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Abstract.. It is well known that, in general, exact algorithms for the 
Quadratic Assignment Problem (QAP) cannot solve problems of size N > lfi. 
Therefore, it is necessary to use heuristic approaches for solving large-scale 
QAPs. In this paper, we consider I. class of heuristic a.pproaches based on local' 
search criteria.. In particular, we selected four algorithms; CRAFT, Simulated 
Annealing, TABU search and the Gra.ph Partitioning (GP) a.pproa.c:h and studied 
their rela.tive performance in terms· of the quality of solutions and CPU times. 
All of these algoritltms performed roughly the same, based on the results of two 
seis of test problems Ixecated on a.n IBM ES/3090-600S computer. 
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1. Introduction. The Quadratic Assignment Problem (QAP) 
is defined as follows. 

Given a set N = {1,2, ... ,n} and two (n x n) matrices F = (tij) 
and D = (dtl), find a permutation p of the set N that minimizes: 

QPD(P) = EEfijdp(i)p(j). 
i j 

The QAP was first introduced by Koopmans and Beckmann in 
1957 [19] in the context of ~ analysis of the location of economic 
activity. In the framework of this classical facility-location problem, 
the set N descri.bes the sites on which facilities are to be loca.ted. 
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The matrix F = (Jij) is the flow matrix, where /ij represents the 
flow of materials from facility i to facility i and D = (dJ:l) is the 
distance matrix, where dill represents the distance from location 
k to location I. Note that, with this model, it is reasonable to 
assume that both matrices F and D are symmetric and have non­
negative entries. In addition to its application in facility location 
and facility layout problems {19, 9,10], QAP has been found useful 
for such applications as problems in scheduling [12], the backboa.rd 
wiring problem [36] in electronics, and even assignment of runners 
to a relay team [16]. Other applica.tions may be found in [11, 20, 
23]~ c· 

The QAP has proved to be a very difficult problem computa­
tionally. This problem, of which the traveling salesman problem is 
a special case [21], is NP-hard. Furthermore. the problem of find­
ing an (-approximation solution is also NP-hard [31]. Problems of 
size n > 15 are not practically solvable in terms of obtaining exact 
solutions [27, 30]. 

Several heuristic methods have been developed to sOlve the 
quadratic assignment problem {5, 15, 33, 35, 37J. Most of these 
methods use a local search algorithm, where the local search de­
pends on the formulation of the problem and the structure of its 
neighborhood. Such an algorithm starts with an initial feasible 
solution and successively moves to neighboring solutions until no 
further improvement is possible. In practice, these methods tend 
to converge quickly, but the complexity of finding a locally opti­
mal s91ution has so far not been established. However, it has been 
proved that local search for the QAP'is PLS-Complete [24]. 

In the case of QAP, most of these algorithms implement a 
restricted heuristic search based on a pair exchange or at most a. 
triple exchange. In this paper, we present a comparative evaluation 
of four local search heuristic methods: CRAFT [1, 7, 32J, SIMU­
LATED ANNEALING [371, TABU search [35} and the GRAPH 
PARTITIONING approach [24J, to solve a collection of well-known 
QAPs that have appeared in literature. In addition, w~ constructed 
a. group of test problems (with known optimal solutions) using 
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the algorithm described in {25J and evaluated the a.bove heuristics. 
In the next section, we briefly describe each algorithm. We then 
present implementation details of the algorithms and the selection 
of test problems. Finally, we present computational r~sults on the 
performance of these algorithms in terms of accuracy of solutions 
and running times, together with our conclusions. 

Many computa.tional approaches based on local search, ha.ve 
been proposed for so; ving large-scale QAPs. However, to our know­
ledge, there has been no unified treatment and comparison of per­
formance. Our study may prove useful not only to the theoretician, 
showing the relative performance of various local search heuris­
tics, but also to the practitioner for guidance in solving large-scale 
QAPs . 

2. Computational approaches. We briefly describe the se­
lected approaches for solving QAPs, namely, eRA.FT, Simulated 
Annealing, TABU search and the Graph Partitioning (GP) a.p­
proach for solving QAP. 

