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Abstract. In the presented paper a method for treating a 
random signal bearing an information about the behaviour of a 
technological process is given. The main goal of the given method 
is to remove possible failures arising in analog sensors, which yield 
nonstationary behaviour of an observed signal. Then the smoothed 
signal is tested by a suitable test described in the paper for the 
regular or irregular behaviour of a technological process. One un­
derstands by the regular behaviour of a technological process that 
within prescribed bounds. 
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1. Introduction. The paper deals with the construction 
of a simple test for tracking the regular behaviour of a techno­
logical process, which is measured via an analog sensor. The 
question of a such test was provoked by practice and from the 
theoretical point of view this problem belongs to the detec­
tion of changes in random sequences. A signal coming from a 
sensor can be divided into two parts, namely 

x(t) = met) + e(t), 
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where {m(·)} is a technological process and {e(·)} is noise. Be­
cause of errors produced by a sensor or transmition channels 
this noise is nonstationary, in general. For simplicity, We shall 
assume {e(·)} being mutually independent. It is also conve­
nient to understand the signal m(.) as a deterministic part of 
{ x( . )}. In the most of cases a mathematical model describing 
the evolution of {m(·)} need not be exactly known. One can 
suppose that {m{-)} is sufficient smooth, i.e., the existence 
of derivatives is quite natural. The technological process be­
haves regularly, roughly speaking where no abrupt changes 
are present. To specify this property it seems to be quite rea­
sonably, e.g., to check the first and the second derivatives. If 
both the quantities are within limits prescribed in advance 
the signal {m(·)} behaves regularly. As we cannot observe the 
signal {m(·)} directly, the considered test for regularity must 
be carried out in two steps . 

. 1. Smoothing {x(·)}. 

2. Testing regularity of smoothed {x(·)}. 

In order to remove possible nonstationarities in the noise 
{e(·)} it is necessary to treat data {x(.)} before testing them. 
Nonstationarities are understood as changes in the first and 
the second moments, i.e., an abrupt change in mean value and 
in dispersion, too. The detection of changes is based on a one 
step ahead predictor and on the comparison of residuals. Af­
ter detecting a change in mean value or in dispersion the data 
{x(·)} are modified. The output from this procedure will be 
denoted by {£(.)}. 

The second step is the test of regularity applied to {x(·)}. 
The information on the behaviour of the first and second 
derivatives is obtained in {£(.)} via its first and second differ­
ences. It means a test statistic must be based on ~1 x(t) 
and ~2 £(t), where ~l £(t) = £(t + ~) - £(t), ~2 £(t) = 
£(t + 2~) - 2£(t + ~) + £(t) where ~ is a sample period. 
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Here, an unknown parameter is of a vector type 

() = {m(t), m(t+~), ... , m(t + (n - 1) ~), 

m(t), ... , m(t + (n - 2)~)} 

with dimensionality 2n - 3 if n is the number of observations. 
The hypothesis of regularity is valid if 

Im(t + j~)1 ~ Cl 

for each j E {1, 2, ... , n - I} together with 

for each j E {1, 2, ... , n - 2}. The alternative hypothesis is 
complementary. The test is based on likelihood ratio under 
the Gaussianity of all random variables. The form of this 
test is not simple because of stochastic dependence among 
{~1 x(t + j~)} and {~2 x(t + k~)}. In case we drop the fact 
of dependence among differences the test will become much 
easier. It results a sequence of simple inequalities 

foreachj E {1,2, ... ,n-l} and 

for each k E {I, 2, ... , n - 2}, where 6;, 6i are derived from 
significance level. If at least one of the previous inequalities 
is not valid regularity is rejected. As we work with random 
variables we can accept a wrong decision. From this reason in 
order to diminish the probability of a false alarm the first de­
tection of irregular behaviour must be immediately confirmed 
in the next step. Otherwise we speak about latent irregularity. 
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2. Assumptions and model. Let us assume we receive 
a one-dimensional random signal x(t), t E {~,2~,3~, ... } 
with a sample period ~ which comes from an analog sensor 
and bears information about the behaviour of a technological 
process. For simplicity we can also put ~ = 1. We will assume 
that the signal x(t) can be divided into two parts, i.e., 

