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Abstract. We consider here the average deviation as the 
most important objective when designing numerical techniques and 
algorithms. We call that a Bayesian approach. 

We start by describing the Bayesian approach to the continu­
ous global optimization. Then we show how to apply the results to 
the adaptation of parameters of randomized techniques of optimiza­
tion. We assume that there exists a simple function which roughly 
predicts the consequences of decisions. We call it heuristics. We 
define the probability of a decision by a randomized decision func­
tion depending on heuristics. We fix this decision function, except 
for some parameters that we call the decision parameters. 

We repeat the randomized decision procedure several times 
given the decision parameters and regard the best outcome as a 
result. We optimize the decision parameters to make the search 
more efficient. Thus we replace the original optimization problem 
by an auxiliary problem of continuous stochastic optimization. We 
solve the auxiliary problem by the Bayesian methods of global op­
timization. Therefore we call the approach as the Bayesian one. 

We discuss the advantages and disadvantages of the Bayesian 
approach. We describe the applications to some of discrete pro-



124 Global and discrete optimization 

gramming problems, such as optimization of mixed Boolean bilin­
ear functions including the scheduling of batch operations and the 
optimization of neural networks. 

Key words: optimization, discrete, combinatorial, global, 
Bayesian, stochastic, Boolean, bilinear, scheduling, neural network. 

1. Introduction. We usually need algorithms of expo­
nential complexity if we wish to get the exact solution of 
many global and discrete optimization problems. The screen­
ing techniques such as branch-and-bound help a lot, but a 
high complexity remains there. The exponential complexity 
often remains too, in the case when we are ready to accept 
an aproximate solution, if we insist on keeping a strict error 
limit. It means that an important factor of exponential com­
plexity is our desire to garantee the satisfactory results for all 
the cases, including the worst case. The reason is that the 
worst case can be very bad, if the family of functions to be 
optimized is large, see Mockus (1989). 

Therefore many applied global and discrete optimization 
problemas are considered using heuristics. We define by heuris­
tics simple functions such that roughly predict the conse­
quences of decisions in the optimization process. We use ran­
domized decision procedures, if we wish to provide the con­
vergence, in the probabilistic sense, to the global minimum 
by muliple repetition of randomized decisions. If we wish to 
increase the efficiency of search we define the decision proba­
bilities as a function of heuristics. We do not know in advance 
what the best decision function is. We can get the answer 
only after extensive experimantation. We may adapt the de­
cision function to the given family of optimization problems 
by optimizing decision parameters as a result of repeated op­
timization procedures. 

Most authors of randomized heuristics techniques adapt 
the decision parameters "by hand" as a part or research. This 
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adaptation is not a creative process and may be formalized as 
an optimization problem. We regard the decision parameters 
as real numbers. The outcome of optimization is stochas­
tic. The function to be optimized is multimodal in many 
cases. Thus the optimization of decision parameters in general 
is the problem of continuous stochastic global optimization. 
The optimization techniques just for such type of problem 
may be designed using the Bayesian approach, see Mockus 
(1989). Therefore we start this paper from a brief description 
of the Bayesian approach to the continuous global optimiza­
tion. Later on we show how to apply those techniques to the 
optimization of the decision parameters using the randomized 
heuristics. 

2. Bayesian approach: definitions and extensions. 

2.1. Optimality criteria. We consider the continuous 
global optimization problem 

where 

minf(x), 
xEA 

f(x) = f(x,w), A c Rm , wEft 

(1) 

Here the index set n defines a family of functions f( x). 
We assume the linear loss function 

L(d,w) = f(x(d),w) - f*(w). (2) 

Here x( d) is the final decision of the optimization method 
dE D and f*(w) is the global minimum of f(x,w). Thus the 
loss function is a deviation from the global minimum 1* (w ) 
taking the final decision x( d). 

We define the average deviation R( d) as an expectation 
of the loss function L( d, w). We can do that by defining some 
measure P on the set n. Now we can define the Lebesgue 
integral 



126 Global and discrete optimization 

R(d) = In (f(x(d),w) - f*(w))dP(w). (3) 

The expectation of f* (w) does not depend on d, therefore 
we can simplify the risk function omitting the constant. Then 

R(d) = In f(x(d,w))dP(w). (4) 

We call the decision d*, that minimizes the risk function 
R( d), the Bayesian decision. 

2.2. Distribution on the set of continuous func­
tions. We consider the objective f(x) as a stochastic func­
tion f(x) = f(x,w),x E A C Rm,w E n. Here w is the 
index of the function f( x) and n defines the set of contin­
uous functions, see Mockus (1989). We observe the vector 
Zn = (Yi,Xi,i = 1, ... ,n) and make decisions depending on 
YX' Here Yi = f(Xi),i = 1, ... ,n and Yx = f(x) = f(x,w), for 
the fixed x E A, wEn. We define prior on n by the family 
of finite dimensional Gaussian distribution flUlctions: 

and 

FX1"",X n (Yb . .. , Yn) = P(f(xt) < Yb··· , f(x n) < Yn), 
n = 1,2, .... 

Then the posterior of f( x) = Yx is 

Here 

(5) 

(6) 
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(7) 

where:E x = (O'xj), :E = (O'ij). Here O'xj is the covarianceofthe 
pair !(x), !(Xj), O'ij is the covariance ofthe pair !(Xi), !(Xj), 
fL is the expectation of !( x), and 0'2 is the variance of !( x). 

This Gaussian stochastic function is homogeneous, be­
cause the parameters (6), and (7) don't depend on x. The 
matrixes :E and :Ex depend on the results of n observations. It 
means that the conditional mean and the standard are func­
tions of Zn and x. Thus, fLn(X) = fL(Zn, x) and O'n(x) = 
O'(zn, x). 

Several authors use similar prior distributions on the set 
of continuous functions. Most popular is the Wiener process, 
see Kushner (1964), Diaconis (1988), Zilinskas (1986), Saltenis 
(1971), Betro (1991). A homogeneous multi-dimensional ex­
tension of the Wiener process is given by Mockus (1989). It is 
a Gaussian stochastic function defined on A = [-l,l]n with 
constant expectation fL and constant variance 0'2 of !(x). We 
denote the covariance matrix by :E. 
We define the covariance of the pair !(Xj), !(Xk) as: 

. _ 2 rrrn (1 _ Ix~ - xi I) 
O'Jk - 0' . 2' 

1=1 

(8) 

We call a stochastic function with the covariance function 
defined by expression (8) the Wiener model. 

We may assume that the stochastic function !( x) is sim­
pler if its values at different points x are "less" statistically 
dependent. Thus a Gaussian stochastic function is simpler if 
the absolute value of the correlation 100ij 110'2 is smaller. 

