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Abstract. Design problems of predictor-based self-tuning digital control
systems for different kinds of linear and non-linear dynamical plants are dis-
cussed. Special cases include linear plants with unstable and nonminimum-phase.
control channels, linear plants with inner feedbacks, nonlinear Hammerstein and:
Wiener-Hammerstein-type plants. Considered are control systems based on gen-
eralized minimum variance algorithms with amplitude and introduction rate re-
strictions for the control signal. \

Key words: predictor-based self-tuning control, generalized minimum va-
risnce rontrol. - | ‘

1. Introduction. Usually control system design must take
into account the fact that a priori information about the plant
and its environment is insufficient. Control system must also be
capable of ensuring the control task despite variations in plant’s
dynamic and static characteristics, provoked by inner and outer
disturbances. Different modifications of self-tuning control systems
can be successfully used in order tc cope with these requirements:
(Isermann, 1981; Astrom, 1983; Astrom and Wittenmark, 1984).

Self-tuning control system usually cotisists of two loops. Con-
trol plant and the controller form the so-called main loop. The
second loop may be called the tuning loop, and its aim is to change
the control law 8o as to get adjusted to the unknown situation and
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to accomplish the control task. Different synthesis methods for the
latter loop make it possible to group self-tuning control systems
into explicit and implicit ones. An explicit self-tuning control sys-
_tem is based on the estimation of an explicit control plant model,
while an implicit one is based on implicit estimation of the con-
troller parameters. ' ‘ ‘

This paper considers practical issues in the implementation of
a kind of explicit self-tuning control systems — predictor-based sys-
tems (Peterka, 1984; Kaminskas, 1988). In this case explicit control
plant model is constructed in the form of an optimal predictor of
the output signal. Self-tuning control systems of this kind can be
successfully applied to different dynamical control plants (Kamin-
skas et al., 1988, 1990, 1991).

This paper is intended to give practical recommendations in
design of self-tuning predictor-based control systems based on a
generalized minimum variance controller with amplitude and in-
troduction rate restrictions for the control signal. For this purpose
a general framework of a predictor-based self-tuning control sys-
tem is presented first, and then special cases are discussed. Special
cases include plants with unstable or nonminimum-phase control
channel, plants with inner feedbacks and nonlinear Hammerstein
and Wiener-Hanimeistein-type plants.

2. Generall framework. First of all we’ll show the design
process for a predictor-based self-tuning control system in case of
a common linear dynamical plant, its operation being defined by
the following difference equations
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n,
P(z") =1+ Zp,z R(z"Y) =14 }:rjz"" . 3)
J=1 J=1 '
are fractional-rational transfer functions of the minitnum-’pha.se and
stable channels of the control signal u, and the disturbance &, their
numerator and denominator polynomials having no common roots;
2~ is an i-step backward-shift operator; y is an observable output
signal; &; is a sequence of independent random variables with zero
mean and a finite variance o?; r is pure delay value in the control
channel. The structural diagram of such a plant is given in Fig. 1.

£

Fig. 1. Structural diagram of a common linear control;plant.

The output signal of the control plant (1) can be rewritten as
the sum of two components (Kaminskas, 1988) :

 Yrerel = Yepraap(C) +5t+r+1, ; @

Yopraay = 271 = H"(”‘)]E+H'1(I°I)W0(‘ Yuras )

is optimal (7 + 1)-step prediction of the output slgna.l a.nd the fol-
lowing relationships are true (Astrém, 1970)
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{r, if n, >0,
Be =

n; = max {n,,ng -7} —1. 9
min {r,n,}, ifn, =0, l {' 4 } ©)

= (815 4y B0y sy P1y ooy Ty - ) is the parameter 'vector for the control
pla.nt (1).

We consider the control plant to be a stocha.stxc one in order to
be able to evaluate and to cope with the effect of external distur-
bances on plant’s characteristics. Besides, such a model is capable
of smoothing possible model matching errors.

In case of a stochastic control plant it is natural to demand for
the control system to provide the minimum variance of the devi-
ations of the observed sequence y from the reference sequence y;.
Sometimes it is preferable to apply a generalized minimum variance
control algorithm, obtained by introducing control costing (Clarke
et al., 1987). In this case the control criterion is

Qu(u141) = M{(tar41 = Yigr1)* + ét("t+1 - %)) (10)

and optimal control values are

tgyy = argmin Qs (uey1), (11)
V142680,

where
2, = {"t(u h € U1 € Umexy  JUg1— i} < 51} (1z; -

is the admissible domam for the control values; umin, Umax are con-
trol signal boundaries; & > 0 are the restriction values for the in-
troduction rate of the control signal; y},,,, marks the reference
trajectory for the output signal; 4 marks the reference trajectory
for the control signal; ¢; is a weight coefficient.

