
INFORMATICA, 1994, Vol. 5, No. 1-2, 43-54 

ALGORITHMS AND PROGRAMS 
AS DIFfERENT ITEMS IN LEARNING 

OF COMPUTER PROGRAMMING 

Gintautas GRIGAS 

Institute of Mathematics and Informatics 
2600 Vilnius, Akademijos StA, Lithuania 

Abstract. A development of algorithms and writing of pro­
grams are considered as closely related but not identical parts of 
computer programming. Some differences between them are impor­
tant for learning of computer programming, in particular, in dis­
tance learning. These differences are identified and discussed from 
the pedagogical point of view. The arguments for the selection 
of pedagogical based and cost-effective delivery modes in the case 
of distance learning are investigated. Practical examples support­
ing theoretical arguments are given on the activities of Lithuanian 
schools. 

Key words: algorithm, delivery mode, distance learning, dis­
tance teaching, electronic mail, function, high school, Pascal, prob­
lem solving, programming, procedure. 

1. Evaluation of the relationship between an algo­
rithm and a program: a historical perspective. The 
computer science relies on computers, i.e., hardware and soft­
ware. The computer technology is rapidly changing. Those 
changes affect the computer science and its notions. We will 
briefly discuss how such changes influence the relationship be­
tween an algorithm and a program, and how computer science 
curriculum may benefit from this situation. 

In this context we consider the algorithm as a descrip­
tion of a computer-oriented solution of a problem expressed 



44 Algorithms and programs in learning 

in terms comprehensible to man. The reader (and user) of the 
algorithm is a human being. 

By the program we mean a description of a computer ori­
ented solution of a problem understandable (executable) by 
computer. 

Thinking abilities of a man change not so rapidly as that 
computational power of a computer. Thus, the level of ab­
straction in algorithms today is about the same as it was half 
a century ago. However, it is not the case with a computer pro­
gram. Three different notions of a program and their distinct 
relationship with the notion of algorithm may be observed 
in a short period of the history of the computer science (see 
Fig. 1.). 

1. Early computers were able to understand (i.e., to ex­
ecute) only the programs written in their own (binary) code 
or - in the best case - in their assembler language. All those 
forms were inappropriate for a human reader. Thus another 
notation was necessary for the algorithm. The algorithm was 
usually expressed in the form most understandable to a hu­
man reader - a flow diagram. Thus the algorithm and the 
program were expressed by completely different notation. A 
human translation of the algorithm to the program was nec­
essary. The development of an algorithm was often called by 
programming and that of the program - by coding. 

2. The advent of algorithmic languages changed the situa­
tion. These languages enabled to express a computer-oriented 
solution of a problem in the form acceptable both to man and 
to computers. The first truly algorithmic language was Algol-
60. 

The same text expressed in an algorithmic language could 
be considered as an algorithm or as a program. A compromise 
between a man and a computer was reached. Consequently, 
the differences between the algorithm and program became 
minor. The difference between the terms of "algorithmic lan-



G. Grigas 45 

Descri ption of Relations between 
Event algorithm and 

~lgorithm program program 

1. ENIAC 
algorithm 1-+ I program I 

2. 

3. 

I flow compu-
1946 diagram ter code 

Algol-60 I algorithm & program I I algori~hmic (prog-
1963 rammmg) language 

PC program 
---+ algorithmic (prog-
1977 ramming) language 

algorithm _1-+ lalgorithm 1 

1994 

Fig. 1. Alternating relationship between an algorithm 
and a program, initiated by the first computer 
(1) and altered by the invention of an algorith­
mic language (2) and a personal computer (3). 

guage" and "programming language" has also disappeared, 
and these terms were often used as synonyms. 

Publishing algorithms as Algol-60 procedures became a 
common practice about 30 years ago. 

3. Personal computers considerably changed the relation­
ship between a computer and its user. The user was given a 
direct and permanent access to a computer. Graphics and col­
ors enabled to present the results of computations, including a 
dialog with a computer, in a very expressive manner. All these 
powerful facilities require extra programming efforts and re­
sult in a great number of additional lines in the program text. 
Those texts include commands to control and output the data 
flow, to organize a dialog between a computer and its user, to 



46 Algorithms and programs in learning 

visualize data on a display. Thus, the job of a programmer 
splits into two parts: 

1) to obtain the results from the input data; 
2) to organize a dialog between a computer and its user 

(including acceptation of the input data and presen­
tation of the results). 

