a.lgorlthm with the )ocal search algo-
rfthm for the QAP, one can easily see the similarity betw~en them. ' 
Instead of working with partitions i'n the GP, we work with' per­
mutations in the QAP. The reduction from .the GP to the QAP 
in the next sectiori 'reveals why the adaptation of Kernighan-Lin 
algorithm to the QAP' can be effective. Furthermore, extensive 
ccimputational' results in Section 3 indicate that the proposed local 
search algorithm (Algorithm 1) perfo~ms very welL 

2. PLS-completeness and the qAP. For many combinatp­
rial optimization problems, local. search giv~s rise to some ,of the 
most successful heuristics. A classical example in this regard is the 
Linear Programming Probl~m·for . which' the Simplex metliod:can 
be viewed as a local search algorithm, in which a local search step 
is to go' from the"current basis to an adjacent basis which differs 
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"from the current ~:me by one column vector. Based on the pivoting 
rule, worst-case examples can be constructed that force the Simplex 
method to take exponenti.al time. Whether there can be a pivoting 

. rule under which the Simple;x method takes only polynomial time 
is a major open question. " 

In order to characterize the complexity of such local search 
algorithms, a new complexity class, the Polynomial-time Local 
Search class, was introduced and studied in [7]. A problem P is 
in PLS if, for each instance z E I (the set of all inst.ances), we have 
a set of feasible solutions F(z) such that it is easy to decide whether 
s E F(z) for any solution s. Then, given z E I, we can produce a 
feasible solution 8 E F(z) in polynomial time. Next, given z E I 
and s E F(z) we can compute the cost C(s, z) of s in polynomial 
time. Ip addition, every solution s E F(z) has a set of neighboring 
solutions N(s, x). Finally, given z E I and s E F(z), we can test in 
polynomial time whether s is locally optimal, and if not, prvduce 
a sol\ltion belonging to N(s, z) with a better cost value (A solution 
s is locally optimal if it does not have a strictly better neighbor). 

More formally, a local search problem P in PLS is defined as 
follows. Given an input z, find a locally optimal solution sE F(z). 
For the problem P, the following three polynomial time algorithms 
should also exist. 

1. Algorithm A, on input z E I, computes an initial feasible 
. solu.tion So E F(z). 

2. Algorithm B, on input z El and sE F(z) computes· C(s, z). 

3. Algorithm C, on input z E I and sE F(x), either determi~es 
that s is locally optimal or finds a better solution in N(s,x). 

A problem P E PLS is PLS-reducible to another problem Q. E 
PLS, if there are polynomial time computable functions / and g, 

such that! maps an instance z of p to an instance /(x) of Q anq. 
for any" locally optimal solution 8 for !(:t), g(8,Z) produces a locally. 
optimal solution for z. A problem P in PLS is PLS-complete,if 
every other problem in PLS is PLS-reducible to P. 
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An example of a PLS-complete problem is the GP with the 
~ernighan-Lin neighborhood structure defined in Algorithm 2 [7]. 
The Kernighan-Lin neighborhood of a partition for the GP can 
be defined as follows. A swap of a partition (A, B) is a partition 
(A' , B'), where' A and A' have a symmetric difference of 2, i.e., 
(A' ,B') is obtained from (A, B) by swapping one element of A with 
one element of B. (A',B') is a greedy swap if C(A,B) -C(A',B') is 
maximized over all swaps of (A, B). If in fact (A', B') is the lexico­
graphically smallest over all greedy swaps, we say that (A', B') is 
the lexicographic greed swap of (A, B). Let (Ai, Bi) be a sequence of 
partitions, each of which is a swap of the one preceding it, sbrting 
from (Ao,Bo). We call it monotonic, ifthe differences of Ai-Ao and 
Bi - Bo are monotonically increasing (that is, no vertex is switched 
back to its original set (Ao, Bo». Finally, we say that a partition 
(A' , B') is a neighbor of (A, B) if it occurs in the unique maximal 
monotonic sequence of lexico6raphically greedy swaps starting with 
(A, B). Note that such a sequence will consist of 1V1/2+ 1 partitions, 
with the last one equal to (B,A). Thus, each partition has 1V1/2 
neighbors. The . algorithm performs locaLsearch over this neigh­
borhood structurei replacing the current partition by ~he partition 
with the lowest c.c!st in theneighborhood. 