Therefore the Wiener model is the simplest stochastic 
function providing a continuity of almost all sample functions. 
The Wiener model also shows that the Bayesian approach can 
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be regarded as some instrument of extrapolation under un­
certainty. We understand the uncertainty as the conditional 
variance. The uncertainty is an increasing function of the dis­
tance from the nearest observation. The uncertainty is zero, 
if the distance is zero and there is no noise. 

It means that the Bayesian approach should be efficient, 
if the statistical model reflects the relation between the un­
certainty and the distance well enough. Otherwise, we can't 
expect a significant improvement as compared to the uniform 
search. 1 Therefore the definition of a distance is an impor­
tant part of the Bayesian approach to global optimization. 
It is almost obvious how to define the distance in the con­
tinuous problems of global optimization. It is not so clear 
in the problems of discrete optimization. In the problems of 
combinatorial optimization the distances could be defined al­
most arbitrarily. Therefore we would prefer to reduce the dis­
crete optimization problems to the problems of the continuous 
global optimization. 

2.3. One-step approximation of a sequential deci­
sion problem. In general the minimization of the risk func­
tion R( d) is a multi-stage sequential decision problem. At 
each stage n < N we define the optimal point of the next ob­
servation. We choose the final decision x( d) completing all N 
observations. The sequential decision problem is too difficult. 
So we replace the multi-stage decision problem by the one­
stage approximation. We assume that the next observation 
Xn+l is the last one. The result is the minimum of conditional 
expectation of f( x) given Yl, ... ,Yn+1. We denote it by 

Here 

1 When the probabilities of each feasible point are equal. 
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J.Ln+l(X) = J.L(Zn+l,X) = J.L(Zn,Yn+bXn+l,X) 

or approximately 

where 

en = mIn Yi - €n· 
l~i~n 

129 

(9) 

Here €n > 0 is a correction. There are two reasons for 
the correction. The first one is to compensate the error of 
the one-stage approximation. An approximate compensation 
is lTv2ln(N - n), where N and n are a total and a current 
observation number. The second reason is to estimate the dif­
ference between the minimal observed value and the minimal 
expected value. This difference is zero for the Wiener process 
without noise. 

If there is a noise ei, then we observe the sum <I>(Xi) = 
f(Xi) + ei. Here we define en in a different way, to provide the 
convergence of the Bayesian algorithm 

en = YOn - en, (10) 

where 

_ {minl~i~n Yi, if minl~i~n Yi ~ Yo, 
YOn - h . Yo, ot erWIse. 

(11) 

Here Yo is the value of the objective f(x) which satisfies 
our needs. 

Using the one-stage approximation we can express the loss 
as 

(12) 
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Here the decision d = Xn+l defines the n + 1 observation. 
Thus the risk R(x) depends on x = Xn+l. In the Gaussian 
case 

Here x = Xn+l defines the next observation. We can see 
that R( x) is an increasing function of 

() Pn(X) -en 
px= (). 

Un X 
(14) 

Thus we can replace the minimization of the integral R( x ) 
by the minimization of the function p( x). In this sense the 
Gaussian model is t he simplest one. 

2.4. Approximation to the posterior distribution 
(consistency conditions). The main disadvantage of proper 
posterior (5), (6) and (7) is that we need an inversion of the 
covariance matrix~. It is the price we pay for keeping the 
consistency conditions. The way to avoid the inversion is to 
drop the consistency conditions. 

Mockus (1989) replaced the consistency condition by three 
conditions: 

1. The continuity of risk function (13). 
11. The convergence of the method to the global minimum 

of any continuous function. 
111. The simplicity of expressions of the "posterior" mean 

Pn (x) and the "posterior" standard Un (x). 
The result is the Gaussian stochastic function with the 

step-wise mean 

Pn(x) = Yi, x E Ai, 

and the piece-wise quadratic standard 

(15) 
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(16) 

We define the set Ai by the condition of continuity of the 
risk function R( x) (or the function p( x)) 

iff Yi - YOn + IOn 

IIx - Xil!2 
(17) 

Here both the mean and the standard are discontinuous. 
It means that sample functions are discontinuous, too. To 
keep the continuity of samples we need a more complicated 
model. Therefore we keep only the continuity of risk R( x ). 

Now we may define the Bayesian point of the next obser­
vation as 

• • Yi - en 
X n+l = argmm m~n 11 11 2 ' xEA lE;;zE;;n X - Xi 

(18) 

The "posteriors" (15), (16) and (17) do not satisfy the 
consistency conditions (Mockus, 1989); consequently they do 
not define the proper conditional expectation and variance. If 
we wish to put everything into the conventional framework, we 
may regard improper "posteriors" I1n(X),Un(x) as a sequence 
of proper priors. It means "updating" the priors after each 
observation. The "updating" of priors follows from the one­
step approximation, which "updates" the sequential decision 
problems after each observation, too. 

Such "updating" is not proper, if we regard it in the frame­
work of the classical statistical decision theory. Thus we see 
no "properk way to avoid the inversion of an n-dimensional 
covariance matrix, where n is the number of observations. 

Therefore we extend the notion of Bayesian approach to 
improper posteriors, too, to (J'\ercome the computational dif­
ficulties. We think that improper posteriors are better than 
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pure heuristics, because even improper posteriors can be used 
as some reasonable measure defining the average deviation. 
Thus we may consider the consequences of the assumptions 
theoretically and better define the areas of applications. We 
can also define the asymptotics, we can show that an asymp­
totic density of observations is much greater around the global 
mInImum: 

(19) 

Here bo is the asymptotic density of observations around 
the global minimum, ba is the average density. The limit € = 
limn _ oo en, where €n is correction (9), fa is the average value 
of f(x), 

fo = { f* , if there. is no noise or . 
Yo, otherwIse. 

f* > Yo, (20) 

2.5. Comparison to other approaches. Now we can 
compare the Bayesian approach with the well known simu­
lated annealing algorithm of global optimization. In those 
algorithms we make random perturbations and pass to a new 
point n + 1 with probability 

Here Tn = To / log2(1 + n). 

if f(Xn+I) > f(xn), 
otherwise. 

(21) 

Using simulated annealing (21) we get the same asymp­
totic result (19) as in the Bayesian case, if To is large enough. 
However the simulated annealing algorithm is much simpler, 
as compared with Bayesian algorithm (18). The reason is that 
we designed the Bayesian approach for a finite, not large num­
ber of observations. It extrapolates the expected gain over the 
entire feasible area A after each observation. 
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The simulated annealing is an asymptotic method. It is 
similar to local stochastic methods. The main difference is 
that the simulated annealing algorithm may go "up" with 
some probability defined by expression (21). In this way the 
algorithm gets out of the local minimum. The field of applica­
tion of the simple asymptotic simulated annealing is "cheap" 
functions, in the case of a great number of observations n. 
The field of application of the complicated Bayesian approach 
is "expensive" functions, when n is small. 