Indeed, these two parts were present in the past, too. 
However, th~ size of the second part was negligible. Now it 
grew up and became comparable with that of the first one. 
The outcome of the both parts may be expressed in the same 
algorithmic (programming) language. However the main task 
of the first part is development of an algorithm (especially, 
using high level algorithmic languages). However, the job con­
cerned with the second part is much more related to the com­
puter: So, it is reasonable to consider the outcome of the first 
part as an algorithm and that of the second part as a program. 
In this sense, a program becomes an extension of an algorithm 
(see Fig. 1.). 

Now commonly accepted language for writing and pub­
lishing algorithms is Pascal. Its original Report (Wirth, 1972), 
international (ISO, 1983) and national standards support de­
velopment of algorithms. Particular implementations of Pas­
cal provides the language with extra elements enabling it to 
express actions exclusively related to programs in our sense, 
namely, colored and animated vision on the display, sounds. 
Thus, a program being an extension of the algorithm is to 
be written in the extension of t he algorithmic language. A 
rich and widely used example of the Pascal extension is Turbo 
Pascal. 

Thus, we have defined two related objects - algorithm and 
program - with a slightly restricted meaning than that used 
in common practice. 

The main task in the process of the development of an 
algorithm is to find a computer-oriented solution of the given 



G. Grigas 47 

problem. So, it is reasonable to call this process by prob­
lem solving. Programming is a conventional term to name 
a process of program development (writing). However, it is 
widely used in a broader sense, i.e., including all phases of 
the development of computer-oriented solution of a problem, 
starting from the problem formulation and finishing with a 
human analysis of the results produced by a computer. We 
use "problem solving" in this broader sense. 

By program writing, we mean the development of a pro­
gram in our restricted sense. 

Thus to define the processes of development of the above 
mentioned objects we use two terms: problem solving (for 
algorithms) and program writing (for pr~grams). 

2. Programming in secondary and high schools. 
Computer programming is the main part of the subject of 
computer science (also called by informatics or computing) in 
secondary and high schools. This in accordance with IFIP rec­
ommendations for informatics education in secondary 'schools 
(Taylor, Aiken and van Weert, 1991). 

Computer programming includes teaching both problem 
solving and program writing. For the same immediate goal­
to develop a solution of a given problem by computer - there 
is no strict difference between problem solving and program 
writing. However, they have different influence on the ulti­
mate and more general goals of teaching. The development of 
an algorithm requires deep and flexible thinking, sometimes 
even real brain storming. That develops thinking, especially 
logical thinking abilities of school students. Program writing 
requires a lot of a very careful work, design and formatting 
skills. That develops another abilities of school student. 

The proportion between teaching of these two topics of 
programming may vary in a great extent dependent on the 
balance of immediate and ultimate goals as well as on the 
accessibility to computers for school students. Problem solv-



48 Algorithms and programs in learning 

ing requires more brain work, while program writing requires 
more computer time. 

A strong tendency to reorganize the teaching is observed 
so that school students were given a possibility to develop in­
dividual or group projects instead of strict and synchronous 
following the schedule preassigned by the curriculum (Tinker 
and Thornton, 1992; Pearlman, 1993) . School students learn 
the theory themselves when there arises such necessity in the 
development of the project. Due to its practical direction, 
computer programming suits such a method of teaching per­
fectly. According to these lines, programming problems may 
be classified into two parts, such as: 

1) (algorithmization) problems; 
2) (programming) projects. 
The problems resemble puzzles. Their solutions are short 

and they result in algorithms. 
Programming projects resemble the projects of other 

school subjects. Their development requires a long work and 
they result in a computer program (programming product). 
Collaborative or group work is encouraged. 

Such a classification leads to the structurization of teach­
ing to computer science (informatics) and may enhance the 
effectiveness of teaching (Dagiene, 1993). 

3. The experience with distance teaching. The idea 
to consider algorithms and programs as separate items came 
into being in the process of distance teaching to programming 
(in a broad sense). We have been working with two schools of 
programrrnng: 

1) Lithuanian Young Programmers' School; 
2) Programming practice sessions by electronic mail. 

The Lithuanian Young Programmers' School was estab­
lished in 1981 (Grigas, 1990). It is a nationwide school. All 
communications between teachers and students are performed 
by land mail correspondence (letters and printed matter). 



G. Grigas 49 

Personal microcomputers have not yet been available at 
the moment when the School started its activity. According 
to our historical review given above it was the time of the 
second period. At that time there was not so clear distinction 
between an algorithm and a program. An attempt to teach 
both problem solving and program writing was made in the 
first years of the School. A great number of interesting and 
attractive programming problems was developed. 