In the remaiIiing part of this section, we show that the QAP 
I 

with the neighborhood structure defined in Algorithm 1 is PLS-
I 

complete by reduction from the GP with the Kernighan-Lin neigh-
borhood structure. First, we show that the local search problem 
for the QAP is in PLS. Since the set of feasible solutions of the 
QAP is the set of permutations, an initial feasible solution can 
be produced in linear time. Computing the cost of a permutation 
for the QAP can be done in polynomial time. The neighborhood 
structure defined for the QAP in Algorithm 1 is quite similar to 
the Kernighan-Lin neighborhood structure for the GP. For a given 
permutation for the QAP, there are In/2J neighbors. We can deter­
mine in polynomial time if the permutation is locally optimal, and 
if not, produce a better permutation among the In/2J neighb~rir;tg 
permutations. Hence, with this neighborhood structure, finding a 
local optimum. for the QAP is in PLS. 
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. To prove that the PLS-completeness, we show that the GP is 
PLS-reducible to the QAP. Given an instance of the GP of size 
2n, we can create an instance of the QAP with the same size in 
polynomial time. Furthermore, for each local optimal permutation 
of the QAP, there is a nattirallocal optimal partition for the cor­
responding GP, More specifically,' suppose for the GP, the graph 
G = (V,B) has edge weights w(e) and vertex set V with IVI = 2n. 
We construct, in polynomi~l time, an instance of the QAP with 
2n x 2n matrices F ~ (ltj) and D = (did) defined below: 

Itj = w(i,j) if (i,j) E E; otherwise Itj = 0, 

dltz = 0 if k,l E A or, k,l E B; otherwise dzlt = 1, 

where A = {l,2, ... ,n}, B = {n + l,n + 2, ... ,2n}. 

This reduction defines a one-one correspondence between a permu­
.tati~nplt of the QAP with a partition (AIt, Bit) of the vertex set V 

. of the corresponding GP. The set of facilities allocated to locations 
1 to n in Pit constitutes the set AIt . The set of facilities allocated 
to locations n + 1 to 2n in PIe constitutes the set B/;;. The cost of 
PI: for the QAP is exactly twice the cost of the partition (A.l:,BIt) 
for the GP. Let the partition corresponding to a permutation Po 
be (Aa, Ba), then a permutation Pit is a neighboring permutation of 
Po if, and only if, (AIt,BIt) is a neighboring partitions of (Aa,Bo)., 
Hence, for any local opt,imal permutation of the QAP, the corre­
sponding partition is a local optimal partition for the GP and can 

, be recovered in polynomial time. By definition, the local' search 
problem fOT the QAP with the neighborhood structure defined in 
Algorithm 1 is PLS-complete. 

3. Computational results. We describe our computational 
experiments with the local search algorithm. The experiments were 

, designed to test the solution quality and the running time of the 
algorithm. We used several classes of test problems including test 
problems from Krarup and Pruzan l3], Nugent et al. [13], Skorin­
Kapov [24], and Steinburg [25]. A set of new test problems with 
known' optimal permutations was also used. They were generated 
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according to the test problem generator provided in [14, 12]. The 
test problem can be classified as follows: 

Table 1. Classification of test problems 

Class Name n ( problem sizes ) 

.1 Krarup 30,30 
2 Nugent 6, 8, 12, 15, 20, 30 
3 Palubetskes ,10, 20, 30, 40, 50, 60, 70, 80,90, 100 
4 Skorin-Kapov 42, 49, 56,64, 72, 81,90 
5 Steinburg 36,36 

For the test problems inr'lasses 1, 2, 4, and 5, the ~ptimal per­
mutations are known only for problems of small sizes (~ 15). The 
problems in class 3, with known optimal solutions, were generated 
with two integer parameters wand z using a test problem genera­
tor at,tached in the appendix. For each problem size in class 3, we 
generated 8 test .problems using w = 9 and z = },2, ... ,8 respectively. 
Since the optimal ~bjective functioJ;l value ·of the test problem pro­
duced by thegenetator is independent of z, the 8 problems for each 
fixed size have the same optimal objective function value. The'de- . 
tailed algorithm for the test problem generator is attached in t~e 
appendix.: . 

Our algorithm was implemented in Fortran and run on an IBM 
3090 computer. For the problems in classes 1, 2, 4, and 5, thealgo­
rithm was run with 25 randomly generated starting permutations 
which were obtained by using a random variable with uniform dis­
tribution in (0-1). For each problem size in class 3, the algorithm 
was run on the 8 test problems with 25 randomly generated start­
ing permutations for each problem. The computatiQnai'l'eBliltsare 
summarized in the Table 2. 