We use the term the Bayesi(lJl approach as a synonym of 
the average case analysis. It is a very broad extension of the 
term. However, this extension does not contradict the ba­
sic Bayesian idea "to give a composite picture of final beliefs 
about the unknown parameters using the posterior which com­
bines the prior beliefs about the unknown parameters with the 
information about the parameters contained in the sample", 
see Berger (1985). We shall take care to clearly define the 
"proper" and "improper" assumptions. Thus, the reader may 
see which results fit into the proper Bayesian framework and 
which do not, and to what extent. 

It is not so easy to draw the exact line dividing the proper 
and improper Bayesian ideas. For example, the classical uni­
form prior on the line of real numbers is improper. Therefore 
to narrow the definition of Bayesian approach to the set of only 
"proper" assumptions is not convenient. A narrow definition 
not only restricts the possible applications but also limits new 
ideas for a future theoretical development. Some assumptions 
that seem improper now, may be useful when extending the 
mathematical base of the Bayesian approach and the average 
case analysis in the future. 

2.6. Application to discrete problems. Many ap­
plied optimization problems are discrete. We can extend the 
Bayesian approach directly; defining the feasible set A as the 
discrete set and minimizing the risk function R( x). It may 
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work if the objective lex) is a continuous function but the 
feasible set A E Rm is discrete. This is an "easy" case, be­
cause the neighborhood is uniquely defined and we may use 
the statistical model which we did use in the continuous case. 
Here we minimize the risk R( x) on the discrete set A. 

More difficult are combinatorial problems when we define 
the objective only for discrete, usually boolean variables x. 
The trouble is that here both the neighborhood and the dis­
tance could be defined in many ways. Thus the result depends 
mainly on the definition of neighborhood and distance. Some­
times we can guess how to do that, see Stoyan and Sokolovskij 
(1980). Usually we can't. Consequently we should look for 
other ways. First we mention two important well known cases 
of using the asymptotic Bayesian approach in the discrete op­
timization. 

The first case is the improvement of the conventional sim­
ulated annealing techniques of discrete optimization using the 
asymptotic Bayesian approach, see Van' Laarhoven et al. 
(1989). Here an observation is the result of a Markov chain 
generated by the simulated annealing algorithm. To make the 
Bayesian analysis less complicated the authors use assump­
tions which are only asymptotically satisfied. The results im­
prove the cooling schedule Tn. The ratio between the CPU 
time for the Bayesian and for the non-Bayesian schedule is be­
tween 1.2 and 1.5. The difference is due to additional compu­
tational efforts involved in the Bayesian approach. In general, 
we think that asymptotics is not a strong point of Bayesian 
techniques. It is well known that by increasing the number of 
observations we usually make the prior less important. 

For other case of the asymptotic Bayesian approach to the 
discrete optimization, see Karp (1976). The author considers 
the Euclidean travelling-salesman problem assuming the uni­
form distribution of n points Oil the unit square. The tech­
mque IS: 
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1. Subdivide the unit square into a regular grid of n/t( n) 
subsquares, where t f'V log2log2 n. 

2. Using the dynamic programming, construct the short­
est route through the set of points in each subsquare. 

3. Construct a minimum-length spanning tree joining 
the subroutes. 

4. Construct a closed walk that traverses each subroute 
once, and each tree edge twice. 

There are two algorithms. The first one, the exact dy­
namic programming algorithm constructs the minimal walk 
between the t( n) '" log2 log2 n points inside each subsquare. 
Then a simple algorithm of the spanning tree connects the 
n/t(n) subroutes. 

The author proves that the technique solves the Euclidean 
travelling-salesman problem within 1 + € and runs within time 
O( n log n) with probability one. Here € is a deviation from the 
minimal walk. It means that the Bayesian approach provides 
asymptotically exact results for almost all the sets of points 
within the low-degree polynomial time. The problem is NP­
complete, thus, if we wish to get the exact solution for all 
points, then we need algorithms running within the exponen­
tial time. 

The result is very important theoretically. It shows a 
great difference between the notions of conventional and av­
erage complexity. The technique can be useful in. solving very 
large problems, when the asymptotics works. When solving 
not large travelling-salesman problems we can get a signif­
icant deviation € for many sets of points. For example, if 
n = 1024, then one subsquare contains just log2 log2 1024 f'V 5 
points. It means that when solving this problem we connect 
205 subroutes by the spanning-tree algorithm, which is ap­
proximate to the travelling-salesman problem. We use the 
exact dynamic programming techniques 205 times wile solv­
ing very small problems and getting the minimal walk for 5 
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points within the subsquare. The size of subsquares grows 
very slowly, as a double logarithm. 

We see now that the Bayesian techniques can be directly 
used in some discrete optimization problems. That is, in very 
large problems, when the asymptotics works, and also in the 
problems, when the "distances" between the decisions are well 
defined. Now we consider the indirect Bayesian approach by 
reducing the discrete optimization problem to the problem of 
the continuous global optimization. We can do that using 
randomized heuristics algorithms. 

We regard the discrete optimization as a multi-stage deci­
sion problem. At each stage we define the heuristics as a sim­
ple function which roughly predicts the consequences of deci­
sions. The probability of a decision depends on the heuristics. 
We fix the randomized decision function, with an exception 
of some parameters. We repeat the sequence of randomized 
decisions several times at fixed values of those parameters and 
regard the best decision as a result. We optimize the param­
eters by the Bayesian methods of continuous global optimiza­
tion. Here we use the Bayesian methods to adapt the con­
tinuous unknown parameters to the given family of discrete 
optimization problems, see Mockus (1993). 

The randomized heuristics algorithms might be useful for 
the continuous global optimization, too. If the objective is 
"cheap,,2 , then the auxiliary problem of risk R(x) minimiza­
tion may be more complicated as compared with the original 
problem (1). In such cases we fix some decision, make per­
turbations and define heuristics as the difference between the 
results after and before the perturbation. A simple example is 
the simulated annealing algorithm (21). Here the parameter 
of randomization is To. We optimize this parameter by the 
Bayesian techniques. 

2 "Cheap" means that the calculation of f( x) given x is not expen­
sive in terms of CPU time. 
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3. Sequential decision problem of discrete optimiza­
tion. We consider a multi-stage decision problem. Describing 
discrete optimization problems we denote by v( d) the objective3 

corresponding to the decision d. 

v· = minv(d). 
dED 

(22) 

At each stage i = 1, ... ,1 we chose one of Mi feasible 
decisions di = di (m ), m E {I, ... , Md. The set of feasible 
decisions at the stage i we denote by Dj = {di(1), ... , di(Mi)}. 

