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Abstract. This paper is devoted to the investigation of the investigation
of the convergence of iterative methods for solving boundary value problems with
discontinuous coeficients. The dependence of the rate of convergence on the size
of the discontinuity of coefficients is analyzed for three popular general iterative
methods. A new criterion on the applicability of sach methods is proposed
and investigated. The efficiency of this criterion is demonstrated for a model
problem.
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.1. Introd uctt.icn. Consider the problem of selection of numer-
ical algorithms for a computational experiment. There one must
have in mind two conflicting tendencies, which make it difficuli to
determine a solution. Firstly, we require the algorithm to be sim-
ple (low costs of a realization) and, secondly, it must be efficient
for the kind of problem on investigation. The most simple solution
is to use the well-known general algorithms (or their modifica-
tions), efficient subroutine implementations of which are given in
most software packages. Such a possibility enables us to accelerate
a preparatory stage of a computational experiment considerably.
Therefore, before constructing special methods for a new problem
it is very important to investigate the efficiency of general algo-
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rithms for the same class of problems. We consider these questions
for the following problem of linear algebra

2
Aay == (sav2.)e, = f(z), zE€TH,y=4, (L1
a=1
which is the finite — difference approximation of the differential
problem

9 Hu
=Y o (ko)) = @), 2€D, ue=s,

a=1
where we denéte
D=DUT, D={(z1,22), 0<2a <1}, 0Kk Skz)<ky,
Th = wa Uy = {(210,22), Zoi = (i = Dhay Neha =1}, wa = {2ai}-

The coefficient k,(z) may be discontinuous. Boundary value prob-
lems with discontinuous coeflicients arise in the solution of a num-
ber of important in practise problems, for example, in calculation
of magnetostatic fields. One more interesting example of problem
(1.1) with discontinuous coefficients is given by the. method of ficti-
tious domains (see, Vabishchevich, 1991). It is well-known that for
large discontinuities of the coefficients the rate of convergence of
many iterative methods becomes much worse (see, Samarskij and
Nikolayev, 1978). Therefore this problem have been under fixed
attention during the last few years and some special numerical al-
gorithms are proposed to solve it. We shall mention only two of
them: the domain decomposition method (e.g. Dryja and Wid-
lund, 1989, Bramble et. al., 1988) and the method proposed by
Bakhvalov and Kniazev (1990), the rate of convergence of which
depends very weakly on the size of the discontinuity of the coeffi-
cients. ‘ A

The basic ideas of our analysis we shall demonstrate on two
typical model problems. Let D = D, UD; be a union of two subsets
D, and assume that k,(z) is constant on D,

k(a:):c,-, ZEDJ', e1=1, ca=e.
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D, D,

Fig. 1. The regions for model problems P1, P2.
~ PrOBLEM Pl. Dy = {(21,22) : 1/3€ 2. € 2/3, a = 1,2}.

PROBLEM P2. D; = {(2,,23) : 2/3< 2. <1, a=1,2}. .
Fig. 1 (a,b) shows the regions D, for these model problems.

2. Iterative methods. First we shall briefly present some
results on general two stage iterative process (see Samarskij and
Nikolayev, 1978)

‘ T B4l R
---Bi’-ffﬁ +Ab=f B=B >0. (2.1)

Let assume that A and B are spectrally equivalent ;B A<
7B and parameties 7 are defined according Richardson’s method.
An upper bound' for the number of iterations n > ng(¢), which
suffices for fulfilling of the inequality Z] < ellzll, % = y- y is
given by ' ’

‘A -no(E) =1;1(2/€)/ In(1/;m), p = -i—i—j.—z n="7/%.

For 7 <<'1 we can use a simpler formula ny(e) = 0.51n(2/e)\/%,
where £ = v;/7; is a spectral condition number. Our main goal
is to investigate the dependence of the rate of convergence on the
size of the discontinuity of the coefficients for three popular general
‘iterative methods? ’

a} Richardson’s method with the diagonal preconditioning
matrix (RDP) S
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Br =diagA,  Bry = bz)y,
b) an implicit alternately triangular method (IAT).