‘The main reasons for using a generalized minimum variance
control algorithm are: .

1) Its ca.pabxhty to cope with nonmlmmum-phase control
plants. -

2) The pOSsibili,ty to reduce control signal variations by intro-
ducing additional restrictions. This is often a welcome fact, though
this reduction is usually achieved by loosing in the control quality.
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Solution of the extremal problem (11) requires the knowledge
of genuine plant parameters c. Since these parameters are usually a
priori unknown and vary in the operation process, current estimates,
€: can be used instead of genuine parameters.‘ The estimates can
be obtained in the identification process from the condition

S T .
€ Q)= ; Z;‘m—l(c) ~ (13)

where Q¢ is the admissible domain for ‘the parameters ¢, usually
the same as the stability domain for the closed-loop system;
Ee4112(€) = Br41 — Brgape(c) - (14)
is the error of one-step-prediction of the output signal, obtained in
accordance with - T , :
Yrpape(€) =2[1 = H™1 ()] we + Bz YWole ™ Yurga-r ‘
= z[H(z™) = l)ege-1(€) + Wo(z™uggr-r -+ (15)

Thus we arrive at an explicit predictor-based self-tuning con-
trol system, its structural diagram given in Fig. 2.
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_Fig. 2. Structural diagram of ‘predictor-based self-tuning con-
trol system. ' :
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Fig. 8. Block diagram of the self-tuning control systen;‘for
common linear plants.

Under this approach control and estimation processes are in-
terconnected by a common value - the one-step-prediction error for
the output signal.

Consldenng %) and (13), we get the controller equatxons

wyy = M{ummu.+6¢,u:+x} if ey 3 o, (16)’
7\ max {umin, uf — b1, Ge1}, i Uppa <,

g1 = ot(z 1)t ay)”
{!a+r+1 +="" (Et(fl) - By 1))&!:-1(3:-1)} (17)

where »
& _ [t aiy,, k=t |
y“’”'l_ - { Veprpip T arly,,, fk=t-1t-2,.., (18)
= ¢1/B0,t; Doy is the current estimate of by in B(z-?).
~ In case when there are no restrictions for'the control values,
control algorithm is defined only by (17), takmg into account tha.t
Ptr41 = Yiqryq for all k.
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The current parameter estimates €, are obtained in the process
of identification in the closed loop by applying a recursive algorithm
(Kaminskas, 1982).

The block diagram of the above described self-tuning control
system is given in Fig. 3.

Such is the framework of a predictor-based self-tuning control
system for a common linear plant. Let’s discuss special cases to-
gether with practical recommendations for managing them.

3. Special cases in control of linear plants

‘3.1. Plants with inner feedbacks. In case of a linear cénf.tol
plant with inner feedback, its operation may be defined by the
following difference equations

= Wo(l-l)vt-r +‘H(zé'l)£h (19)
vt = upr+ py, bt = WF(Z;.I)111~7" (20)
- where D( 1) .
5=
" = ey

ng ; e X ‘ : ‘
GGz =1+ 295‘-"' D(="Y) =_Z d;z~3, (21)

Jj=1 j=0 ’

is the transfer function of the feedback; Wo(z~%) and H(z™!) are
transfer functions, defined by (2),(3); 7 is pure delay in the feed-
back. ‘

Structural diagram of such a plant is given in Fig. 4.

Here we considered the presence of one equivalent feedback. In
case there are several inner-feedback chains, each of them can be
presented and considered in a similar way.

Plants with inner feedbacks are met in power systems, in medx- :
cal care systems (simulation of human cardiovascular system), etc.
It is always possible, by applying adequate multiplication oper-
ations, to arrive at a common linear plant (Fig. 1), but in this
case we shall have a greater amount of unknown. parameters to be
tuned. It is inefficient, especially if either the‘pmmeters -of the
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Fig. 4. Structural diagram of a linear plant wifh inner feed-
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Fig.' 5. Processes in the nuclear reactor under self-tunixig con-
- trol. o

control channel or the feedback channel are known a priori, e.g. in

power plants (Kaminskas et al,, 1990, 1991). :
In case of a linear plant with inner feedbacks controller equa-

tions (16) and (18) remain unchanged, and iristead of (17) we have
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Ui =(Wo,g + ag)-l{§t+r+l +z7H (ﬁt(z_l)
- Ht(z—l))fﬂt-l(et-l) - Wolt(z'l)Wp,,(z'l)y,_,:}. (22)