The set Di usually depends on all the previous decisions, 
which we shall represent as the vector di = (dI , .•• , di-I). 
Let us denote by d = d1+I = (di,i = 1, ... ,1) a sequence 
of decisions. The set D defines all the sequences of feasible 
decisions d. Thus at each stage i we select a branch d i of 
some decision tree. We consider two algorithms: sequential 
and iterative. 

The sequential algorithm builds the system from the 
scratch, adding one element at each stage. Thus the num­
ber of decision stages 1 is equal to the number of systems 
elements. 

The iterative algorithm starts from a feasible initial deci­
sion. At each stage we make some permutation. The iterative 
algorithm updates the current feasible decision by accepting 
one of those permutations. In the iterative case the set of 
feasible decisions Di at the stage i corresponds to the set Mi 
of feasible permutations m E {I, ... , Mi}. Here the decision 
dI denotes the initial decision. The decision di+I, i = 1, ... ,1 
denotes the decision taken at the stage i. At the stage i we 
update the previous decision di by choosing one of feasible 
permutations m E Mi. 

3In the continuous optimization we used different notation: we 
denoted by f(x) the objective, given decision x. 
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The permutation m is feasible m E {I, ... , Mi} if the 
corresponding decision di{m) is feasible di{m) E Di. The 
set of feasible decisions Di usually depends on the previous 
decision di-I. We stop, if we can't improve the results by using 
the given set of permutations. In such a case the number of 
stages may be considerably larger than the number of system 
elements. 

4. Some methods of the discrete optimization. De­
note by Vi the conditional minimal value of the objective func­
tion for fixed di 

Vi = min. v( d), for fixed di • 
deD' 

(23) 

Here Di C D is the set of feasible decisions (di , •.• , d]) 
when the decisions di = (db,," di-I) are fixed. Therefore 
V = VI. 

Denote by vi(m) the conditional minimal value of the ob­
jective function for both fixed di. and di = di(m) 

(24) 

The high complexity of exact techniques (both the dy­
namic programming algorithm and the branch-and-bound al­
gorithm) is the reason to seek simpler approaches. For exam­
ple, we can apply the randomized technique where the decision 
di(m) is made with some probability ri(m). We may repeat 
the randomized decisions many times and regard the best de­
cision as the optimization result. 

If ri is positive for all feasible decisions, ri ~ € > 0 and 
repetitions are unlimited, then the randomized technique con­
verges to the best value V with probability one. In the sequel 
referring to the convergence we omit the words "with prob­
ability one". Usually the convergence is very slow, therefore 
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we stop far from the optimal value v, since the repetitions are 
limited. 

Suppose that there exists a simple function hie m) that 
roughly predicts the consequences of the decision m. We may 
scale the heuristics in the unit interval, then 

minhi(m) =0, maxhi(m) = 1, i=l, ... ,I. (25) 
m m 

We can leave the function hie m) unscaled, too. 
Applying the heuristics in iterative algorithms we may 

calculate the objective function (or its estimate) for all feasible 
permutations, or some part of them. We also may stop at 
the first improvement. Sometimes we can prefer to do just 
one permutation4 • We need here fewer calculations, but the 
choice is minimal. Just two alternatives: to go or not to go to 
the next point. 

We may optimize twice. The first time we use a sequential 
algorithm that starts from the empty set. The second time 
we improve the solution by feasible permutations. We can 
eliminate the first part of optimization, if we get a good initial 
solution. 

Usually we apply the heuristics for choosing good deci­
sions, see the next section. However, we can use them for 
cutting off bad decisions too, see Mockus (1993). 

5. Algorithm of randomized heuristics. 

5.1. General description. If we relate probabilities 
ri(m) to the heuristics hj(m), then we can expect a faster 
convergence. As a first approximation assume that the prob­
abilities ri(m) are proportional to the heuristics hi(m). This 
assumption means the linearity of rj as function of hj. In gen­
eral, we have to consider nonlinear functions ri = r(hi)' too. 
We define a family of functions ri = r(h j ) by a fixed number 

40r just one perturbation, as in the continuous simulated annealing. 
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of parameters x = (Xn' n = 1, ... , N). Then we can write 
ri(m) = r(m, hi, x). Here 

2: ri(m) = 1. (26) 
mEM; 

For example, we can execute the decision algorithm in­
cluding condition (26) by the following three steps: 

1. Partition the unit interval U = [0, 1] into parts Ui( m), 
m = 1, ... , Mi equal to the probabilities ri{m), 

11. Generate a random number ei uniformly in the unit 
interval. 

iii. Choose the decision diem), if ei E Ui{m). 

5.2. Polynomial randomization. Now the problem is 
to improve the expression of probabilities ri as a function of 
heuristics hi. We wish to represent this function using the 
parameter x with a minimal number of components. In such 
a case the orthogonality of components is desirable. We think 
that in the scalar heuristics case the Legendre polynomial Ln 
could be suitable, see Mockus et al. (1994). 

The disadvantage of Legendre representation is that the 
probability ri is not a monotonous function of the heuristics. 
We can understand the results easier if the components of the 
expression r i are monotonous. 

An ordinary polynomial can better correspond to our task 
if we prefer the probabilities r i to be expressed as some mo­
notonous functions of the heuristics hi. 

N-l 

r? = rO{hi,x) = L ainxnhi{m), (27) 
n=O 

where 

N-l 

2: Xn = 1, Xn ~ 0, n = 0, ... ,N - 1, (28) 
n=O 
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and from condition (26) 

1 
ain = M. . 

Em~l hf(m) 

The number n in expression (27) may be regarded as the 
"degree of greed". The number n = 0 means no greed, because 
all feasible decisions are equally desirable. If the number' of 
greed n is large, then we prefer the decisions with the best 
heuristics. By optimizing x we define degrees of greed such 
that provide the most efficient randomized decision procedure. 

5.3. Discontinuous randomization (simulated an­
nealing). So far we considered only continuous functions r O 

of heuristics hi. Let us to consider some discontinuous func­
tions, too. A well known discontinuous function is defined by 
the simulated annealing. We define the heuristics hi(m) as 
the difference between the values of the objective before and 
after a random perturbation at the stage i.5 Here we do not 
scale the heuristics h( m ), therefore 

Here v(di(m)) is the objective at he stage i,if we choose 
the permutation m, and v(di - 1 ) is the objective before the 
permutation. From (21) we can write 

o _ e - z!ln(l+i) if h ·(m) > 0 { 

hj(m) 

r. - ,I 
I 1, otherwise. 

(29) 

where the initial "temperature" x is the only parameter to be 
optimized. 