=(D+wR)D"YD +wR;y), Dy=d(z)y,

2
Riy =) (daye, +0.500s,¥)/ha,

a=1
.2
Ray = — E(a:lyz. + 0.5a4<,_ y)/hm
a=l
: 2 [$]
d(z) = 3 (a8 /(K2VBa) + 05l0as. |/ha) /(cavba),
a=1

where cq,b, will be defined later,
c) the method of alternating directions (AD)

Bap = (E4+ wi A )(E +w3d3), Aay=—(8a¥z,)s.-

For the diagonal preconditioning matrix Bgr a spectral equiva-
lence number £ = v;/4; can be calculated in the followmg way (see
Samarskij and Nikolayev, 1978):

2
Nn+Tr=2 = ;’Teig‘ 1/%a(2z8), B=3-a, (2.2¢)

xo(zp) = max v¥(z,), a=1,2

and v*(z) is a solution of the difference problem
~(0av5,)e, = b(z), %(0)=0, v*(1) =0. (2.25)
REMARK 2.1. In order to simplify the calculations it is proposed

by Ciegis and Seibak (1985) to replace (2.2) with the differential
problem

t

A (022 = 200y iry, v7(0) =0, v7(1) =
—dzc (aa(z)dza) = 2aa(z)h¥+ h%' v (0) =0, v (1) = 0_‘ (23)
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The results of a numerical simulation show that the rate of
convergence of the preconditioned B = By iterative method (2.1)
depends weakly on the extremal values of continuous coefficient
k(z). We have that { = k1£%/ko, £° = O(1/h?) in the case of explicit
iterative method B = E. For B = Bp the equivalence spectral
number ¢ depends on some integral expression of k(z). This follows
from a general form of the exact solution of problem (2.3)

v(e) = h"’(/ Fe )/ ko) deds/ / e )) o

At the end of this section we consider a model problem with
greatly varying but continuous functions k,(z)

ky(z) = 1+c[(z) = 0.5)° +(2:-05)7, 0<za<1, =12, (24)
Ex(2) = 14 ¢[0.5 = (z1 = 0.5)* — (z2 = 0.5)%], 1< ki(z) + ko) < 7(c).

This problem (1.1) is widely used by Samarskij and Nikolayev
(1978) to compare the convergence rates of iterative methods. For
example, they investigated (2.1) with the preconditioning matrix
B = Bg (as in the RDP method) and with B = F (an explicit .
method). We represent in Table 1 the number of iterations ng(e)
obtained for ¢ = 10~4, N = 32 and various values of ¢ (see Samarskij
and Nikolayev, 1978). ‘ i

Table 1. The number of iterations

¥{(c) 2 8 32 128 512
B=E 143 | 286 571 1141 2281
B'=Bpg 123 149 175 192 202

In accordance with Remark 2.1 the number of iterations for
(2.1) with the preconditioning matrix B = Bg depends very weakly
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on the value of ¥(c) and, hence, the RDP method is superior to
the explicit one with B = E. Now we will show that for this model
problem the difference between two preconditioning matrix B = Bg
and B = E is not so serious. The number of iterations for the
explicit iterative process was obtained by using following simple -
estimates (Samarskij and Nikolayev, 1978)

° o
$E <AL AL 1A < 13,E, (2.5)

where Ay = - E Yz.z. and 7,9, are minimal and maximal eigen-

a=1

valaes of A

We can replace (2.5) with more accurate estimates of parame-
ters 71,72. In fact it is sufficient to get a better estimate for v;. To
this goal we use the technique defined by (2.2a), but we replace the
auxiliary problem (2.2b) with the following one

—(8at% ), =1, v*(0)=0, v*(1)=0.

The number of iterations for the explicit iterative method (2.1)
obtained by this technique is presented in Table 2.

Table 2. Improved number of iterations

(¢) 2 8 32 128 512
B=FE 141 188 240 266 288

3. The case of discontinuous coefficients. In this sec-
tion we investigate the rate of convergence of the RDP, IAT, AD
methods for model problems P1, P2 with discontinuous coefficients.
Using the symmetry of the solution we obtain that

¢=2n—1=1/ max (1/xalzs)) ~ 1= max xa(zs) - 1.
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It is easy to show that for z5 € Dy

11 |
va(za) = (zg— + -h—g—) za(l - za),

1/1 1
-— a - —— w—e—
wo(os) = mgx 9720 = 1 (57 + )

If z5 € D, then the exact solution of (2. 2) for problem P1 is
the function

v"(za) = a,-zf, + b,-za, +e¢, zLj €z, € ZRj, ;=123
where explicit expressions for the parameters a;,b;,¢; are given by
Seibak and Ciegis (1986).
Using these formulas and the symmetry of the solution v*(z)
we have

xa(zp) = maxv*(z,) = v7(0.5)

=%(,,12 hlz)(u 2e- ”(”I‘;%/—hf))

Combining the estimates above we obtain that

/ ‘ h
£E= rnéa:'x "a(xﬂ)" i ;(h2+h2) max (1 14= (C l)(1+'1"—+—3h—§!7'};?))
1

‘We have proved that the number of iterations required by the
RDP method is proportional to ne(e) = O(v/¢/h) for ¢ >> 1 and de-
pends very weakly on the size of the discontinuity of the coefficients

for e << 1.