Along with learning by correspondence the school students 
are invited to a campus practice for two weeks during the 
summer holidays. 

Although a number of arrangements were made towards 
program writing, problem solving was greater success than 
that of program writing. 

Naturally and gradually the school transformed itself into 
the school of problem solving and survived like this until now. 
Its survival gives us an evidence that problem solving can be 
considered as the proper part of programming for distance 
teaching using land mail for communications. 

In 1992 we began the experiments of programming prac­
tice sessions by electronic mail (Grigas, 1993). School stu­
dents are working in teams. The number of the members in 
a team is not limited. Each team is given a programming 
project and has to develop a mini programming product with 
the documentation including a brief description of the idea of 
problem solution, annotation of the program, a user's guide, 
a programmer's guide. 

The session is split into 4 phases. During the first phase 
each team develops its own initial version of the programming 
product. 

In the second phase the teams get acquainted with the 
initial versions of programming products made by other teams. 
Each team must write reviews of 3-4 products. 

During the third phase each team is given an opportunity 



50 Algorithms and programs in learning 

to improve the preliminary version of their own products. The 
work ends with the final version of the programming product. 

The last phase is for discussion. 
All communications between teachers and teams are car­

ried out by electronic mail. The elements of competition are 
included into the sessions. The teams are ranked according to 
the evaluation of their work during t he first three phases. 

Programming practice seSSiOlll:i include both problem solv­
ing and program writing. However the emphasis is put on 
program writing and documenting. It is achieved by a set of 
requirements for the programs to look like a real programming 
product, i.e., they must be user-friendly and equipped with 
a comprehensive dialogue and an expressive presentation of 
results. 

We have had three sessions so far. In the first session (N 0-

vember-December, 1992) 6 teams took part from 6 schools, in 
the second (April, 1993) - 15 teams from 14 schools, and in 
the third (November-December, 1993) - 21 team have partic­
ipated. The participation was voluntary. 

On the basis of the results achieved by teams and the out­
come of discussions we arrive at the conclusion that such kind 
of learning was a success. We suppose that among the rea­
sons for the success was an information transmission mode. 
The electronic mail has a distinguishable feature to transmit 
the program text executable by computer. However, the exe­
cutable text is not only the information per se, but also a car­
rier of all the events, observed on a computer display during 
the execution of a program, with the whole variety of colors, 
sounds and animated pictures. 

4. Matching of the parts of programming with in­
formation delivery modes in distance learning. We have 
discussed two parts of programming - problem solving and 
program writing - as well as two information deli very modes 
in the case of distance teaching: by land mail and by elec-



G. Grigas 51 

tronic mail. A positive (effective) match is denoted by + and 
the negative one (non effective) by - in the Table 1. 

Table 1. The match between the parts of programming 
and a delivery mode (the type of mail). 

Part of Delivery mode (mail) 

programnung land mail electronic mail 

problem solving + + 
program writing - + 

We see that the electronic mail suits both parts of pro­
gramming. However, the electronic mail is not yet available 
for all school students. This situation is similar in a number 
of countries. 

The distance learning by land mail is available for all 
school students. However it is considerably slower and suits 
only for learning of problem solving. 

We see an acceptable solution of the distance learning 
problem by combining both delivery modes in a pedagogical 
based and cost-effective way. It is reasonable to divide the 
subject of programming into two overlapping parts: 

1) problem solving (possibly with some elements of pro­
gram writing necessary for testing algorithms by com­
puter); 

2) program writing (possibly with elements of problem 
solving). 

Problem solving is delivered by land mail, as a rule, and 
optionally - by electronic mail. 

We have already discussed the learning of problem solving 
by land mail and that of program writing by electronic mail. 



52 Algorithms and programs in learning 

Let us discuss still another way of learning to problem solving. 
The learning of problem solving by electronic mail can 

be performed as a collaborative development of algorithms. 
School students are given a problem by electronic mail and 
have to write an algorithm and to deliver it to the coordina­
tor by the electronic mail as soon as they obtain preliminary 
solution. The coordinator immediately distributes the text of 
the algorithm among all participants of the session by elec­
tronic mail for revision and improving. The coordinator waits 
for new original solutions and for the improved old ones. The 
session is over when ideas for solution are exhausted and the 
solutions become relatively perfect, i.e., such that school stu­
dents (or teachers) can not offer further improvements. Such a 
method of learning has already been tested in the face-to-face 
session. It proved efficient. 