2.1. CRAFT. CRAFT (Computerized Relative Allocation of 
Facilities Technique) [1, 7,32] is a weB-known heuristic for design­
ing the layout of ~acilities that has been in use for over 25 years. 
Given a set of departments, locations, a matrix of flows between 
departments, and a matrix of costs to transport one item between. 
two departments la unit distance, CRAFT iteratively improves an 
initial, user-supplied, layout by a series of department exchanges. 
At each step CRAFT considers either all possible 2-way, 3-way, or 
both 2-way and 3-way exchanges. It chooses the exchange that 
provides the most improvement in minimizing total cost, and then 
repeats the process until no improving exchange can be found. 

2.2. Simulated annealing. Simulated annealing is a, stochas~ 

tic optimization tec~nique which has been found effective in solving 
global optimization problems. Kilpatrick, Gelatt and Vecchi [18] 
tried this heuristic approach in 1983, based on the analogy be'­
tween statistical mechanics and combinatorial optimization. The 
term "annealing" refers to the process of a thermal system by first· 
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melting at high temperatures and. then lo~.vering the temperahaes 
slowly based on an annealing schedule. The process is continued 
until the vicinity of the solidification temperature is reached, where 
the system is allowed to reach the "ground state" (the lowest en­
ergy state of the system). Simulated annealing is a Monte Carlo 
a.pproach to simula.te the behavior of this system to achieve thermal 
equilibrium at a given temperature in a given annealing schedule. 

This analogy has been applied in solving combinatorial opti-
mization problems. According to the above a.uthors: 

Iterative improvement, commonly applied to such problems, 
is much like the microscopic rearrangement process modeled 
by statistical mechanics, with the cost function playing: the 
role of energy. How~ver, accepting only rearrangemems tha.~ 
lower the cost function of the system is like extremelY rapid 
quenching high temperatures to T = O. So, it should not 
be surprising that resulting solutions are usually metastabie 
The Metropolis procedure from statistical mechanics pro­
vides a generalization of iterative improvement in which con­
trolled uphill steps can also be incorporated in the search for 
a better solution. 

In particular, the application of simulated annealing to the 
Traveling Salesman Problem was investigat.ed extensively [18, 34}. 
Simulated Anpealing is applied to the QAP [37] as follows . 

• Given any feasible solution (a permutation of locations in 
relation to the facilities), randomly select two facilities, make 

. a pair exchange and e/aluate the consequent change (6E) in 
the total cost (E) 

• Repeat the above step as long as 6E < O. Otherwise, select 
a random variable z from a uniform distribution U(6, 1). If 
% < P(6E) = EXP(-fJE/t,) (where P represents the prob­
ability obtained from the exponential distribution (EXP», 
then accept the pair exchange and repeat the process. Here 
t, represents the annealing schedule temperature at stage i 
where tl > 12 > ... > t,. represents the annealing schedule. 
FOl example t, = 10 x (0.9)(,-1). 
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• The system remains at stage i until a predetermined number 
of pair exchanges have been considered before going to the 
next stage. 

• If all the temperatures in the annealing schedule have been 
used, Le. if i > r, then stop. 

This approach was implemented by Burkard and Rendl in 1984 
[8] and Wilhelm and Ward in 1981 [31}. 

2.3. TABU search. TABU search was first introduced by 
Glover (13, 14] as a meta-heuristic for solving optimization prob­
lems. The key idea is to avoid reaching a locally optimal point 
prematurely by taking certain paths even though they may not 
be currently advantageous (i.e. temporarily increases the current 
value of the objective function) hoping to eventually reach a bet­
ter local optima. However, this may lead to cycling. To avoid the 
process of cycling, certain search directions are forbidden at each 
iteration. 

This technique has been successfully applied to a variety of 
optimization problems including the Traveling Salesman Problem. 
Based on this approach, the TABU-Navigation algorithm for the 
QAP was developed bySkorin-Kapov in [35]., 

Given an initial permutation, the algorithm consists of main-
I 

taining a TABU llist of a predetermined maximum size by con-
stantly constructrng and updating it. If a pair belongs to the TABU 
list for a given iteration, that pair is not allowed to be exchanged 
at that iteration 'unless the exchange yields an objective function 
value which is strictly better than. the one obtained thus far. When 
a pair is selected for exchange, it is added at the bottom of the list 
which is maintained in FIFO order. The length of the list is a 
para.meter to the algorithm. If it is too small, cycling may occur 
because there is insufficient information In the list to detect a cycle. 
If the length of the list is too large, it restricts the efficiency of the 
search because every entry in the list is ignored from consideration 
as a potential exchange leading to a b.etter solution. It has been 
observed that the best value for the size of the list may be treated 
as an increasing function of the size of the problem. 
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2.4. Graph partitioning approach. The Graph Partition­
ing (GP) problem is defined as follows. 

