INFORMATICA, 1998, Vol.4, No.1-2, 227-249

NUMERICAL INVERSION OF MULTIVARIATE
LAPLACE TRANSFORMS
USING A PARALLEL SYSTEM

Peter ZINTERHOF and Markus SALCHEGGER

Research Institute for Software Technology
University of Salzburg
5020 Salzburg, Hellbrunner St. 34, Austria

Abstract. This work was stimulated by investigations or Markow Renewal
Processes. For finding analytic solutions {to compute the probabilities of certair
states of the system) multivariate Laplace transforms can be used. Tabies witk
correspondences of function and their transforms very rarely help to solve suck
problems.

in Chapter I number theoretical numerics are applied to compute the orig-
inal fanction of a mulitivariate Laplace transform given. Starting with the com-
plex multivariate inversion theorem the domain of integration is mapped onto
the s-dimensional unit cube (G,. Using a periodization of the integrand new
results concerning the vanishing of the multivariate Laplace transform in regard
of the modified numerical inversion formula are shown. E

In Chapter II two implementations are discussed: A method to implement
a Manager-Worker Process (MWP) to reduce the idle times of the processors
is presented and the tasks of the Manager and the Workers are defined. The
numerical inversion using this method with STRAND22 has been implemented -
on 8 heterogenous workstation net. The MWP provided a good load balancing.
Another implementation with C-LINDA has been done on a Shared Memory
MIMD system. We also implemented a kind of MWP. Numerical experiments
have shown that the decomposition of the problem is sufficiently.

Key words: Laplace transform, numerical integration, good lattice points,
parallel computation. ‘

Chapter 1

- Introduction. This work was stimulated by investigations
on Markow Renewal Processes (MRP). An MRP is described by a

228 Numerical inversion of multivariate Laplace transforms

matrix-valued integral equation on several variables.
A possible question concerning such a process could be:

“What’s the probability to rest t seconds in dhe state j if the
-system first was in the state §
(GGjt)= P(Tayy —Ta St Xa =iAXap1 = j)) #7
For finding analytic solutions we can use multivariate Laplace
transforms. The inversion of such transforms can be difficult. Be-
cause tables with correspondences of functions and their transforms
very rarely help to solve such problems.

The basic idea. Starting with the complex multivariate in-
version theorem we map by means of conformal mappings the do-
main of integraiion onto the s-dimensional unit cube G,. To meet
the requirements for the utilization of numerical integration by
number theoretical methods (e.g. good lattice points, optimal co-
efficiants) and to remove certain singularities of the integrand, we
first have to apply either an algebraic periodization or a trigono-
metric Beta periodization. There are estimations concerning the
deviation which consider either the differentiability and the vanish-
ing of the Laplace transform as the method of good lattice poirts.

1. Numerical integration.

DEFINITION 1t Let G, be the s-dimensional unit cube. A func-
tion f € E% if f: G, — R continuous, f(X) = f(X+2) VZel'
and ; ' :

| dmm)=0(ms). W

REMARK 1.
c(m;,...,m,)=/j(z1,...,z,)c°2'<‘"'x> dz; - -dz, (2)
G,

are the Fourier coeflicients of f(X), a > 1 and # = max(|m|,1).

- Theorem 1. f € E!_and let ay,...,a, € Z be optimal coeffi-

P. Zinterhof ond M. Saichegger 29

cients modulo N then

W (CLMMELY

__jf(zh,,,,z,)dzl---dta =0(
G,

ln;,‘aN)’ @)

{z} == - [z] is the fractional part of z.

Korobov [5] proved the existence of optimal ‘c{)efﬁcien't's' for
all primes. This leads to the constuction of a so called optimal
parallelepipedal lattice.

Xy = ({‘%’f}{iﬁf) ke {l,... N}

. H. Niederreiter [6] proofed the existence of good lattice points
for all N 2 2 and for all dimensions.)
To meet.the requirements of theorem 1 we must be sure that
fEEL.
In particular f(X + Z) = f(X) VZ € Z’ must be guaranteed.

DEFINITION 2. Let 55:—11,8—015;? be continuous («~ f € H:) and
a2
The finding of a function ®(z;,...,2,) € H. which meets

Q(t;,...,z,-1,0,2,+1,...,z.)= Q(zl,..-,Zy-1,1,23+1,...,Z,), (4)

8"@) (8"‘(’)
—_— = — n=1,...,a-2(5
(azl': Fo=0 33‘:,' £,=1 ()

/f(z;,.:..,z,)dzln-dz,:/Q(zl,...,z,)dzl---dz, C o (6)
G, G,

'

is called complete periodization.