x(t) = met) + e(t), t = 1,2, ... , n, 

where met) is an unobserved technological process and e(t) 
is a white noise (uncorrelated), which is not weakly station­
ary, in general. This nonstationary behaviour can be caused 
by a change in mean value or in the level of noise, i.e., in a 
change of second moment~. Such a change can be expected 
as known on the basis of practice. If a sensor works well the 
level of noise is usually very small. One can also accept the 
Gaussianity of {e(t)} hence {e(·)} is an independent white 
noise. Under the assumption that {m(·)} is also a random 
process we will assume mutual independence between {m(·)} 
and {e(·)}. Further, as for the behaviour ofthe process {m(·)} 
we can assume its sufficient smootijness, i.e., the existence of 
the first two derivatives at least because it is obtained by sam­
pling a physical variable (like pressure, temperature). We will 
demand by the original analog signal {m(·)} the existence of 
the first two derivatives, i.e., met), met) exist. It is usually 
very difficult to construct a model describing th~ behaviour of 
{ m(. )}. In many cases a suitable mathematical model need 
not even exist because of nonstationary behaviour of {m(·)} 
in nonstandard situations. Such situations must be in prac­
tice detected because their occur means irregular behaviour of 
the technological process {m(·)}. Under the regular behaviour 
of a technological process, roughly speaking one can imagine 
such a behaviour where the process is running within techno­
logical bounds prescribed in advance. A precise description 
will be given later. 
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3. Detecting changes. Before testing the regular be­
haviour of a technological process one must first detect abrupt 
changes in the behaviour of the observed process. These chan­
ges are caused by nonstcitionarities of a random noise, i.e., by 
changes in mean value or in dispersion of noise. Both these 
changes can occur simultaneously too. As the whole procedure 
must run in the on-line regime and hence is limited by time, 
the method of a sliding window was suggested. On the basis of 
practice and simulations the length of a sliding window is rec­
ommended to be 20-30 observations maximally. \Vithin this 
sliding window we assume under the condition "no change 
occured" that the observed random sequence can be under­
stood to be stationary. Since it is very difficult to construct 
a stationary model describing precisely the behaviour of the 
observed random sequence within the sliding window an idea 
of "approximation" was used. \Ve wish to find an approxi­
mating stationary sequence among autoregressive stationary 
sequences of a given order that could be the most similar to 
the actual sequence within the sliding window. The similarity 
is measured via asymptotic I-divergence rate (for definitions 
and basic properties see Vajda, 1989). When h, h are the 
corresponding spectral densities on (-11", 1T"), then AIR(fl' f2) 
can be evaluated as 

If the spectral density is substituted by a suitable estimate 
and h is running over the class of autoregressive stationary 
sequences of a prescribed order then the minimization of AIR 
gives the Yule-Walker estimates for the autoregressive model 
which is in this sense the most similar to the actual random 

~ uenee. The task of minimization can be solved effectively 
bi the RO called Levinson algorithm very suitable for comput­
ing; for details see Michalek, 1990. In practice it is sufficient to 
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use the first or second order of autoregressive models bec<ll; ~(' 
longer models suffe~ from the inertia. When the most similar 
autoregressive model is chosen on its basis we evaluate a one 
step ahead prediction, let say x(n + 1), which is based on the 
information from the sliding window up to the time n. Then, 
this prediction is compared with the actual value x( n + 1) and 
the difference between them is evaluated, i.e., 

Ix(n + 1) - x(n + 1)1 ~ e. 

If the difference is smaller than a given e in the absolute value 
then no change is detected. Otherwise, a latent failure is 
claimed. In order to diminish the probability of a false alarm, 
the detection of a change must be confinued in the immediate 
future. In practice it means the failure must be detected at 
least in 3 of 5 observations. 

If within the moving window no change is detected we can 
carry out the following smoothing procedure. If any change is 
detected then a loss of information is coming and then there 
are two possibilities. First one is to wait for a spontaneous 
recovery of a sensor, second one is to change completely a 
false sensor by human intervention. 