There could be several possible explanations why the ran­
domization (29) is used so wide. The most obvious one is the 

5Corresponding to the usual conditions of simulated annealing. 
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convenience to prove asymptotic results. How well randomiza­
tion (29) works for a finite number of iterations is not obvious. 
We usually need some additional experimentation. 

5.4. Transformation to "unit box". Suppose that we 
prefer to transform the set of feasible values of x defined by 
condition (28) to the "unit box" A. 

A={xo: O~x~ ~1, n=O, ... ,N-l}. (30) 

We can do that by a simple transformation 

xn = "N.:!l 0' n = 1, ... , N - 1. (31) 
L..,m=O xn 

Expression (31) transforms the original function f ( x ), de­
fined on the set (28), into some other function fO (xO) = f( xO (x)) 
defined on the N-dimensional unit cube (30). The notation 
xO (x) means that xO depends on x by expression (31). 

Let us fix some x on the set (28). Then the values of the 
f:.Lnction fo(xO) remain equal to the value f(xO(x)) for all xO 
which satisfy condition (31) at the fixed x. 

It follows from condition (31) that for the fixed x = 
(xo, ... ,XN-l) 

° Xn ° Xn = -xo, n = 1, ... ,N-1. 
Xo 

Fixing xg = 0 we get the zero point x~ = 0, n = 1, ... , N-
1. Fixing xg = Xo we get the point x~ = x n , n = 1, ... , N -1, 
i.e., xO = x. Expression (31) defines the line in the set A which 
goes from zero through the point xO = x. 

This property of the function fO (xO) defined by trans­
formation (31) usually is not very important applying global 
optimization methods. It does not contradict the basic as­
sumptions of the Bayesian methods designed for the global 
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optimization on the unit box, see Mockus (1989). The pecu­
liarity of the function fO(xO) related to transformation (31) 
seems less important as compared to computational advan­
tages of the unit box. 

5.5. Convergence of algorithms. We regard ri(m), 
i = 1, ... , I as a probability distribution on the set 1, ... , Mi 
of feasible decisions. Expressions (27)-(29) define the multi­
stage randomized procedure r = (ri, i = 1, ... ,J) as a func­
tion of some parameters x, so we can write r = r(x). 

Denote by v(K,x) the expectation of the best value of the 
objective function if we repeat the randomized decision r(x) 
with a fixed parameter x K times. We assume r( x) to be such 
that the probability of any feasible decision were positive. It 
means that the best value of the objective function converges 
to the exact optimal value if the number of repetitions K is 
large. 

lim v(K, x) = v, for any x. 
K-+oo 

(32) 

The exact computation of v(K, x) is no less complicated 
as the solution of the original discrete optimization problem 
(22). A natural and convenient way to estimate v(K, x) is by 
Monte Carlo simulation. Let f K (x) be the best value of the 
objective function obtained after K repetitions of the random­
ized decision procedure r( x) at the fixed x The expectation of 
fK(X) is equal to v(K,x) by definition. 

6. Reduction of the discrete optimization to the 
continuous stochastic one. We denoted by fK(X) the best 
value of the objective function obtained after K repetitions 
of the randomized decision procedure r(x) for a fixed x. We 
defined the randomized decision procedure so, that 

lim fK(X) = v, for any fixed x. (33) 
K-+oo 
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It means that all the values of parameters x are "good" 
asymptotically. However, the right choice of x could be very 
important, if the number of repetitions K is not large. 

Thus we get the following continuous problem of the sto­
chastic programming 

where 

minfK(X)' 
x 

N-I 

X = (xO, ... ,XN-l), LXn =1, Xi~O, 
n=O 

n = O, ... ,N -1. (34) 

Thus we reduced, in the described sense, the discrete op­
timization problem (22) to the problem of continuous stochas­
tic optimization (6). Let R be the number of iterations of the 
stochastic optimization. So the total number of observations 
KT (calculations of the objective function v( d) for the fixed 
decision d) is the product of iterations R and repetitions K, 
therefore KT = RK. If K = 1, then the iteration and the 
observation have the same meaning. 

Now we can replace condition (33) by a weaker condition 

)im fK(X) = v, for any fixed x and K ~ 1. (35) 
KT-CO 

This expression follows directly from the convergence con­
dition r?(m) ~ € > 0, n = 1, .. . Mi, i = 1, ... ,1. 

Condition (35) means, that the method will achieve the 
global optimum for any fixed number of repetitions K ~ 1. 
So the results of optimization may depend a reat deal on the 
number of repetitions K. Therefore for any specific problem 
some preliminary investigation is desirable to define the right 
number of repetitions K. 
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We can carry out the stochastic optimization in three 
steps. 

We expect the algorithm of randomized heuristics to be 
efficient only if Vi (m) statistically depends on some simple 
heuristics hi. Thus, as a first step we investigate the "qual­
ity" of heuristics by a simplified representation of probabilities 
ri(m): 

ri = ri(m) = r*(m, hi, x) 

= aiOXO + ailxlhi(m) + ai2x2~i(hi(m», (36) 

where 

and 

if hi (m) = maxkEl, ... ,Mj hiCk), 
otherwise. 

1 
ail = ""Mj h.( ) , 

L.Jm=l I m 
ai2 = 1. 

(37) 

(38) 

We consider the heuristics hi as useless if the optimal value 
of the zero component Xo obtained using simplified expressions 
(36)-(38) is close to one. The reason is that we have got the 
best result using the simplest uniform Monte Carlo method, 
without any heuristics. 

We regard the heuristics hi very good if the optimal value 
of the second component X2 is close to one. Here we have got 
the best result by choosing a decision that corresponds to the 
best heuristics, without any randomization and parametriza­
tion. 

The heuristics hi could be improved if the optimal value of 
the component Xl were cosiderabky more than zero. In such 
a case we go over to a second step of optimization. 
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At the second step we use the randomized procedure r( x) 
with probabilities defined by expression (27). The optimiza­
tion of parameters x should make the search more efficient. 

If we see that the optimization of parameters x does im­
prove the results significantly, then we go over to third step. 

At the third step we repeat the randomized decision pro­
cedure r(x) at fixed values of x, which we had obtained at the 
second step of optimization. 

Some optimization steps can be omitted depending on spe­
cific conditions of the problem. 

The number of repetitions K may be different at different 
steps, that is KI,K21 and Ka. The total number of observa­
tions 

Here RI is the number of iterations at the first step of 
optimization and R2 is the number of iterations at the second 
step. 

The right choice of repetition numbers KIl K21 and Ka 
depends on several factors. An important factor is the "cost" 
of one observation. We may set the repetition numbers KI = 
K2 = 1, and Ka = 0, if the cost of an observation is higher 
than that of auxiliary computations. We use the auxiliary 
computations to define the next value of x at each iteration 
of optimization. The Bayesian methods need a lot of such 
computations. 