~ DeFmiTioN 3. The function ¥ : [0,1] = [0,1], ¥(7) = z is called
a periodization function of order a if

230 Numerical inversion of muitivariate Laplace transforms

(@ ¥(r)>0 Vvre(on,
(5) » ¥(0)=0,
e ¥(1)=1,
(0) ¥™0)=¥™Q)=0 VYne{l,...,a). D

Theorem 2. Let \!(r,) = z,, 1 € v € s be a periodization
function of order a and D"(X)-B?i"_'%,—f be continuous with
{Da{X)I €C VX €G, then

F(¥(), ..., W(r)) ¥ (m) - ¥(n,) € EY @®:

f Flzy,....z,}dzy - - dx,

<

Cis

= /f(‘!(n), ,\i(r.))\l"(n‘i W) dry - d7,. (9.

Proof. Let 3(X) = f(¥(n), ..., ¥(r.))¥Tn)- - ¥'(r).
We consider the Fourier series :

@(X) - Z C(M)e21i<¥.x>
;) MeZ®
with the Fourier coefficients f (X)c—2ﬁ<u,x> dz,---dz, .

Now we perform an a—tlma partial integration with respect to
all s coordinates.

As ¥(1,) = z, are periodization functlons of order a :

(¢('))r,- (d’(f'))r,.—.x =0 v=1,...,q,

1 (X)
2xi)a*(m, --- m,)"G Bz§...9z2

[e(M)| =

-2n<)l,X> dz, --

P. Zinterkof and M. Salchegger 231

)| < g [1D don e,

il |

[e(M)] < —~® €L

(ﬁ,, ree fn,)a
DEFINITION 4.

Fle+8+2)

W(‘r) = B(arﬁ’ T) = m s

to(1 ~t)? dt (10)

is called algebraic Beta periodization of order ia,f:ifor a0 > —

DErFINITION 5.

') i 7 . xl g W
‘F(T:}:] ‘{a,ﬂ,f): —.—-—%—-—?—'/mcd__m- T_d_ {II
BERE /T 7T G

is called trigonometric Beta periodization of order (a,f) for
a, B> -1 '

It is obvious that we can enforce the vanishing of the function
to be periodized by choosing the parameters a and 8.

In particular B(k,k, r) for k € N is a polynomial of degree 2k+1.

REMARK 2. Both periodizations are closely related. This can
be seen if we make the following substitution in B(a,8,7) :

—ea?
t = coa 7 |
dt = -nos—’g‘;ainf—;-du. (12)

Although both periodizations are closely related, the trigono-
metric Beta periodization is in many cases preferable. It is some-
times possible to remove certain singularities of the integrand by
means ~f the trigonometiric Beta periodization.

232 Numerical inversion of multivariate Laplace transforms

2. Numerical inversion of £*{F}.

DEFINITION 6.
QE(TER Dt <oA1 ES). (13)
DEFINITION 7.

CUFY = f(z,...,2) = / e<ZT>P(T)dty --dt, (14)
Q.

is called s-dimensional Laplace transform.

. Theorem 8. Let e~<%7>F(T) be integrable over Q, in the
sense of Lebesgue for a vector Zp = (29,...,2°) € C* and let f({Z,)
converge absolutely then

CH{F} = f(z1,...,2) = /e'<Z'T>F(~T)dt1---dt, (15)
qQ.
converges in the complex half planes R(z;) > R(z)),1 < k< s.

Theorem 4. Suppose the multivariate Laplace transform
L'{F} = f(Z) exisfs for R(zx) > 0 1 < k < 5 and let F(T) have
continuous partialiderivatives of order one at least then

o f(Z) is alhofomarpbic function in the domain of conver-
gence and
e f(Z) can be inverted with the well known inversion for-
mula.