Figure 5 illustrates the self-tuning control process for a nuclear
power reactor in the stationary regime of operation. Reactor’s op-
eration can be defined by a linear model with inner _feedba,cks,‘the
latter representing the effect of fuel and fuel-carrier variables on
the fission properties of the reactor. Fig.5 presents the diagrams of
the control signal (external reactivity) and the output‘signa.l (rel-
ative power deviations from a stationary level) at the beginning
of the self-tuning control process and at the end of it. Diagram
of uncontrolled output signal is presented for comparison (dashed
line). ) 3

8.2. Plants with an unstable control signal channel. In
case of a control plant (1) with an unstable control signal channel
it is necessary to consider plant operation model with equal de-
nominators of the transfer functions(2) and (3), i.e. with R(z~!) =
A(z™!). Then, instead of (15) and (17) we have the equations

wa(© = P2 [P - AGT)|w + B Dun—, ) (23)

H

and

Gear =[Bi(e™) + @i (zY)] ™ :
% [Ae(z"Yers1 — Lz~ Hegpe=1(€e-1))- (24)

3.3. Plants with a nonminimum-phase control signal
channel. Let’s discuss two possible ways of constructing predictor-
based self-tuning control systems for nonminimum-phase plants.

3.8.1. Application of a generalized minimum variance
control algorithm. Generalized minimum variance control algo-
rithm is capable of coping with this problem by means of adequate
choice of the coefficient ¢; (Clarke, 1984). In this case the coeffi-
cient g; might be considered as a root-locus parameter, and it can



12 Practical issues-in the implementation

force the potentially unstable roots due to B(z~!) migrate towards
the roots of A(z~!). If there are several possible ¢; values (or a set
of them), then an additional criterion can be apphed in ‘order to
choose an appropnate ¢ value, e.g.

Kg) = Elz.(qz)l ~ min, | (25)

i=1

‘Where #(g:) are the roots of the eqﬁation

S'(2)=0, S(z)=2™S("Y), (26)

Sz =B(z"Y+ agA(z7Y) = Z:.—z", n, = max{na.,m}. (27)
i=1

Sometimes a certain polynomial Q(z~!) might be used instead
of the coefficient ¢;.

There might be cases when the minimum generalized variance
controller is incapable of coping with the nonminimum-phase plant
- no appropriate g; (.or @Q(z™!) ) values, or those values result in
far too big losses in the control quality. In such case other meth-
ods might be apphed e.g. the fa.ctonzatwn methods (Astrom and
Wittenmark, 1984)

3.3.2. Factopzatxon methods. The polynomial B(z~') must
be decomposed ir:ito two factors

L B(zY) = By(:mN)B-(:7Y), . (28)
where ‘ . ‘
B+(z“)=1+ib+z" - (29)
i=0

is a polynomxal with all of its roots outside the unit circle;

B.(z")zzb,.‘z“,v n=m-nf - (30)

’

isa polynomial with all of its roots in the unit circle or on its
‘boundary.
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In this case the polynomial B(z~!) in the controller equations
must be substituted by a polynomial :

B(z™") = By(:")B_(z7), ey
B_(zY) = i:b;_‘z-". . (32) -

=0

4. Cbnt‘rol of nonlinear plants. Several characteristic cases
of applying predictor-based self-tuning control systems for nonlin-
ear plants are considered. '

4.1. Hammerstein-type plants with the nonlinear part
in the form of a sum of monotonous nonlinearities. Such
control plants are encountered when different groups of control
devices are considered together with the control plant. Figure 6
presents the structural diagram of such a plant.
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) Flg. 8. Structural diagram of a nonlinear Hammerstein- type
plant. ’

Nuclear power reactor may be an example of such a plant with
monotonous nonlinearities representing different groups of control
rods. _ : .

In this case synthesis of optimal control values can be accom-
plished in two stages. In the first stage only the linear part of the
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control plant is considered and an mtermedlate control value v},
is obtained by (16).

In the second stage the cont.rol slgnal obtmned in the ﬁrst
stage, is decomposed into a certain number of signals, taking into
account the monotonous nonlinearities in the nonlinear section of
the control plant. For this purpose values 7;7; = (v} PYRTISU LAY |
are determined by means of solvmg a conditional extremal problem

":+1 Qt (Fe41) = ZKi t(": T+~ % :) mle'}l—' (33)
4=l o

Q= { Zv.,g.u = ”¢+1’ lv| t+1 =Yg g‘ < 6. Y € Vg $ ” } (34)
|=1
where K;; is welght coeﬂ‘icxent mdu:atmg to the pnonty of the i-th
control va.lue Then

Y41 = -ﬁ-l(”.",:n;oi)” , = m- | B (35)

The extremal problem (35) can be solved by means of the
Lagrange-factor method.
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Flg. 1. Processqs in the nuclea,r reactor under self- tunmg con-
trol in the transition regime of operation.
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Figure 7 illustrates the self-tuning control process for a nuclear
power reactor in the ttansition regime of operation. Diagrams of
intermediate control signal v,, control signals u;; (i = 1,2,3) and
output signal y, are presented.