Given an undirected graph 'G(V, E) with edge weights wee), the 
problem is to divide V (where I V 1= 2n), into two equal subsets A 
and B, such that, the cost C(A, B), which is the sum of the weights 
of all edges going from A to B, is the least. 

This problem is known to be NP-Complete. A local search 
algorithm for this problem due to Kernighan-Lhn (K-L) [17] is as 
follows. 

A swap (exchange of a pair of vertices between partitions) of 
partition (A, B) is a partition (A', B'), ~~here A and A' have a sym­
metric difference of 2, i.e., (A', B') is obtained from (A, B) by swap­
ping one element of A with one element of B. (A', B') is a greedy 
swap if C(A, B) - C(A' ,B') is maximized over all swaps of (A, B). 
Let (Ai, Bd be a sequence of partitions, each of which is a greedy 
swap of the one preceding it, startirig from (Ao, Bo). We call it 
monotonic if the differences of Ai - Ao and Bi - Ba are monotoni­
cally increasing (that is, no vertex is switched back to its ')riginai 
set (Ao,Bo». Finally, we say that a partition (A',B') is a neighbor 
of (A, B) if it occurs in the unique maximal monotonic sequence 
of greedy swaps starting with (A, B). Note that, such a sequence 
will consist of n + 1 partitions, with the l~t one equaling (B,A). 
Thus, each partition has n neighbors. The algorithm performs local 
search over this neighborhood structure. 

Bas~d on the K-L algorithm, a local search algorithm for the 
QAP as presented by Murthy and Pardalos [24J is as,follows. 

Gr"';'ph partitioning local searcli algorithm' tor theQAP 

Input. Two matriCes F and'D and a set N = {1,2, ... ,n}. 
Output. A locally optimal permutation p for the QAP. 

1. Given a permutation Po calculate its cost C(Po). i = Oigi = 0 
and G(i) = 0, where gi and G(;) are step gain and cumulative 
gain respectively. 

2. i = i + I. For each pair of facilities not already selected, 
evaluate the step gain by exchanging their locations. Then, 



178 

select the pa.ir with maximum gain. If no such pair exists, 
set i = i-I and go to 4. Let the maximum gain be li = 
C(Pi-d - C(Pi). 

3. Compute the cumulative gain, G(i) = E!~~ 9t. If G(i) > OJ 
then go to 2. 

4. Select k, such that G(k) is maximum for O::s k ::s i. 
5. If k > 0 then set Po = Pt and i = 0,9. = O,G(i) = 0; then go to 

2. 
6. We have reached a local optimum for the QAP. Set P = Po 

and output P El,nd C'(p). 

Using the above approach, it has been proved that the local 
search problem for the QAP is PLS-Complete [24]. 

3. Computational results. 

3.1. Programs and parameters. The source code for 
CRAFT was obtained via SHARE [32]. CRAFT requires very little 
!?uidance via control parameters. Essentially. the user need only 
'.::hoose whether to perform 2-way exchanges, 3-way exchanges, or 
the hest of both 2-way and 3-way exchanges. 

The source ,code for Simulated Annealing was deveJoped as 
outlined in [371. 1he''Pararneters that control program execution 
are numerous. TbfY ~re: 

• S = {tltt2,.i..,t~}, a set of annealing schedule temperatures, 
· where ta = 10 x (0.9)i-l V i = 1,2, ... ,r. Therefore, tl > t2 > 

... > tr· 
• e = Epoch interval-an a priori number of pair-wise inter-

'changes of facility locations at temperature ti. 
• f = an error constant used to determine whether the system 
.. ' is in equilibrium at a specific temperature ti. 

• J = a constant representing the total number of interchanges 
attempted at the current temperature t •. 

• N' = a constant which when multiplied by the problem size, 
n, defines the maximum value J. 