If the observations are "cheap" , then we ought to set larger 
numbers of repetitions K I, K2 • The reason is to make the cost 
of observations at each iteration close to the cost of auxiliary 
computations. The auxiliary computations are defined by the 
optimization method, we do not control that. However we can 
increase the cost of observations in one iteration by increasing 
the number of repetitions. We may improve the result by 
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setting a large number of "post-optimization" repetitions ](3, 

if observations are cheap. 
The described methods are of great importance when solv­

ing families of related discrete optimization problems. Here 
we may optimize x for only one typical problem of the family, 
applying the optimal values of x to many related problems. 
Thus, we can reduce the optimization "cost" by dividing it 
among many problems. In the examples of this paper we 
did optimize the parameters x of eac:h problem individually. 
Therefore we may see only a part of the advantages of the 
Bayesian approach. 

7. Methods of the global stochastic optimization. 
There are several specific features of problem (6), (34) that 
make the direct optimization difficult: 

1. The function ! K (x) is stochastic, 
11. The function !K( x) is multi-modal, as usual, 

111. The function !K(X) is expensive (one observation re­
quires a lot of calculations) 

There exist the techniques of stochastic approximation 
(Ermoljev, Wets, 1988) that converge to some local minimum. 
There also exist methods of global stochastic optimization that 
converge to the global minimum. Thus, both conditions i. and 
ii. can be met. 

The convergence of conventional methods of global stochas­
tic optimization, such as the global stochastic approximation 
or simulated annealing, is usually very slow, see Zilinskas and 
Zygliavsky (1992). Sometimes the convergence condition ap­
pears to be almost irrelevant, if the number of iterations is not 
large enough. The reason is that those methods are meant for 
the optimization of inexpensive functions. If the function is 
not expensive, then the number of iterations is usually large 
and the asymptotics is important. 

To meet all the three conditions we need a search tech­
nique such that tends to minimize the expected deviation from 
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the global minimum when the number of iterations (evalua­
tions of the function f K ( x » is small. We call such techniques 
the Bayesian methods of global optimization, see Mockus 
(1989). 

We call the application of those methods to problem (6), 
(34) the Bayesian approach to the discrete optimization. In 
this definition we mean that the Bayesian methods of global 
optimization are efficient when solving general problem (6), 
(34). "Non-Bayesian" methods of global stochastic optirp.iza­
tion could fit better for many special problems (6), (34). 

The main advantage of the Bayesian approach to discrete 
optimization is that it shows how to involve the expert knowl­
edge about the problem into a general mathematical frame­
work. The expert knowledge we include into the heuristics 
hi. 

The mathematical part of the problem considers mainly 
the optimization of (6), (34). If the choice of heuristics hi is 
good, then the optimization of (6), (34) helps solve (22) more 
efficiently. If not, then the results of the optimization of (6), 
(34) can show that the heuristics hi is irrelevant to the discrete 
optimization programming problem (22). 

8. Mixed Boolean Bilinear Programming(MBBLP). 
By the term "Bilinear" we mean the minimization of a sum 
of products of two different variables. By the term "Mixed 
Boolean" we mean that some of the variables are Boolean, 
just zero or one. We denote by x = (Xi, i = 1, ... , n x ), W = 
(Wj, i = 1, ... ,nw) the real valued variables. We denote by 
Y = (Yi, i = 1, ... , ny), Z = (Zi' i = 1, ... , n z ) the Boollean 
variables. 

We suppose that the real variables W = (wi,i, ... ,nw ) 

multiply only by real variables. The Boolean variables Z mu­
tiply only by Boolean variables. This partition of variables 
is just for the convenience of formulation. We suppose, for 
simplicity of the description that nx = nw = ny = n z = n. 
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Then: 

min ( L (aoixi + bOiYi + cOizi + dOiWi) 
x,w,g,z . 

a=l,n 

+ L (aOijXiYj + bOijYiZj + dOijXiWj)) (39) 
i,j=l,n 

L (akixi + bkiYi + CkiZi + dkiWi) 
i=l,n 

i,j=l,n 

k = 1, ... ,rn. (40) 

Xi~O, Wi~O, YiE{O,I}, ZiE{O,I} (41) 

We assume that aki =I 0, bki =I 0, dki =I 0, Cki =I 0, k = 
0, ... , rn, i = 1, ... ,n. We also suppose that most of three­
index .parameters such as akij, bkij, Ckij, dkij are zero. Oth­
erwise, too much additional inequalitys could be needed later, 
when reducing MBBLP to the standard Mixed Integer Linear 
Programming (MILP). 

8.1. Solution of MBBLP as a sequence of Mixed 
Boolean Partly BiLinear Programming problems 
(MBPBLP). We mean by the term "Partly Bilinear" that 
there are no products of real variables. That help us, when 
reducing MBPBLP to the standard MILP. Formaly we can 
define MBPBLP just by deleting the variables W in (1)-(3) 

min ( L (aoixi + bOiYi + COiZi) 
x,g,z . 

z=l,n 

+ L (aOijXiYj+bOijYiZj)), (42) 
i,j=l,n 
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L (akiXi + bkiYi + CkiZi) 
i=l,n 

i,j=l,n 

k = 1, ... ,m, 
Xi ~O, Yi E {O,1}, Zi E {O,1}. 

(43) 
(44) 

We solve MBBLP as a sequence of corresponding MBP-
BLP problems by the following iterative algorithm: 

1. Fix some initial value of w = wO in expressions (1)-(3). 
2. Get the optimal value X = xO, given w = wo. 
3. Get the optimal value w = w1 , given x = xO • 
4. Stop, if there is no improvement, go to step 1, otherwise. 
The disadvantage of this technique is that for some initial 

w = wO there might be no feasible solutions. We may succeed 
if we carefully select wo. We may relax the constraints and 
minimize the auxiliary objective, otherwise. The auxiliary 
objective includes the original one, plus the distance to the 
original feasible set. We describe the auxiliary objective later 
on, when considering the Combinatorial Linear Programming. 

The alternative technique is the Outher Approximation 
algorithm, see Reklaitis and Mockus (1994). However the Out­
her Approximation is rather a general technique. So we can 
expect it to be less efficient as compared to the algorithm, 
designed specifically for MBBLP. 

8.2. Reduction of MBPBLP to MILP. There are well 
documented algorithms for the MILP problems. We reduce 
here the MBPBLP problem to the MILP problem. 

min (L (aoixi + bOiYi + COiZi) 
:r:,Y,Z,U,V . 