From Table 2, it can be observed that the results of our al­
gorithm are very promising in terms of both"solution quality, and 
running time. The data in the column MIN indicates t~t, .for "~l 
the test problems considered, the best solutions found are within 
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• 
Table 2. Computational results on IBM 3090 

Class n BKV TIME MIN ERR1 AVG ERR2 MAX ERR3 

1 

2 

3 

4 

5 

.30 88900 0.47 90460 ·1.75 94512 6.31 97060 9.18 
30 91420 0.44 92380 1.05 95271 4.21 99100 8.40 
6 86 0.00 86 0.00 91 5.81 94 9.30 
8 214 0.01 ~14 . 0.00 221 3.27 . 240 12.1'5 

12 578 0.02 592 2.42 69~ 4.84 632 9.34 
15 1150 0.05 1150 0.00 1200 4.35 1286 11.83 
20 2570 0.12 2602 1.25 2670 3.89 2736 6.46 
30 6124 0.73 6180 0.91 6304 2.94 6418 4.80 
10 1890 0.01 1890 . 0.00 1989 5.24 . 2157 14.13 
20 10260 0.16 10260 0.00 10904 6.28 11415 11.26 . 
30 28710 0.74 28710 0.00 30303 5.55 . 31427 9,46 
40 60840 2.29 60840 0.00 64041 5.26 66259 8.9'1 
50 110250 5.55 110564 0.28 115358 4.63 120027 H.8T. 
60 169920 12.32 171116 0.70 177742 4.60 184129 8.36 
70 246300 23;10 249435 1.27 258437 4.93 266781 8.32 
80 341280 46.95 343239 0.57 358232 4.97 369627 8.31 
90 456570 72.33 460114 0.78 479826 5.09 493792 8.15 

100 594000 116.71 598225 0.71 620442 4.45 642000 8.08 
42 15812 2.01 16004 1.21 16287 3.00 16520 4.48 
49 23386 3.49 23644 1.10 23932 2.33 24192 3.45 
56 34458 7.40 34802 1.00 35259 2.32 35862 4.07 
64 48498 13.04 48960 0.95 49460 1.98 50038 , 3.18 
72 66256 25.58 66842 0.88 67'379 1.69 . 67948 2.55 
81 91008 44.36 91752 0.82 92535 1.68 93262 2.48 
90 115534 69.58 116276 0.64 117544 1.74 118404 . 2.48 
36 9526 1.58 9738 2.23 10278 7.89 10816 13.54 
36 15852 1.53 16442 3.72 18847 18.89 22294 40.64 

• BKV is the best known value for the corresP9nding problem. 

• MIN, AVG, MAX are the minimum, avera.ge, maximum val­
ues obtained over all the runs for the corresponding problem. 

• ERRl, ERR2, ERR2 are the ratios of (MIN-BKV), (AVG­
BKV), (MAX-BKV) over BKV in percentages. 

• TIME is the averae:e CPU time in seconds over all runs for 
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4% of the best known values. The average solutions are, in gen­
eral, within 8% of the best known values. The algorithm displayed 
stable performance except for the problems in clas~,5 . .. - . .. . .. 

·7 [pe ,algorithm" s~ms to be very fast for the classes 'of test prob-' 
le~s considered .. For example, consider the.problem,s in the class. 
4. ,For the,P,robleII\ of size 42 in t'he class 4,S~orin-Kapov reported' 
th;at the"'tc:mstructiofi~eth6d, the tabu searchl'and"the simulated 
anf!,ealing'llsed in [24] took 1.70, 30.65, and' 42.06 seconds respec­
tively on.'an IBM 3083, while the algorithm proposed here took. 
only2.0f seconds on an IBM 3090. For the proble~ of size 90, the 
constructIon method, the tabu search, and the simulat~d auiealing 
used 'in [241' too{-30.18,.727.20, and 538.69 seconds respectively, 
whil~ jtheJocal s~arch algoriihm. tpokonly 69.58 seconds. However, 
sim,ilar to other heuristiC methods for the QAP, the running time 
of the local search algorithmincreases"rapidly as the size of the 
problem inCi~ases.' 

, . 