The source code for the Graph' Partitioning type was taken 
from [24]. This program has no externally controlled parameters. 
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The source code for TABU search was obtained from Skorin~ 
Kapov [35). 

The parameters that control the running of this program are: 
TABU-SIZE (TABU table size) ana MAXITER (maximum number 
of iterations). 

Each of the above algorithms start with a given permutation 
and eventually reaches a local optimum by a series of exchanges. 

The parameters for each program were chosen after conducting 
tt"-st runs with small as well as large problem sizes. The main 
considerations were to obtain comparable accuracy and CPU times. 
Based on the above considerations, the parameters selected were 
as follows. 

1. CRAFT: Select. the best of both 2-way and 3-way exchanges. 
2. Simulat?d Annealing: e = 50, (= .01 and N' = 10C:. 

3. Grar>h Partitioning approach: none. 

4. TABe sf'arch: TABU-SIZE = N/3 and MAXITER = 2N. 

3.2. Test problems. 
ta.ined in two ways. 

Data for F and D ma.trices are ob-

The first set of problems are the well known NUGENT collec­
tion of quadratic assignment problems reported in [26] with prob­
lem sizes, n = 6,8,12,15,20 and 30. 

The second set of problems are generated according to a test 
problem generator (with known optimal solutions) as reported in 
[25J with problem sizes n = 10,20,30,40,50,60,70,80 and 90. For· 
ready' reference, the algorithm to generate test problems is de­
scribed below. For details, see [25]. 

Input. w, a value to initialize the F matrix, and z < w, to ~btain 
random values between [0, z]. 
Output. Matrices F and D and an optimal permutation p •• 

1. Construct the matrix D = (d'j), of. which the elements are 
the distances between the knots of the two dimensional grid 
r X s, where rs = n, using rectilinear dista.nces. If (i,i) a.re 
neig, 'lboring knots, then d;; = 1. 
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2. Set F = (fij) where Itj = w (an input parameter to the algo­
rithm). Compute gij ;;: 2 - tit;. 

3. While for any i,j = 1, ... , n such that gij :$ O. 
4. Choose the pair I, rn" such that dim = max{ dij} where the 

max is taken over every (i,j) for which gij :$ O. If no such 
palr exists, then go to 8. 

5. Randomly select a grid point k on one of the shortest ways 
from I to rn, such that, I dUi - dmk I :$ 1. Then, choose ran­
domly, A E [0, z < w] where w and z are the input parameters 
to the algorithm. 

6. Set flm := A,J'k := f'k + (w - A),Jmk := fme + (w - A) and 
g'm := g'k := gmk := 1. . 

7. Endwhile. 
8. Finally, generate the random permutation p. = p. (i), i = 

1,2, ... , n, where p. will be the optimal permutation. Form 
the matrix F = (Cij) in which fij = fut) where i = p*(u) and 
j = p*(v}. 

9. Output F, D and p. and optimal cost w(l: l: dij}. 

U sing the test problem generator, 80 test problems were cre­
ated (eight each for each n = 10,20,30,40,50,60,70,80 and 90 with 
w = 9 and z = 1,'2,,3,4,5,6,7 and 8, respectively). The selected grid 
(r,8), (where n =~8), for these test cases is: for n = 10,20,30 and 
40, s = 5 and r = ~,4,6 and 8, respectively; for n = 50,60,70,80 and. 
90,. = 10 and r =' 5,6,7,8,9 and 10, respectively). 

3.3. Analysis .of results. We implemented and tested the 
above algorithms on an IBM ES/3090-600S running eMS Version 
5.6, using the VS/FORTRAN compiler Version 2.4.0 with OPT=3. 
With each of the test problems a. set of twenty-five randomly gener­
ated . .initial permutations were used for each of the four algorithms. 
For consistency and comparability, the same set of initial permu­
tations associated with each test problem were used with each al­
gorithm. The results ShOWl! below include the averages over the 25 
sample sta.rting permutations for each test pro},lem, where: 

• MIN is the minimum value attained over the 25 runs for each 
problem, 
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• AVE is the average value obtained over the 25 runs and 
• MAX is the maximum value atta.ined over the same 25 runs. 