Next we investigate ana.logycally problem P2. It is sufficient to
find a solution of (2.2b) for zs € D3, only. After simple calculations
we have

v"'(za)’= ajz2 + bjza+¢;, zr;€za<2R;, =12,

g=a;=a3= -—(I/hf +1/hd), e'=0, bz = 3a -?bl, e2 = 2(b; + a),

~Sc — 4+ 3h(c+ 1~ ((c+ 1)/h +2¢/h3) /o) 11
e+ 1) ~=0(+3)

bh=a
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Therefore the number of iterations required by the RDP method
is not dependent on the size of the dlscontmulty of the coefﬁcxents
for any value of ¢(c > 1,6 < ).

Now we consider the behaviour of the IAT method In this
case the number of iterations can be estimated as

A= ﬂ?‘z (“i‘:“ (Ca(ip) + V ba(zﬁ)) 2)

and functions b,(zg),c.(zs) are deﬁned by solutions of auxiliary
tndlagonal problems ‘

(zﬁ). n:u”a(za)» Ca(zﬂy'—‘"z‘uwa(za)’

+1
- (822 )s. = ‘;:_2 v%(0) =0, v*(1) =0, (3.1)
- (Gowg )z, = %fl w®(0) =0, w*(1) =0. (3.2)

. I zg € D, then it is easy to show that
w(za) =0, co(25)=0,
1 b1
v¥(z4) = -273’-:.,(1 —Za), ba(zp) = e}
If z5 € D, then problem (3.1) is the same as problem (2.2),
investigated above. Therefore we have that b,(zs) = O(1/h2) for
problem P2 and ba(zp) = O((c + 1)/h3) for problem P1. It remains

to investigate (3.2). For problem P2 the exact solutxon of (3.2) is
a function

afy . Juz, 0K2<2/3 fe-1j
vi(e) '{241(1—2), 2/3<z<1l M7 2h,(2c+1)

and henoe :
ca(2p) = w*(2/3) = |e— 1]/ (3ha(2c + 1)) = O(1/hq). -
A situation is different again for problem P1, where
w(z) =ajz+b;, zij <z< ZRj,
i=1,23 b =0 a6=0, by=a,/3,
ca(zp) =“3§XW°'(%) = je - 1|/6hq-
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, We have proved that the number of iterations reqmred by the
IAT method is proportlonal to no(e) = O(((c+ 1)/h) ) for problem
P1 and no(e) = O(1/h%%) for problem P2. Therefore ‘thé number
of iterations no(e)- depends on the size of the discontinuity of- the
coeﬂicxents in the same manner as it d”epends for the RDP’ ‘method.

REMARK 3.1. In the case. of D= dzagA the precondmomng
matrix Br coincldes with the preconditioning matrix defined by the
symmetric successive overrelaxa.tlon method (SSOR), proposed by
Sheldon (1955).

Next we consider very breafly the method of ‘AD. An .upper
bound for the number of iterations is given by no(¢) = 0.251n(1/¢)
(A/5)°8, where , o

.
~

ba = min1/xe(2p), xo(zp) = maxw "(za),

- (aawg )z, =1, w¥(0)=0, w°(1)—- R ' (3.3)
Aa=(2-Y Jmax pa(zs)) @ max do(2), p,,(zp) = max.va(2),

- (Gavs, )ea = da(2), v*(0)=0, v*(1) =

da(z) = (aa(za; z,,) + a+1(z.,, z6)) /03

Now it’ sufﬁcés to solve a new prnblem (3.3). Using the method '
described above we ‘get that in all cases w*(z,) = O(l) Therefore
the number of iterations for the method of AD is’ proport}onal to
no(¢) defined by the RDP method. :

In summary, a wide class of problems with discontinuous co-
efficients have been defined, for which the rate of convergence of
three. popular general iterative methods depends very weakly on
the size of the discontinuity of the coefficients. The analysis given
above was based on approximate bounds for the exact values of
spectral equivalence parameters 71,72 from below ‘and aﬁove, re-
spectively (recall, that 4, B € A < 72B.) Therefore, iitithe case of
pessimistic estimates of the number of iterations no(€) = eny (W),
an additional analysis must be made. In the next section we will
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“use numerical methods to find exact va.lues of the parameters 7,72
for this purpose. -

~v4,Formulation of new criterion. In this section we shall
tpropose a*fiore general criterion on ‘the applicability of classical
iterative methods. Some theoretical foundation of this criterion
.¢an be given. All previous estimates were based on the following
_ilemma (see San;xarsku and Nikolayev, 1978).