L3

] 3= 4100 3,=F,4400
= — <2,T>
F(T) = Gy / / e f(Z)dzy -+ - dz,. (i6)

Sy =Ly =00 2,=2, =800

Now we want to apply the metkod of good latice points to the
mulitivariate inversion formula. Let ,

Hw) =12 (17)

- .2 l-w

P. Zinterhof and M. Salchegger 233

‘ Hw) Hw) =12 Xz |
%(E)
(B 7

_j R(w) z(% =~ R(z)

Fig. 1. Conformal mapping.

be the conformal mapping which transforms the unit disk £ = {w €
C : jw| < 1} onto the right half plane ®(z) > 0 (Fig. 1.).
The straight line R(z) = 0 corresponds to the circle

z e—i¢

=1+:+1+z 0<¢<2r. (18)
We compute straightforward
i sin¢ i i
ZH{w) =2z z(l+z)-—-—-—-—-—-—l_co‘¢=z :(1+z)cot2. (19)

As the Laplace transform is holomorphic in the right half plane,
the integral does not depend on the path of integration. We just
have to choose 2z > 0.

d2 . l+z

E '2si\n’§'
We substitute for each coordinate and get straight{forward

(20)

22y dico ZeBE,Pi00
- : BT> 2y ...
PO =gy / B / < I2)n s,

3Ly =500 I, B8, =500

. . ™ w,, L .
; =] ... fa(sa~i(14ei)cot 2 2 ¥ Tk}
F(T) (21), 'o/ Z)/ =IC 2 2“&’?) *

234 Numerical inversion of multivariste Lapisce transforms
X flzy =il + 21} cot i’-,...,z.
—i(1+x.)oot-‘5‘-)dﬁ--~a.. (21)

Let ¥ be a periodization of order a and let 0 < ¢ < 1. We
define:

6 -.-2:(% +(1-9%(n)),
“déy =27(1 -)¥(n)dn, (22)
eg., z=1and 0<e<1 (Fig. 2.). |

»p

N_ ¥ F=

—14i8(w)| 1 +iS(w) 4

Fig. 2. Exurfle?-

”Let 2" = (z1 +i(1 +2;)cot %‘,...,z. - i(l+z,)cot %'-) and ¢; =
2x(§ + (1 - €)¥(n)).
If we apply that t-ansformation we compute straightforward

F(D)=(-o [75>5(2)

G,
(1+2)¥'(n) .
k=1 2ain’ (T(‘% + (l - C)@(ﬁ)))

X

(23)

Obviously holds ‘
lim F(T) = FT) = FT) . (24)

P. Zinterhof end M. Salchegger 235

Because of the sine in the denominator of (23) we got singu-
larities of order 2forn =0 and n = 1if ¢ =0

These singularities can be removed by choosmg a periodization
of order > 2.

DerFInrTiON 8. We denote the integrand of the integral above:

H(ny,..., 1) Ze<T 3> g2+ (1+2)¥' () (28
CH(n,... n)=e I)gzmn (t(’,*.g.(l,()’(n))) (25)

- Theorem 5. If ¥(n) are periodization functions of order 2a +
2, 1<k< s then H(n,...,7,) € ES.

Proof. Let
had .
CH(rm,om)= Y dmy, m,) T mindmr) (96)
M3,y My =00
be the Fourier series of H(r,...,r,) with the Fourier coefficients

e(my,...,my) = /H(n,...,r,)c“"‘('“"“""""""')dn cedr. (27)
G,

Now we perform an a -times partial integration with respect
to all s coordinates. (as shown in the proof of theorem 2) As ¥(n)
are periodization functions we get straightforward

_ 1 0 H(n,..., 1)
'c(ml,...,m,)‘ - i(?n’)"(mx “'m-)"c 921y --- o7,

X e~ T(minddmin) g L dr,

aa‘H yre3 'y
.!c(ml, ,m.)l(m,)°/ 8°1-fﬂ f)

codr,. {(28)

236 Numerical inversion of multivariate Laplace transforms

f(Z*) and all its partial derivatives are bounded by a suitable
constant K = K(f,24,...,2,,a).

CK(f,z1,...,25, @)
(g ---m,)

lc(m;,...,m,)] < (29)

The constant C does not depend on ¢ because the order of
periodization we have chosen is 2a + 2.

DEFINITION 9. F(T) € D3(Ch) if
o #>1and

Cy

CH{FY = |f(2)| € ———. 30
R =l < 2 (30

Theorem 8. If f(Z) € Dy(Cy) then
{EAT) = F(T)| = 0 (71). @31)

Proof. We consider the following set:
A= {Z € C’}| there is at least one coordinate with |yz| > cot(ze)}.