Also included are the known optima! solution (OPT), when OPT 
is known (otherwise best known value (BKV)), a.nd the ratios cor­
responding to MIN, AVE and MAX namely, MIN/(OPT or BKV), 
AVE/(OPT or BKV) and MAX/(OPT or BIt-V). AB CPU times 
given below are .in seconds~ 

The computational results suggest that with regard to the 
quality of solutions, the performance of all four heuristics is roughly 
the same. Using only 25 starting permutations, all algorithms pro­
duced solutions very close to the optirr.:al independent of the prob­
lem size (mostly between 0 and 2 percent away from the optimal, 
except that CRAFT's solutions for NU GENT cases where N = 12 
and N = 15 were 7 and 6· percent away from the optimal, respec­
tively). It is surprising that even the maximum values obtained 
by these algorithms are at most only 15 percent away from the 
optimal. Regarding running times, Simulated Annealing took rel­
atively less CPU time especially as the problem size increased. In 
comparison, CRAFT, GP and TABU required progressively more 
time in that order. 

Conclusions. In this paper, we studied the computational 
I 

performance of different local search heuristics for solving QAPs. 
We considered CRAFT, Simulated Annealing, TABU search and 
Graph Partitioning approach using two sets of test problems: i) the 
classic NUGENT set and ii) a set of large-scale test problems gen­
erated with known optimal solutions using the algorithm described 
in [25]. 

The computational results suggest that all of these approaches 
have almost the same performance. The quality of the solution 
suggests that local search algorithms are. very promising, useful 
and reliable. Additionally, the running times of these algorithms in 
relation to the size of the problem is very small and consequently 
insignificant. Therefore, local search algorithms may be appealing, 
practical and inexpensive for so~ving large-scale practical QAPs. 
However, it may be of interest to study the relative performance 
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Table 1. NUGENT test problems 

Best Ave. 
N aDd Known MIN Mlli AVE AYE MAX .MM CPU 
Heuristics Value BKY BKY BKY Time 

N =6 
CRAFT 86 36 1.00 88 1.02 92 1.07 0.01 
ANNEAL 86 86 1.00 90 1.05 94 1.09 0.05 
GP 86 86 1.00 91 1.06 94 1.09 0.00 
TABU 86 86 1.00 87 1.01 92 1.07 0.00 

N=8 
CRAFT 214 214 f.oo 222 1.04 238 1.11 0.01 

•. ANNEAL 214 214 1.00 220 1.03 238 1.11 0.07 
GP 214 214 1.00 2:h 1.03 240 1.12 0.00 
TABU 214 214 1.00 214 1.00 218 1.02 0.01 

N = 12 
CRAFT 578 621 1.07 644 1.11 669 1.16 0.03 
ANNEAL 578 578 1.00 610 1.06 634 1.10 0.14 
GP 578 586 1.01 606 1.05 632 1.09 0.01 
TABU 578 578 1.00 592 1.02 602 1.04 0.03 

N = 15 
CRAFT 1,150 11,222 1.06 1,264 1.10 1,322 1.15 0.05 
ANNEAL 1,150/ q56 1.01 1,211 1.05 1,288 1.12 0.21 
GP 1,150 J 1,150 1.00 1,200 1.04 1,286 1.12 0.02 
TAlJU 1,150 " 1,150 1.00 1,168 1.02 1,200 1.04 0.07 

N =20 
CRAFT 2,570 2,602 1.01 2,688 1.05 2,746 1.07 0.10 
ANNEAL 2,570 2,624 1.02 2,680 1.04 2,780 1.08 0.36 
GP 2,570 2,602 1.01 2,670 1.04 2,736 1.06 0.08 
TABU 2,570 2,570 . 1.00 2,622 1.02 2,670 1.04 0.21 

N = 30 
CRAFT 6,124 6,143 1.00 6,309 1.03 6,498 1.06 0.39 
ANNEAL 6,124' 6,226 1.02 6,351 1.04 6,536 .1.07 0.76 
GP 6,124 6,180 1.01 6,304 1.03 6,418 1.05 0.49 
TABU 6,124 6,180 1.01 6,278 1.03 6;470 1.06 1.05 
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Table 2. Random test problems with known optimal solutions 
Pa.rt 1 