¥ 'Lemma 41, Let pi 20.a; 2 ¢> 0 be defined on wy. Then for
any ﬁmction ¥i; such that y, =yn=0 the estimate (4.1) holds .
9) < (a,92 = max v .
sloyy) < (o). Y= max w, | (41)

" where v; is a solution of the auxiliary problem
“am(avz)s = piy }'5 L2,---,N=1, vg=vy =0.

For simplicity we restrict our a.na.lysié to the RDP method.
Vst sihg (4.1) we can obtain the mequahty, from which a bound for
‘the parameter 71 is found

(Ay )= }:(aa 1> (52: ; y)
a=1 a. az1 ¥a
. >min 2»~,,d.‘(lz,,)(”y’ ) =%(py.y), (4.2)

TEW
. a=l

et 20 .

"= 2 T R

The inequality (4.2) holds unconditionally, but it may be too
coarse in many cases. In the proof of (4.2) the worst case is achieved
on fastly varying function y;. But the exact value of v, is defined
from the Raleigh ratio and is equal to the first eigenvalue of the
problem Ay = Mpy. The corresponding eigenvector 41 is a owly
varying continuous function. Therefore we propose to use the vec-
tor y; = 1 as a test vector. Modifying the derivation of (4.2) we get
an approxnmate va.lue of the parameter 7,

5 = (4 mead) + 1/ ) - 43)
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On the basis of all these results we propose the following crite-
rion on the applicability of general iterative methods. In particular
all cases investigated by us above, satisfie the demands of this cri-
terion. ' : o

CriTerioN 4.1. The rate of convergence of general iterative
methods (such as RDP, IAT, AD, SSOR) depends weakly on the
size of the discontinuity of the coeficients if for any teéion D, with
relatively large values of &(z) (i.e., k(zp) >> k(z,-,), where z,_, €
D,_; and D,_, is a neighbouring region for D, ):

. C1) either efficient boundary conditions (i.e., the Dirichlet or
third type boundary conditions) are given on some part of
the boundary I, ' ‘

C2) or D, has a common boundary with the other region D,,,
such that k(zp41) >> k(zp).

We shall demonstrate the efficiency of our criterion (as well as
formula (4.3)) for the following problem (1.1}.

ProBLEM P3. Let D = D; UD,UDs be a union of three subsets
D; and k(z) = ¢,z € D;, j=1,2,3.

Dy ={(z1,22) : 0.25€ 2, € 0.75, a= 1,2},
Di={(s1,22){ 03€za <1, a=1,2}, Ds=Ds\(D;NDy).
Fig. 2 shows the z-egibns D, for this model problem.

-

D. -

D,

Fig. 2. The regions for model problem P3.

In Table 3 we present numerical results obtained for the fol-
lowing combinations of the constants ¢;.



T. Aleinikova and R. Ciegis 137
Vi)er=1,e3=1, e3=1; V=1, cg=100, ca=1;

V3iaa=1, c2=10000, c3=1; V&) er =1, e3 =1, ez = 10000;
V5) = 1, Cz = 100, €3 = 10000; Vﬁ) = 1, c = 10000, c3 = 10000.

Table 3. The number of iterations (numerical simulation)

v B Br | Bx| Br| Bison| Bir
1 70 70 63 14 13 12
2 498 431 463 | 78 96 20
3 4952 4276 4600 709 956 21
4 72 59 |- 55 18 15 10
5 498 60 ¢ 10! 7% ! 28 | 14
6 . 4952 | 129 ;143 | 709 | & €

Computations have been done for N = 20 (recall that h = /N
Jcnote the mesh spacing in the zy ; directions). The column marked
3k provides tne number of iterations defined by the algorithm (2.2)
for the RDP method (a priori estimates). The column marked Bg
gives the number of iterations, when formula (4.3) is used to es-
timate ;. The column marked B} gives the number of iterations
defined from the exact values of spectral equivalence parameters
71,72.. Analogycally the columns marked Br and Bjsop provide
the number of iterations defined by the IAT method (a priori esti-
mations (3.1), (3.2)), and the SSOR method (exact values of 11, 72)
respectively. :

We get from the Criterion 4.1 that only in the cases V2,V3
the number of iterations must be sensitive to the size of the dis-
continuity of the coefficients. The numerical results confirm this
conclusion. The number of iterations given by a priori estimates
(3.2), (3.1) (the columns Bg, Br ) is too pessimistic in many cases.
At the same time approximate formula (4.3) provides an accurate
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estimation of the exact 71 value (see the columns Bg and B). The
column marked Bjp provides the number of iterations defined by
the method of Incomplete Factorization. We see that the rate of
convergence depends very weakly on the size of the discontinuity
for all investigated cases, even for the variants V2,V3. The theoret-
ical investigation of the IF method is given by Axelsson and Barker
(1984), it can be also used for our model problem.
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