(2—%‘- / e<%T> f(Z)dz ---dz,].
A
As f(Z) € Dg(Cy) we get immediately the assertion of (31).
Now we actually want to concern with the numerical integra-
tion of the function H(r,..., 7).

Let

/o
[F(T) - tF(T:){ = (32)
P

(honm?) kefl..,N} (33)
be a set of nodes in the s-dimensional unit cube G,. And let

N
1 «
RN'—‘F E H(T:,...,T:)-/H(Tl,.‘..,f,)dft"‘df,,
k=1 G,

Ry =ky(HYr- I(B}. (34)

‘P. Zinterhof and M. Salchegger . 237

Theorem 7 [5] [9b]. Let f(Z) € D%(C:). We compaire the
classical method and the method of good lattice points:

o Using the method of good lattice points'(opti&za.l'coelﬁ- ‘
cients) the estimation ‘

N ‘ = af :
F(ﬂ—%ZH(rf,...,rf):O_(lnNaN) B<s (33) -
. k=1

holds.
o Using the cartesian product rule the estimation

N
F(T) - %Zy(rf,...,rfpo(zvf?) (36)

=1

holds.
Proof. Let a,, ...,a, be optimal coefficients modulo N. We first
consider the optimal parallelepipedal lattice:

o= ({2} (%)) rewm @

As H(n,...,n,) € E(CK) (29), we take use of Theorem 1 and
get straightforward o

. afp ;) . :

N ' B

F(T) = % Y H(ek,..., s} =F(T) = In(H)

. k=1 . ' ’ o

=F(T) - F{T) + I(H) ~ In(H). (39)

According to Theorem 6 (f(2) € D%(C)1)) we compute

ap)
F(T)~ In(H) = O (cﬁ-l + "’N.”) (o)

238 Numerical inversion of multivarisic Laplace tma:jom

By choosing ¢ of the right size (e.g.: ¢ of the order N P— I)
the first assertion follows.

If we use the classical cartesian rule for periodic functions we
need N = n® lattice points to perform the numerical integration.

(h,...,) = (fnl"-) b e{l,...n), (41)

I(H) = —1;2 }:H("‘) Rx. (42)

k;‘—'l k,-l

As H € E?, the best possible result we can get (Korobov [5]) is
- .
Rw(H) = In(H) - I(H) = O (F) . (43)

Using the first assertion und choosing ¢ of the order N (B-T
we can complete our proof.

Chapter 11

*

Introductiont A numerical algorithin using all the ideas of
Chapter I is very ekpensive in compution time. A high dimensional
problem can increase the computation time enormously. It is quite
impossible to get satisfying results at reasonable computing times
using a usual single processor system. As the algarithm cannot
be sufficiently vectorized (multiple exits, function interrupts a.s.0.)
we want to implement it using a parallel environment. We want to
discuss two different models:

.. a The STRAND# model (on a virtual distributed system).

e The LINDA model (on a Shared Memory MIMD system}.

i.Implementation with STRANDZ, We want to use a
heterogenous network of workstations. STRAND# is a program-
ming language which supports the distribution of the several pro-
cesses.

" P, Zinterhof and M. Scichegger - 239

Something about STRAND#, The programming lan-
guage STRAND has becn developped by the enterprise “Artifi-
cial Intelligence Ltd.” with support of experts in logic and paral-
lelism. STRAND® is an abbrevation of STReaming AND paral-
lelism. STRAND# is a logical declarative programming language
which supports two distinct program design methodologies. Mod-
ular decomposition and stepwise refinement. Large problems are
initially decompased into medules with carefully defined interfaces.
Each module includes an interface definition that lists the functions
it provides, or exports, to other modules in the system. Modules
are sufficiently self-contained that they can be reused for other ap-
plications. :

With the symbol ‘-’ we can seperate a problem from its decompo-
sition into subproblems.

e.g.:
big_problem() : -
subprobdlem; (),

subproblem, (). (44)

Each of the subproblems ir the above formalization may be
considered the responsability of an independent entity that we shall
refer to as a process. The processes can be executed in any order
or in parallel. Synchronization can be done by adding a communi-
cation channel between the corresponding processes.

e.g.
big_problem() : -
. subproblem;(Done),
subproblems(Dene),

240 Numerical inversion of multivariate Laplace transforms

mbpmue;nn(). - (45

The process subproblem; would wait to receive a message from
subproblem; before performing its designated task.