4. Concluding remarks. In this paper, we p,resent a new 
local search' algorithm :for the QAP based on the Kerniglian-Lin 
heuristic algorith!m for the GP~ We have ·sho"wn that, based on the 
neighborho~d stjucture defined' by the aigorithm, die local search 
for the QAr is PLS-complete. The proposed algorithm was tested 
on many classes' of test problems. The computational'results sug­
gest that the proposed local search algorithm is capable of com­
puting high quality' solutions quickly. In contrast to heuristics such 
as tabu search and simulated ~nnealing, another adVa~tage of the 
algQrithm is its simplicity and easy implementatipn .. The algorithm 
dep"~nds C;;nlyon the starting peqnutation and does"not depend on 
any other parameters. The success of the algorithm stems from 
the proper adaptation from the KerJ;lighan-Lin peuristic algorithm 
for the GP. In additi~n, the proposed local search algorithm can 
be parallelized very efficiently. Complitational, results of ~ parallel 
implementation of thelocalsearc:h algorithm and an exiet'parallel 
branch an~ bound, ~gorithrn are. repQ,~~ed in- {18}.'\ w 

We should .alsomention that, at-present, there are no known 
local criteria in deciding how good a local optimal solution is, in 

,'.. • ,', 'J ' ~ 1 1. or '-
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relation to the global optimum.' FroID:the,cQmple}1:itypoint of ;view, 
it can be shown th~t, if t,here~xists :aPQIY~()I:tl~a.liimea.lgorithm 
for checking whether.:a.;giv:.,.n;:p~l,:m.~~a.tion·Js;gl~~ly:.·~pt~roal, ... th~n 
P = NP [15J. . 

Appendix: At~st.p~blepi~,g~:Q~@:t()r:. ';"l'he:Problemsin 
class 3 9fTabIe'! ;·;:were. gen~:!1:a.~; u~iJlg: the' t~t~prp"ler,n. ,genera.tor 
originally reported in [14] .. a.Ild .. ~.Y.b~q~eJltly;.~p~a.:red:;a\J;idus~in 
[12] .. For ready referenGe, the ,aigorit.h:Jllto :,g~n.e;ate . testpJ.'oblerns 
is described below (for det.a.ils,s~ [l2]).· . 

Algorith:rn.3: . GeneJ;atjn.,g .T~stProbl~Pls:Wi~h \K.~bwn Opti- . 
mal Solutions. . , 

I~put:n',:w,z,po.sitive·imte.gers, O,~ ;.~w .. 
Output: 'n·x.·nmatrices F .. a.nd V, .a.noptimalpe!J1l.ut.atic>I:'.·p 

, .and the optimal cost. > • , • .: ' 

~. Construct. the··matrix. D::;:: (dij ) " of . "hic"p . tkIe, .eleD,)t\\Jlts •. ~re 
the rectilinear . distances between the. knots of the two di­

. mensional gridr x s,.where rx S .. = n . .If (i, j): areneighb0ring 
knots, .then· dij = 1. .. 

2. Set fii= w, .g;i =2 -.d;;Jqri,j =1,.2, ... ,n. 
3. While there exist i, j E {I, ... ,n} s.uch thatgij( ado. 
4. Chopse the .pair.l".m,su~h thatdzm = rrnu{dij }, where the 

max is taken o;ver e;very (i,j)-fGr,which;9ij ~:O. i.lfno ~uch. 
p~r e;x:is:ts, then;;go. to8. . ", 

5. Randomly select.,a grid.point. le on. one pf tlle~,h()rtestways 
from 1. to m,sllch:. that, 1:;:dl1l""7';4~1: 1,.(.1. '·Then, <:poosea 
random integerA. E [0, z]. . 

6 .. Set jlm ;:: .A,jll:·=ill:·'+ (w.·~;A),Jmlt .. :.~}lfl:!l::+ (:0 -: .AL~nd 
g'm = g'l: = gm. = .. 1. 

7. Endwhile. 
8. Fi.nally,generatearap,-d()m.: . .perlll.u~at.iQn p:.as: the optiIn,al 

permutation. ,. Form:tne:'Illatti!" r,,;= ,{Jij )jn .. ;~hi,ch1ij:=futl; 
where i= p(u),. j.= p(v),i,j~ 1,2, ... ,n. 

9 . .output F .. = (fij), D.= . (~j), .. p, il..qd ,the.qptiJ;ll~:CO§lt 

-w(B?=l Ej:ldij). . 
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