4.2, Wi 1ener-Hammerstem-type plants with polynomxal‘
nonlinearities. Nonlinear dynamic systems are considered with -
an observed output signal y; defined by

A =‘ W;(z°1)f(v¢;0) + H(.Z-ulv)fg, ‘ | ; (36)
v = Wl(:-l)z‘;;ui, ) . .‘ | . .(37) |
where : i ‘ |
flo6) = Ee.v' N € )

is a nonlinear characteristics of the static element ‘with the pa.ram-
eters C R ‘

(61.92, ). n’a>2‘, '6,.;-#0-" _(39)
W<">-§§’:3 W(""Zﬁﬂ W

are fractional-rational transfer functions in the form of (2), prov1d~
ing a unitary gain in the control signal channel.

The equations (36) ~ (40) specify socalled Wlener Hammers—
tein-type nonlinear stochastic plants with the nonlinear element
standing between two linear dynamical parts (see Figure 8). Such
a model, in particular, may be regarded as a good approximation of
fuel combustion and steam condensation processes in power units-
of a thermal power plant (Kaminskas et al., 1988, 1991). These |
processes are distinguished by their well-expressed nonlinearity (ex-
tremal characteristic) and inertness of input and output chains.

‘ In particular cases, by removing the first or the second linear
dynamxcal part, we can consider, respectwely, Hammerstein-type
or ‘Wiener-type stochastic plants with polynomial nonlinearities. -
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Fig. 8. Structural diagram of a Wiener-Hammerstein-type
plant with polynomial nonlinearity.

+

The optimal ( + 1)-step ahead prediction of the output signal
- at the discrete time t is

Bar1 (&) =21 - H (27|
+ H A YWz~ ) f[Wi(z~ Y2 Tug ). (41)

Applying the latter equation to control performance criterion
equations (13), we find that the value #;,, is obtained as a real root
of (2ng — 1)-th order equation.

In the case of ny = 2 (extremal characteristic) the reference
value y; may be tle current maximum point of the characteristic.
The minimum ge?era.hzed variance controller equations are (lb),
where t;4; is any 'rea,l root of )

-

3£} . Bdo{2025: + do[F e} } 40

Yepr + op g 5, Ui+ 20634262 Tt
+ bOdOf;(:;)if;, ok =0, (42)
where . ,
. Bi=dof(s) +re =8~ %, (48)
&= R EETY) - Bl ew-1@-), (49
8 - [Wy(277) - boue-»r, ‘, | (45)

re = z[Ws(2*) ~ dulf[Wl(z’)"t-‘;;a]’ - (46)
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f(s:) =00+ 018+ 6287, " f'(81) = 01+ 20,1, - (47)
U = ——-. : ‘ (48

* T, (8).

Figure 9 demonstrates simulation results. The stages I and II .
represent self-tuning control process. At the initial stage parameter
estimation errors are large, and at the second stage parameter esti-
mates are close to their genuine values. The stage III illustrates the ‘
case of the self-tuning controller disconnected, i.e. the argument:
value u* of the extremal characteristic is supplied to the input.
Control efficiency degrades because there is no compensation of
uncontrolled disturbances.

P . R Ty Y

.

"
Fig. 9. Self-tuning control of Wiener-Hammerstein-type plant.

5. Conclusions. Design problems of predictor-based self-tu-
ning minimum variance digital control systems are discussed. Prac- .
tical issues of implementation of predictor-based self-tuning control
systems for different types of control plants (linear plants with un-
:iable and nonminimum-phase control channels, linear plants with
:nner feedbacks, nonlinear Hammerstein- and Wiener-Hammers-
tein-type plants) are considered. - |

Control algorithm synthesis is accomplished, taking into ac-
zount amplitude and/or introduction rate restrictions for the con-
trol signals. The unknown parameters of the one-step predictor of
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the output signal are being estimated in the identification process
in the closed loop. using recursive least squares algorithm.

Simulation results are given to illustrate the implementation
of predictor-based self-tuning control systems for different control
plants. Certain operation regimes of thermal neutron and fast
breeder nuclear reactors, fuel combustion and steam condensation
processes in the power units of thermal power plants are con-
sidered. Simulation results show that predictor-based self-tuning
control systems are expedient for the digital control of different
types of control plants, power plants among them. The presented
self-tuning control scheme can also be appljéd in designing man-
operator supervisory and training systems for corresponding power
" plants.
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