By using the other statement ‘@’ we can run processes on other
computers,

e.g.:

big_problem() : —
subproblem; (J@N ode;,
subproblem;()@Node;. (46)

The process subproblem;() will run on Node; and the process
subproblem;() will run on Node;. In this way we can spawn processes
on our network. ’

As there are many possible ways to connect computers,
STRANDZ# provides a collection of virtual machines that are ab-
stractions of the physical hardware. This provides the simulation of
distributed systems. If the defined topology fits to the real available
hardware the computations will be done in parallel.

As a high-level programming notation STRAND# provides .
the ability to ra;;idly prototype programs. It is also possible to
reuse existing code segments in C or FORTRAN. By defining an in-
terface file which manages the communication between STRAND 28
and the foreign code library whole processes can be written in C
or FORTRAN (Fig. 3.).

'FORTRAN
STRANDSS | . Interface File and
C - Codes

Fig. 3. Foreign Language Interface.

< ~ 2

* P. Zinterhof and M. Salchegger | , 241

Computation in STRAND# is performed by a set of interac-
tion processes. Each process can be represented by a term of the
form:

pTi,....,T.) n30, ' 4

where p/n identifies the program used to execute the process and
T1,...,Tn are the process arguments. The arguments are data struc- -
tures (terms) that comprise the process state. A STRANDEE pro-
gram describes the actions that processes may perform. There are
just three types of actions: '

» terminate,

e change state,

s fork.

Programs are composed of a set of rules. each of which de-

scribes a single action. Rules have the following general form:

H:-Gy,...,GplBy,...,By. . mn20, . (48)

where H is the rule head, G,...,G, are the rule guards and B,,...,
B,, are the rule body. :

More details on STRAND# can be read in the book of Ian
FOSTER [4]. L

Implementation. Suppose we had a heterogenous network
system which consists of n + 1 Nodes. (e.g. n+ 1 workstations).

Let A = [a;,b1) X --- X [a,,},] be the domain where we want
to compute the original function F(T) = F(ti,...,t,). We suppose
that we want to compute F(T) for L points in A.

- There exists an algorithm so that each number t € {1,...,L}
is unequivocal mapped on a tuple (k,,...,k,) representing the co-
ordinates of the k-th point of inversion. This works if we use a
presentation of the number k to the base number p, where p is the
number of points in each dimension.

At each point (k;,...,&,) we perform a numerical integration
(with all transforms and periodizations) using the method of good

242 Numerical inversion of multivariate Laplace transforma

lattice points. The optlma.l coeflicients, we need for that, have been
obtained before and are stored in a file. -

The inversion process itself is written in the C-progra,mmmg
language, and all other transforms, periodizations and procedures
are available in user-defined C-libraries.

Now we want to start a process ‘which is called Ma.nager-
Worker Process (MWP)

The basxc idea (Flg. 4). The manager is responsible for
partitioning a problem into subproblems and allocating these to
workers. The workers are responsible for solving a single subprob-
lem and requesting additional work from the manager when they
become idle. To achieve this balancing functionality, we define a
balancing process that receives a list of subproblems and a stream
of request from the workers. Let Nodey be the node where we let
the manager program run. Let Node,y,...,Node, be the workers.
Here actually the hard integration work will be done.

worker 5 (N édeg) worker 4 (Node,)

worker 3 (Nodes)

worker 2 (Node,)

manager (Node,)

Fxg 4. Spawning the MWP structure.

‘P. Zinterhof and M. Salchegger 243

laplace inversion(ParameterList, DistributionInfo) : — : i
manager(ParameterList, DistributionInfo, Requests), |
merger{Streams, Requests) ’ :
init_workers(DistributionInfo,Streams). - (49)

managcr(ParamcterLisi DistributionInfo, Réqucth) P -
partzt:on(ParametcrLtst Distributionin f o, Subproblcm:),
balance(SubProblems, Requests). - {50)

init wor ker s(DistributionIn fo, [merge(chucst)iRs})
n > 0l
n=n-~1,
worker(Go, Request)@N ode,,,
init . workers{ModifiedDistInfo, Rs).
init_workers(DistributionInfo,[]) : —
n = 0| L .
‘terminate. . (51)

The procecess worker() computes the ongmal functnon F(T) by
changing into a C process or a FORTRAN process "The result is .
sent back to the manager.