4. Smoothing procedure. Since the process {m(.)} is 
not directly observed we must (in the case no change detected 
in the moving window) smooth the ohserved process {x(·)} to 
remove the additive noise {~(.)}. \Vithin the sliding window 
we will assume no detected change, i.e., 

E{e(t)} = 0, 

for each t from the sliding window. The lew1 of noise disper­
sion (72 is not usually known. It is very difficult to look for a 
convenient mathematical model characterizing the technologi­
cal process locally within every sliding window. As we assume 
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that {m(·)} and {e(·)} are mutually uncorrelated second or­
der sequences we can consider the optimal filtering procedure 
with respect to minimization in the square mean. Using the 
basic relation 

x(t) = met) + e(t), 

one can in an easy way prove that the basic relation describing 
the optimal filtering procedure is given by 

( 
( 2 ) u 2 

met 1 t) = 1- Dx(t) x(t) + Dx(t) met 1 t -1), 

where met 1 t) is the optimal filtered value of met) at the time 
t under the history up to the time t, m( tit - 1) is the optimal 
predicted value of met) under the history up to the time t -1, 
x(t) is an innovation sequence and D x(t) is its dispersion. In 
order to use this relation we must know met I. t - 1). It is 
nothing else but to know the evaluation of m(·) what is the 
problem mentioned above. Further, we must also know the 
optimal value of the smoothing factor O:t = D ~~t) which can 
change in time. With respect to the length of a sliding window 
and real situation it is quite natural to consider the simplest 
case. Within a sliding window we shall assume that O:t is very 
slowly changing, i.e., at = 0:, where a must be between 0 and 
1. As for the prediction m( tit - 1) it is realistic to substitute 
its value by the latest filtered value, i.e., 

m( tit - 1) = m( t - 1 1 t - 1). 

This situation occurs if we consider the following model for 
{m(·)} 

met +~) = met) + 7](t + ~), 

where {m(·)} and {7](.)} are mutually uncorrelated and 
E {7](.)} = 0 for every t. It is evident if the sample period 
~ is sufficiently long such a model can work. In the case of a 
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shorter period ~ it is possible to assume a somewhat compli­
cated model based on analogy with Taylor's expansion 

met +~) = m(t) + met) + TJ(t + ~) 

with 
met + ~) = met) + ",-,(t + ~). 

In order to choose an optimal value for 0: within a sliding 
window we consider to minimize the errors of prediction one 
step ahead, i.e., 0: is chosen to minimize 

L (x(t) - ma(t, t))2 . 
tEW 

As x(t) = m(t)+e(t) then this criterion is de facto also the cri­
terion of minimization of filtration errors. The basic relation 
for optimal square mean filtration can be simply rewritten as 

m(t It) = met) + e(t) - 0: x(t). 

Denoting e(t) = e(t) - 0: x(t) then by the optimal choice for 0: 

we have {e(·)} is a white noise with 

E{ e(t)} = 0, D{e(tn = (1- 0:)(72. 

From this fact we have immediately met I t) is unbiased, i.e., 

E{m(t Itn = met). 

On the other side the properties of {e(·) j t'; t 11 be used for 
checking the quality of smoothing because the smoothing pro­
cedure is optimal if and only if {e(t)} is a white noise with 
moments described above. 

5. Testing regularity. First, we must define precisely 
what is the regular behaviour of a technological process. It 
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means there are bounds 61 , 62 derived from the properties of 
an observed technological process such that 

Im(t)1 < 61, 

Im(t)1 < 62 • 

There is no problem to show that after smoothing it holds 

E{~lm(t I t)} =~lm(t) = m~ + o(~); 
E{~2 m(t I t)} =~2m(t) = m~2 + o(~2). 

Here, ~i is the operator of the i-th difference. When we ne­
glect the remainders in Taylor's expansions then we can under­
stand the problem of regular behaviour as a decision problem 
of testing hypothesis where the number of observations is given 
by the length of a sliding window, an unknown parameter B is 
of a vector type 

B = {m(td, m(tl + ~), ... , m(tl + (n -1) ~), 

m(td, m(tl + ~), ... , m(tl (n - 2)~)} 

with the dimension 2n - 3; n is the length of a sliding win­
dow. The hypothesis H is formed by the part of the (2n - 3)­
dimensional Euclidean space. 

n-l n-2 

H = IT (-61, 61 ) x IT (-62 , 62 ), 

i=l i=l 

where 61 , 62 are given as technological limits. The alternative 
hypothesis is complementary, i.e., 

A = E2n - 3 - H. 