I=l,n 

+ L (aOijVij+boijUij»), (45) 
i,j=l,n 
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i=l,n i,j=l,n 

k= I,m, (46) 

(47) 

Uij ~ Yi + Zj - 1, (48) 

Xi ~ 0, Vij ~ 0, Yi E {O, I}, Zj E {O, I}, Uij E {O, I}, (49) 

where K is a large number. 
We can solve (7)-(11) using the MILP algorithm. How­

ever we have to stop before reaching the global minimum in 
many real problems. In such cases we may regard the "in­
cumbant" as an approximate solution of MILP. We call such 
technique as the "truncated b&b", we stop the "branch-and­
bound" procedure. 

It looks like a very convenient deterministic technique. We 
proceed until we reach the time limit. Then we stop and get 
an approximate solution. However b&b is designed to get the 
exact solution. It is not clear how good is the "incumbant" 
as the approximate solution. The convergence to the exact 
solution does not necessarily means a good approximation, if 
we stop before reaching the exact solution. 

If we wish to get the good approximation, then we shoud 
consider this objective when designing the algorithm. A con­
venient way to do that is designing randomized heuristics. The 
heuristics helps to involve the expert intuition. The random­
ization gives the flexibility of design. The optimization of the 
decision parameters adapts the algoritm to the given family 
of problems. 

8.3. Reduction of MBPBLP to Combinatorial Lin­
ear Programming (CLP) •. We may consider the penalty 
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function as a sort of heuristics, if it is too difficult to keep 
inside the feasible region. We define the penalty function as 
follows. We fix the values of discrete variables Y, Z and mini­
mize the original linear objective (4) plus the sum of violations 
of constraints (5) multiplied by the factor r > 0. We denote 
the result as L(y, z). From this definition and expressions (4)­
(6) it follows that 

L(y,z) =mln ( L (ao.xi + bOiYi + COiZi) 
i=l,n 

+ L (aOijXiYj+boijYiZj))+r L Sk), (50) 
i,j=l,n k=l,m 

Sk ~ - ( L (akixi + bkiYi + CkiZi) 
i=l,n 

+ L (akijXiYj+bkijYiZj)), k=I, ... ,m, (51) 
i,j=l,n 

Xi ~ 0, Sk ~ 0, Yi E {O, I}, Zi E {O, I}. (52) 

The advantage of CLP is that all the boolean decisions 
y, Z are ''feasible''. Here the "feasibility" of y, Z means that we 
define some auxiliary objective L(y, z) for any fixed y, z. We 
may see from (12) and (4) that the auxiliary objective (12) is 
the minimum of the original objective (4) plus the "distance" 
from original feasible set (5). We define the distance from set 
(5) as the sum of constraint violations Sk. 

Now we apply some randomized heuristics to minimize 
L(y, z) as a function of Boolean variables y, z. We consider 
the algorithm that solves CLP in five steps: 

1. Fix a vector (Yo, zO). 
2. Generate a "perturbation" vector (yl, zl). 
3. Define heuristics hi for the perturbation (yl, zl). A 

simple and natural way is to assume the heuristics to 
be equal to the auxiliary objective hi = L(yl, zl). 
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4. Go ower to perturbation 1 with probability rt defined 
as some function of heuristics hi. 

5. Repeat the randomized technique many times opti­
mizing the parameters of the randomization function 
by Bayesian methods, see Mockus et al. (1994). 

The simplest example of this algorithm is to perturb the 
Boolean variables (y,z) = (Yi,zj,i = l, ... ,n) one-by-one, 
then to use the simulated annealing, and to optimize the un­
known parameters (To, r) by the Bayesian techniques. Here To 
is the initial temperasture of annealing. We can also use more 
complicated perturbation and randomization algorithms, de­
scribed by Mockus et al. (1994). 

We designed the heuristics hi = L(yl, zl) for a family of all 
MIPBLP problems. For more specific problems we can design 
simpler heuristics taylored to fit just those problems. For ex­
ample, the longest remaining time for a given job is apparently 
the simplest heuristics in some scheduling problems. 

It is very important to investigate what approximation 
is better: solving MBPBLP by the truncated b&b or solving 
eLP by the Bayesian optimization of randomized heuristics. 
To do that we have to consider different applied problems. 
Here we shall consider two of them: the scheduling of batch 
operations, and the optimization of neural networks. 

9. Scheduling of batch operations. 

9.1. Scheduling problem. Scheduling problems occur 
in a broad range of industries, including the chemical process­
ing industries. Batch production has long been the accepted 
procedure for the manufacture of many types of chemicals, 
particularly those which are produced in small quantities and 
for which the production processes or the demand pattern are 
likely to change. These products are frequently fine chemicals 
of high commercial value and it is important that sufficient 
manufacturing flexibility should be available to avoid the loss 
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of potential sale by a failure to meet the customer's require­
ments at the due time. As a result there has been increasing 
an interest in the development of procedures for scheduling 
batch process operations. 

We consider here a simplifyed version of the scheduling 
problem described by Reklaitis and Mockus (1994). We use 
the state-task-network (STN) representation of the batch pro­
cess. Fig. 1 shows the simplest example. We consider three 
types of states: feed, intermediary, and product. We regard 
four types of events, correspondingly: start, finish, receipt, 
and delivery. 

9.2. Notation. We denote independent variables by x, 
y, z, etc., the constants by a, b, A, B, etc. 

XDk is th input of material when starting the task i in 
the unit j at the time tk; 

Xfjk is the output of material on finishing the task i in 
the unit j; 

x~k is the receipt of material in the feed state s at the 
time tk, usually X~k = ask; 

x3 is the delivery of material in the product state s at 
the time tk, usually x3 = dsk; 

Y~k = 1, if unit j starts the task i at the time tk; Y&t = 0, 
otherwise; 

Y5k = 1, if unit j finishes the task i at the time tk; Y&k = 0, 
otherwise; 

Bsk is the the amount of material stored in the state s 
at the time tk; 

Njk is the number of units j available at the time tk; 
x~ = tk is the the time of start event k;6 
xf = tk is the the time of finish event k; 
xf = tk is the time of receipt event k, usually xf = al; 
xp = tk is the time of delivery event k, usually xp = 4; 

6 The time when we start some task. 
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is the the unit price of material in the state S at the 
time tki 
is the running cost of storing a unit of material in 
the state S over unit interval7 starting at the time 
tki 
is the unit cost of utility u in the state s over unit 
interval8 starting at the time tki 
is the proportion of input of task i from state Si S 

Pis 
F 

Pis is the proportion of output of task i to the state Si 
ris is the processing time for the output of task i to the 

state Si 
We order the events k by the inequality 

9.3. Material balance constraints. 

BskH = Bsk - dsk + ask - L pfs LY~kxij k S 

i j 

+ L pfs LY&kXf;k, 
i j 

L(tl - tk)Y&, = Y~k ris' 
l~k 

(53) 

(54) 

Here tauis is the processing time for the output of task i 
to state s. The constraints simply states that the nett increase 
(Bsk+l-Bsk) in the amount of material stored in the state sat 
the time tk is given by the difference of the amount produced 
in this state and that used. 