. The job of the manager:
o partition the problem,
o engage n workers, ‘ v
o send them a task (e.g.: compute F(T) for Just a several
number of points), : ‘
o receive the signal if a worker is ready, -
e identify the worker, 4

244 Numerical inversion of multivariate Laplace transforms

¢ send a new task to the idle worker,
¢ send a stop signal to all workers if there are no more tasks,

o terminate when all workers are idle and all tasks are dis-
patched.)

The job of the workers:

s request a task,
do thg'" work,
send back the result to the manager,
request a new task, _
terminate when the stop signal arrives.

If we use the MWP we should be able to minimize the idie

_times of the workers. ’

® O o o

C
lapinv_c()
STRANDSS8 SIF
STRANDSS laplace.h
MWP Interface | suplapin.h
/| ¢ | File " | ‘sup_complex.H

T v
Fig. 5. Stuctlire of the implementation.

Experiments on a heterogenous network were very satisfactory.
By the means of a profiling tool we could check the minimization
of the idle times.

Furthermore we implemented the MWP on a homogenous sys-
tem and could obtain a quite linear speed-up, which indicates a
well parallelized algorithm. :

2. Implementation with C-LINDA. C-LINDA is a realiza-
tion, of Linda that coordinates with the C programming language.
We can write programs in C and make use of the operations in
C-LINDA to create and coordinate multiple processes as required.

© o (%3

P. Zinterhof and M. Salchegger . 245

‘There are four basic tuple space (an aXlocated associative ob_}ect
memory) operations in C-LINDA: ‘

¢ out (add a tuple to the tuple space (TS)),

o in (withdraw a tuple from the TS),

o rd (like in with the exception that the matched tuple re-

mains in the TS), :
e eval. (Similar to out exéept that a tuple is evaluated after
it is placed in the TS, rather then before.)

In addition, there are two variant forms inp and rdp. These
are predicate forms of in and rd. They do not cause process sus-
pension if no matching tuple exists. Furthermore they return true.
if the matching does not fail; otherwise they return false. As the
functions to be evaluate.’ are placed in the TS. it is not predictabie
which processor will actually perform the computation. A detaiied
description of C-LINDA can be read in [7].

Implementation. We suppose we had shared memory system
with P processors. Before we implement our algorithm we should
consider the following facts: :

o Multiusersystem. As there are many users logged in and
let programs run, we do not know the system’s perfor-
mance at a certain time ¢; ,when we start our program at
time t,.

e Processors cannot be allocated before we start a program
Tuples and so called “evals” will be thhdrawn from the
TS without any determinism.. ‘

Tixese are the reasons to partition the whole problem in small
subproblems and to balance the load as dynamically as possible.

We suppose that there are L points for which we want to com-
pute the original function. In the previous’paragraph we couid
see that there is a bijective mapping of {1,...,L} onto the set of
co-ordinates. So the inversion of f(Z) for one point could be one
subproblem. We write a program which contains the same idea
that we used for the MWP in STRAND=2,

246 ~ Numerical inversion of mullivariate Laplace transforms

“Manager Crde”; |

real_main()
{

. Place all shared va.nables in the TS (out),
for(i = 1;i < L; a++)

{Pla.ce L diiféfént ﬁui.x{i/bers in the TS (out);
for(: L 1’ i SP’ '++) ; |
. f’lace P éya;l(la;;la;;:e?inyersion()) in the TS;
/ * These will be our workers. */
fof(i}= Li< Lii+4) |
iNfithdra.w. L results from the; TS (in}; -

'}
We placed the shared variables in the TS and we placed P
worker processes ? the TS. Each worker process is called laplace.
inversion(). After(that we start to withdraw the results from the
TS until the last worker is idle and the last result has been placed .
in the TS: ~ e v '

ay o

“Worker Code”: ' .

laplace.inversion() .
{
Read the shared variables from the the TS; w:thout
" removing them (rd);" ' peo :
while (mp(one of the L numbets))]*If there is somethmg to
do‘ / .
{

compute the co-ordinates of the pomt,

[(R4

’P.’Zs'nterfwf and M. Salchegger ‘ 247

computé the original function F(TY); :
place the result together with the co-ordinates in the TS;

}
}

Each worker tries to withdraw points from the TS (inp). When-
ever a worker terminated the numerical inversion of f(Z) for one
point he requests more work immediately. A minimazation of the
idle times should be guaranteed, too.