The observations we have at disposal are the smoothed values 

~l m(t It), ~2 m(t It), 
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where t is running over a sliding window. If we accept the 
Gaussianity of {met I t)} then the problem of testing the 
regularity of {m(.)} becomes that of the behaviour of mean 
value of a multidimensional Gaussian random variable, which 
is formed by dependent coordinates, in general. One can eas­
ily show that the covariance structure is given by the following 
relations 

E{ Al met It) Alm(t + jA I t + jA)} 

{ 
(1 - 0:) (12, j = 0, 

= -(1- 0:)(12, j = ±1, 
0, otherwise; 

E{A2m(t I t)A2m(t+jA I t+jA)} 

{ 
-3(1- 0:)(12, j = 0, 

_ (1 - 0:) (12 , j = 1, 
- 2 -(1- 0:)(1, j = -1, -2, 

0, otherwise; 

E { A2 m( tit) Al m( t + j A I t + j A) } 

{ 
-3(1- 0:)(12, j = 0, 

= -(1-0:)(12, j=1,2, 
(1- 0:)(12, j = 0, 
0, otherwise; 

E{ A2 met It) A2m(t + jA I t + jA)} 

{ 
6(1- 0:)(12, j = 0, 

= -4(1- 0:)(12, j = ±1, 
(1 - 0:) (12, j = ±2, 
0, otherwise. 

From this fact one can immediately see that the corre­
sponding covariance matrix C can be expressed as 

C = (1 - 0:) (12 K2n- 3 , 

where K2n - 3 is a fixed matrix independent on 0: and (12, it is 
dependent on the number of observations only. 
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The solution of the question testing mean value of multi­
dimensional Gaussian variable by an unknown covariance ma­
trix is given by the Hotelling T2-statistic and this solution can 
be found almost in every textbook of mathematical statistics. 
But, the corresponding confidence intervals are given by el­
lipsoids what is unsuitable for a practical situation where we 
wish to decide about every coordinate in mean value individu­
ally. From this reason we should have a rectangular confidence 
interval. This is evidently satisfied in the case of independent 
observations but it is not our case. We can find an answer for 
our problem in the paper [Sidak). From this article we can use 
the following 

Theorem (Sidak, 1967). Let X = (Xoo, Xe , ... ,XII) be 
the vector of random variables having k-dimensional normal 
distribution with zero means, arbitrary variances (1?, O'~, ••• ,O'~ 
and arbitrary correlation matrix R = {Pij}. Then, for any 
positive numbers Cl, C2, ••• , Ck 

If we wish to construct a rectangular confidence interval 
with k = 2n - 3 and with the significance level 1 - p we 
determine Cl, C2, .•• , C2n-3 such that the inequality 

2n-3 

IT p {IXi I ~ cd = 1 - P 
i=l 

holds. Since we do not know a precise value of dispersion (12, 
we can use for our situation a modification of Theorem 1 also 
presented in Sidak, 1967 (see Theorem 2, p. 629). Using these 
results we can construct a rectangular confidence interval such 
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that 

~l m(t + j~ I t + j~) - Co: 8 ~ m(t + j~) 
~ ~l m(t + j~ I t + j~) + Co: 8, 

~2 m(t + j~ I t + j~) - Co: 8 ~ ih(t + j~) 
~ ~2 m(t + j~ It + j~) + Co: 8, 

where Co: is the quantile of Student distribution and 8 is a 
suitable estimate of dispersion (72 in a sliding window. In other 
words speaking· if we find a rectangular confidence interval 
with the significance level 1 - p then this interval is also a 
confidence interval for arbitrary dependent variables with not 
less significance level. In practice it means we can decide about 
every coordinate m(t + jfl), m(t + jfl) individually. The 
hypothesis of regularity is not rejected if for each j from a 
sliding window 

I~l m(t + jfll t + jfl)1 ~ 8;, 
1~2 m(t + jfll t + jfl)1 ~ 8;, 

where 8i, 8; are properly chosen. 

6. Conclusion. The presented method for treating a 
technological signal is simple. But it is limited by the sam­
ple period~. In practice we can approximately consider 
~ = 1 sec to have a sufficient time interval for carrying out 
one step of the proposal procedure. This method was tested 
both by simulations and in practice, too. Its results are quite 
satisfactory. 
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