Best Ave. 
Nand Known MIN Mm AVE AYE MAX MAX CPU 
Heuristics Value BKV BKV BKV Time 

N = 10 
CRAFT 1,890 1,890 1.00 2,003 1.06 2,175 1.15 ·0.02 

ANNEAL 1,890 1,890 1.00 2,008 1.06 2,165 1.15 0.11 
GP 1,890 1,890 1.00 1,989 1.05 2,157 1.14 0.01 
TABU 1,890 1,890 1.00 1,922 1.02 2,067 1.09 0.02 

N = 20 
CRAFT 10,260 10,430 1.02 .11,048 1.08 11,645 1.13 0.11 
ANNEAL 10,260 10,284 1.00 11,021 1.07 11,628 1.13 0.36 
GP 10,260 10,260 1.00 10,904 1.06 11,415 1.1J O.W 
TABU 10,260 10,260 1.00 10,737 1.05 11,239 1.10 0.21 

N = 30 
CRAFT 28,710 28,838 1.00 30,420 1.06 31,959 1.11 . 0.47 

ANNEAL 28,710 28,803 1.00 30,340 1.06 31,478 1.10 0.77 

GP 28,710 28,710 1.00 30,303 1.06 31,427 1.09 0.52 
TABU 28,710 28,710 1.00 30,160 1.05 31,308 1.09 1.05 

N =40 
CRAFT 60,840 61,012 1.00 64,016 1.05 67,619 1.11 1.38 
ANNEAL 60,840 60,840 1.00 64,030 1.05 66,360 1.09 1.32 

GP 60,840 60,840 1.00 64,041 1.05 66,259 1.09 1.70 
TABU 60,840 60,840 1.00 63,570 1.04 66,160 1.09 3.31 

N = 50 
CRAFT 110,250 110,785 1.00 115,661 1.05 120,799 1.10 3.24 

ANNEAL 110,250 110,343 1.00 115,797 1.05 120,538 1.09 2.04 

GP 110,250 110,564 1.00 115,358 1.05 120,027 1.09 4.30 

TABU 110,250 110,250 1.00 114,578 1.04 120,022 1.09 . 7.97 

N =60 
CRAFT 169,920 170,990 1.01 178,330 1.05 185,556 1.09 6.W. 
AN~EAL 169,920 171,033 1.01 178,636 1.05 185,687 1.09 2.90 

GP 169,920 171,116 1.01 177,742 1.05 184,129 1.08 9.28 
TABU 169,920 170,355 1.00 177,631 1.05 184,032 1.08 17.09 
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Table 2. Random test problems with known optimal solutions 
Part 2 

Best Ave. 
Nand Known MIN .Mm AVE m MAX MAX. CPU 
Heuris~C1 Value BKV BKV BKV Time 

N =70 
CRAFT 246,330 248,766 1.01 258,983 1.OS 267,577 1.09 12.32 
ANNEAL 246,330 250,354 1.02 259,212 1.05 267,125 1.08 4.04 
GP 246,330 249,435 1.01 258,437 1.05 266,781 1.08 18.26 
TABU 246,330 247,677 1.01 257,643 1.05 266,819 1.08 31.94 
N =80 

. CRAFT 341,280 3«,565 1.01 357,521 1.05 370,172 1.08 21.06 
ANNEAL 341,280 345,710 1.01 358,918 1.05 370,214 1.08 5.31 
GP 341,280 343,239 1.01 358,232 1.05 369,627 1.08 35.38 
TABU 341,280 343,995 1.01 356,774 1.05 369,694 1.08 54.7i 

N =90 
CRAFT 456,570 461,851 1.01 477,3« 1.05 .494,306 1.08 33.10 
ANNEAL 456,570 463,950 1.02 479,303 1.05 494,125 1.08 6.77 
GP 456,570 460,114 1.01 479,826 1.05 493,792 1.08 56.89 
TABU 456,570 458,601 1.00 476,842 1.04 494,ll9 1.08 88.64 

of these local sea.4:h *lgorithms against other heuristics, such as, 
cutting plane and'integer programming methods [3, 4, 5, 6, 2, 29] 
for sOlving large-se8J.e QAPs. 

Acknowledgments. We would like to thank Professor J. Sko-
rin-Kai>ov for providing us the TABU search code. 
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