Examples.
 J

t2e-t 1
‘C{ 2 }: (z+1)

Table 1. One dimensional example

L - A U #(NeG) | € |« error |
(0,9) 107 10-° 6 3.10-°
(0,4) 18 10-° 6 - 4.107¢
{0,4) 104 -10~12 6 4.10°%

*
£2 c—?h«m:t?tg} o . 1 Ce
36 T+ 2422+ 24
Table 2. Two dimensional example ’

! A #(NeG) | ¢ { « | error |
(0.5,2.5) x (0.5,2.5) 10009 10-° 6 10-10
(0.5,2.5) x (0.5,2.5) | 46368 10-10 6 8.10~1
{0.5,2.5) x (0.5,2.5) 196418 10-1 6 10-12
(0.5,2.5) x (0.5,2.5) | 317811 10712 1 6 4.10*%3

We want to compute the speed-up values for that problem-
(Fig. 6.). ™ ' ‘

248 Numericol inversion of multivariate Laplace trensforms

Speed Up

—20 . . . - = obtained Speed Up
- ~—— = maximal Spced Up

15 20

5 10 -
N O N N O O 272

-

Fig. 6. Speed,/up for parallel processing.

. Here the speéd up is quite linear, too. The problem has been_ ‘
decomposed sufficiently and the idle times of the several workers
have been minimizéd by a dynamic load balancing of the whole
process.

REFERENCES

[1] Bertsekas, D., and J.Tsitsiklis (1989). . Parallel and Distributed Computa-
tion, Numerical Methods. Massachusetts, Pentice-Hall.

[2] Davis, B. (1978). Integral Transforms and Their Applications. New York,
Springer. ‘ ‘ ‘

[3a] Doetsch, G. ((1958) Einf"uhrung in dic Theorie und Anwendung der Laplace

P. Zinterhof and M. Salchegger ' 249

Transformation. Basel, Stuttgart, Birkh”auser.

{3b] Doetsch, G. (1971) Handbuch der Laplace- Transformation Band 1. Basel,
Birkh” auser.

[3¢) Doetsch, G. and D:Voelker (1950). Dtetrwh Die msdcmemwnale Laplace-
Transformation. Basel, Birkh” auser.

[4] Foster, 1. and S.Taylor (1990). Steven: .5'TRAND§§ New C'orwepts in

- Parallel Programming. New Jersey, Prentice Hall '

{5) Korobov, N.M. (1963). Number theoretic methods in approzitaic analysis.

Moscow. Fizmatigiz.

{6) Niederreiter, H. (1978). Ezistence of Good Lattice Points in the Sense of
Hlawke, Monatshefte f"ur Mathematik. (86, 203 ~ 219), Springer Verlag.

{7) Sherman, A. (1990). Originai LINDA Saentxﬁc Comp\mng Associates, Inc .
New Haven, Connecticut

{8] Spiegel. M.(1977). Theory and Problems of Laplaac Tmmfomu D”usseldord,
New York. Mc Graw Hill.

[9a} Zinterhol. P.{1987). Gratis lattice points for mnlhdunenaolnl integration,
Computing, 38, 347 ~ 353.

{9k} Zinterhof. P. (1992). Number theory and number crunching In F. Schweiger
xnd E.Monstavidius (Eds). New Trends éin Probability and Statistics, Vol.2:
Anaiviic ana Probabilistic Methods i in Number Theory, TEV, Vxhuns - V8P,
~trech:i. pp. 379-38¢.

FRJe,ceived February 1993

P. Zinterhof was born in Vienna in 1944. He received his
PiD in Mathematics from the University of Vienna. Habilitation
at the Technical University of Vienna in 1971. He is Professor for
Mathematics and Systems Analysis at the University of Salzburg
since 1972. He is founder and head of RIST++ (Research Institute
for Software Technology + Paris Lodron Universit”at Salzburg)
since 1986 and member of the Austrian Center for Parallel Com-
sutation {ACPCH.

- M. Saichegger was born in Salzburg in 1967. He received
his Mag. Degree in Mathematics and Systems Analysis from the
University of Salzburg. He is member of RIST++ since 1991 and
he i1s member of the Austrian Center for Parallel Computation
{ACPC). He is now working as an Assistant Prof. at RIST++
anc the Dept. of Computer Sciences.