7 We assume that the running cost does not change between the 
events. 
8 We assume that the unit cost does not change between the events. 
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9.4. Capacity constraints. 
1. The amount of material stored in the state s must not 

at any time exceed the maximum storage capacity B3 

(55) 

2. The amount of material when starting task i in unit 
j at time tk is limited by the minimum and the maximum 
capacities of that unit: 

s Bmin ~ 3 ~ S Bmax Yijk ij ~ Xijk ~ Yijk ij . (56) 

9.5. Allocation constraints. At any time an idle item 
of equipment can only start at most one task. Of course, if the 
item does start performing a given task, then it cannot start 
any other task until the current one is finished, i.e,. the opera­
tion is nonpre-emptive. These requirements can be expressed 
in the following terms 

Nft+l = Ntk - Lyr;k + LY&k, 
i 

LNjk ~ 1, Lyr;k ~ 1. 
j 

(57) 

9.6. Objective function. We maximize the profit, given 
both delivery and receipt: 

~ax (L C~d3k - L c!a3k - L L C;kB3k(tk+l - tk) 
Y keD keR k 3 

- LLUUikC~kLXijk(tk+l -tk)). (58) 
k U i 

We denote by Uuik the amount of utility u needed for task 
i in the interval starting at time tk. We express it as follows 
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Ullik = iXuik + f3uik L Xijk. 
j 
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\Ve denote by D and R the set of delivery and receipt 
events, correspondingly. We keep to conditions (53), (54), 
(55), (56), and (57). 

We optimize just the last two components of expression 
(58) describing the storage and the utility cost. The first two 
components are constants, since both the delivery and the 
receipt are given. We my use the same algorithm to optimize 
the delivery and the receipt, too. 

9.7. Illustrative example. We consider a small exam­
ple of the batch process described by the state task network in 
Fig. 1. This is a slightly modified version of the problem, de­
scribed by Sahidis (1991). Fig. 2 shows the schedule diagram, 
and Table 1 shows the schedule data. 

10. Neural network optimization. 

10.1. One-layer network. We consider here only a part 
of the network optimization problem9 , just as an example of 
Boolean bilinear programming. We start from the simplest 
one-layer linear problem. 

mm L (sk)2, (59) 
x 

k=l,n 

k bk Sk = t - , (60) 

t k = 1/m L ajxj. (61) 
j=l,m 

Here the number bk is the output, and the vector ak = 
(aj ,j = 1, .. , m) is the input of the learning set k = 1, ... , n. 

9The general problem is described by Hecht-Nielsen (1990). 
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Product 1 

--+1·1 Task 211-----., 0 
Feed 

0-1Taskl~ Intermediate 

Product 2 

----+t·1 Task 3 t---""""~O 

Fig. 1. State task network. 

Unit 1 700 800 

Unit 2 500 500 

Unit 3 200 300 

2.1 3.1 4 8.1 9.1 10 

Fig. 2. Schedule diagram. 
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Table l. Schedule data 

U nits, tasks 
Units Size Units suitability Processing time 

Unitl 1500 
Unit2 1000 
Unit3 1000 

States 

Feed 
Intermediate 

Productl 
Product2 

States 

4 

Product 1 200 
Product2 50 

Task 1 
Task2 
Task3 

States 
Capacity limits 

Unlimited 
5000 

Unlimited 
Unlimited 

Demands 

Time 

6 7 10 

300 400 
150 200 

Cost data 

Cl:'ulO = 200 /3ulO = 0.6 
Cl:'u20 = Cl:'u30 = 222.2 /3u20 = /3u30 = 0.67 

1 
0.9 
0.9 

Prices 

5 

10 
8 

11 12 

100 
100 

C~l = 1 
C~l = 0.18 
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We optimize the vector x = (x j, j = 1, ... , m) to get the min­
imal square deviation (59). We assume that xj, aj, bk E [0,1]. 
We can solve (59) by the standard quadratic programming 
methods. 

If we prefer the linear programming, then we minimize 
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k bk sk = t - , 

t k = l/m L ajxj. 
j=l,m 

Here the auxiliary variable u k ~ 0. 

(62) 

(63) 

(64) 

(65) 

(66) 

Both problems (59) and (62) do not take into account 
the "treshold of neuron sensitivity" factor which is important 
in neural networks. We can do that by the Boolean linear 
programmmg. 

mm L (u k ), 
x,u,y 

k=l,n 

k bk Sk = Y - , 

Lyk ~ l/m L ajxj - t, 
j=l,m 

(67) 

(68) 

(69) 

(70) 

(71) 

L(l - yk) ~ -(l/m L ajxj - t). (72) 
j=l,m 

Here both the output bk E {O, I} and the auxiliary variable 
yk E {O, I} are Boolean, L is the large number, and t E (0,1) 
is the threshold of neuron sensitivity. We can solve (67) by the 
standard mixed integer linear programming (MILP) methods. 
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10.2. Two-layer network. Now we extend (68) to the 
two-layer neuron network. In the simplest case we have a 
bilinear programming problem 

min L (u k), (73) 
x,u 

, k=l,n 

Uk ~ Sk, (74) 

Uk ~ -Sk, (75) 

Sk = tk - bk, (76) 

tk = l/m L a~xi' (77) 
i=l,m 

aj = l/m L ajixii' (78) 

It is a more difficult problem as compared to (62). We may 
consider the threshold factor t, too, by the following mixed 
Boolean bilinear programming problem MBBLP. 

min L (u k), (79) 
X,U,Y 

k=l,n 

Uk ~ Sk, (80) 

Uk ~ -Sk, (81) 
k bk Sk = Y - , (82) 

Lyk ~ 1/m L a~xi - t, (83) 
i=l,m 

L(1 - yk) ~ -Cl/m L a~xi - t), (84) 
i=l,m . 

aj = 1/m L ajjXji. (85) 
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We can solv~ it using the algoritm described in the MB­
BLP section. 

11. Conclusions. U sing the randomized heuristics we 
may reduce the discrete optimization to the problem of a 
continuous stochastic global optimization. We can solve this 
problem using the well known Bayesian techniques. This is 
a new approach which helps to involve in a natural way the 
expert knowledge about a specific problem of discrete opti­
mization into the mathematical framework of optimization. 
The expert knowledge is very important, if we wish to get a 
fast approximate solution. 
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