5. Impact on the learning activities. The distance 
learning of programming is not completely isolated from other 
school activities. Let us briefly comment the impact of the 
distance learning methodology given above on the face-to­
face teaching of informatics in high schools and on national 
Olympiads of informatics. 

Informatics is an obligatory subject in Lithuanian high 
schools. It helps school students get acquainted with funda­
mental principles of transmission, storage and processing of 
information. The main notion of its processing is that of algo­
rithm. In order to get acquainted school students with algo­
rithms, the problem solving part (in our sense) is included into 
the curriculum and presented in a text book (Dagiene and Gri­
gas, 1991). Pascal procedures and functions (not programs!) 
are used for the presentation of algorithms. This enables the 
students to concentrate themselves on essential features of an 
algorithm: how to get the results from input data without 
wasting their time and energy on details connected with data 
formats, reading and writing commands. In order to enable 



G. Grigas 53 

the students to run directly on the computer their algorithms 
expressed by Pascal procedures and functions, an interpreter 
of Pascal procedures and functions was developed (Dagiene 
and Zandaris, 1992) as well as a special methodology of the 
use of Turbo Pascal (Dagiene, 1993) for such a purpose. 

6. Conclusions. 1. The relationship between an algo­
rithm and a program is changing in time. In the contem!Jo­
rary period of personal computers it is reasonable to consider 
a compact description of actions leading from input data to 
output data as an algorithm with no regard to the data pre­
sentation form. The actions are expressed in a form acceptable 
for a human reader. The algorithm is included into the pro­
gram. The program contains detailed commands necessary 
to supply the algorithm with input data, to visualize output 
data, ensure a dialog between a computer and its user. Prob­
lem solving is a process of the development of an algorithm. 
Program writing is a process of the development of a program. 

2. It is reasonable to divide the whole process of teaching 
of programming into two parts: 

1) teaching of problem solving; 
2) teaching of program writing. 
The former requires more brain work for a student, the 

letter - more careful work on a computer. 
3. In the case of distance learning, problem solving may 

be delivered by land mail or by electronic mail almost equally 
effectively. However, an electronic mail may be recommended 
for a delivery of program writing as a topic. 

Acknowledgments. This work is supported by UN­
ESCO under contract CII 408.018.2. 

REFERENCES 

Dagiene V. (1993). A pseudo-direct execution of algorithms using Turbo 
Ps"'-:-al applied in programming teaching process. Informatica, 3(4}, 
29. )U2. 



54 Algorithms and programs in learning 

Dagiene V. (1993). Algorithmization in Secondary School. Ph.D. diser­
tation. University Vytautas Magnus, Kaunas (In Lithuanian). 

Dagiene V., and G. Grigas (1991). Informatika. 10-12. Sviesa, Vilnius. 
Dagiene V., and A. Zandaris (1992). Interpreter of algorithms. Infor­

matika, 20, 40-52. 
Grigas G. (1990). Some aspects of teaching the art of programming by 

correspondence. Informatica, 1(1), 156-166. 
Grigas G. (1993). An experiment of computer programming practice by 

e-mail. Interpersonal Computing and Technology: an Electronic Jour­
nal for the 21st Century, 1(2),(Retrieve as GRIGAS IPCTV1N2 at 
LISTSER@GUVM.GEORGETOWN.EDU) 

ISO (1983). The programming language Pascal. ISO Standard 7185. 
Taylor H.G., R. M. Aiken and T. J. van Weert (1991). Informatics Ed­

ucation in Secondary Schools. IFIP Working Group 3.1. Guidelines 
for Good Practice. 

Tinker R.F., and R. K. Thornton (1992). Constructing Student Knowl­
edge in science. In ScanIon E., O'Shea T. (Eds.), New Directions 
in Educational Technology, Berlin-Heidelberg, Springer-Verlag. pp. 
153-170. 

Pearlman R. (1993). Designing the new american schools. Communica­
tions of the ACM, 36(5), 46-49. 

Wirth N. (1972). Programming Language Pascal: Revised Report. Be­
richte der Fachgruppe Computer - Wissenschaften, 5, Zurich, ETH. 

Received March 1994 

G. Grigas received the Degree of Candidate of Techni­
cal Sciences from the Kaunas Polytechnic Institute (Kaunas, 
Lithuania) in 1970. He heads the Department of Systems Pro­
gramming at the Institute of Mathematics and Informatics. 
His research interests include abstract data types, program­
ming methodology and teaching. 


