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Abstract. The paper deals with a simple model of the com­
petition of two queuing systems, providing the same service. Each 
system may vary its service price and its service rate. The cus­
tomers choose the system with less total service price, that depends 
on the waiting time and on the service price. The possibility for 
the existence of equilibrium is investigated. Simple cases are inves­
tigated analytically. It is shown that the Nash equilibrium exists 
in special cases only. A modification of the Stakelberg equilibrium 
is proposed as a model of competition with a prognosis. This prog­
nosis helps form more stable prices and more stable strategies of 
competitors. The case of social economics is investigated, too. The 
dynamics of the competition of more realistic stochastic queuing 
systems is investigated by Monte Carlo simulation. The simulative 
analysis is realized by means of a rule-based simulation system. 

Key words: competition, equilibrium, simulation, rule-based 
system. 

1. Introduction. The models of competitive systems are 
wide used in various areas of economics, engineering, society, 
etc. This paper is an attempt of composing the methods of 
game theory, of queuing theory, as well as those of the rule­
based qualitative simulation in order to examine the compet­
itive models. A permanent competition of two enterprises is 
investigatf'd. The objective of the investigation is to under-
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st~d ir~at dynami~s of the eompetition is, what decision~ ate 
used by competitors; and what mechanism forms the prices. 
Two enterprises are mode'led as two cOIllpetitive queuing sys­
tems, providing the same service, see Mocl<us (1994). We use 
such notation: 

- Yi is the price of a service for a customer in the i-th 
syst,eni'; 

..:.. a is "the average of the total number of customers, which 
come per unit of time; 

- ai, is the average of, the number of customers, which 
Gdme to the i-th system per unit of time; 

-: Xi i~ t~e service rate: the average of the number of 
:c~stomers, which may be served in the i-th system per 
~i:i.it oftime, when the maximum capacity of the system 
'is' 'Used; 

- x = (Xl, X2), Y -:- (Yb Y2), Zi = (Xi, Yi), Z = (Zb Z2)j 

-:-' 'f~i is the Gost price of the i-th syste~ per unit of time, 
CP'> Oj 

- faWi is the income of the i-th enterprise per unit of 
'time" f > 0, the coefficient ! represents the reduction 
of income (e.g., due to taxes); 

- ui(ai,zi) is the profit of the i-th enterpriee per unit of 
tiIne, Uj = !aiYi - CPXj; 

- Gi is the cost of waiting in the i-th system. 

When' a customer comes, he chooses the i-th system, if 

(1.1) 

If Yi ,t qi= Y j + G j, then a customer chooses randomly. Then 
tbe cus,tdixler stays in a queue in the chosen system. Obviously 
',aj dep~nd~,,'on z according to (1.1): aj = ai(zb Z2). Further 
we ',will use such notati~n: Ui = ui(ai,zi) = Ui(Zl,Z2). 

'The z~th system 'may vary its service price Yj and its ser­
vice rat,e xi :(its ~tr~tegy Zi). Various approaches of optimiziug 
those sttat'e~es are investigated in the paper. 
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Usually, the equilibrium approach is used in the game the­
ory. Let Zi = ti(Zj), j =j:. i is the choice of the i-th competitor, 
when another competitor keeps its strategy equal to Z j, and 
let the operator T( Zl, Z2) = (tl' t2)' The reasonable strategy 
IS 

(1.2) 

So, ti will be the optimal strategy of the i-th system, if another 
competitor keeps its strategy Zj, and if the queuing processes 
are stationary. In a stationary case all customers, which come 
to the queuing system, leave this system with the same fixed 
rate of coming. 

If there are strategies z* such that 

T(z;, z;) = (z;, z;), 

then the Nash equilibrium (Moulin, 1985) is satisfied, and z* 
is the fixed point (Todd, 1976) of the operator T. Naturally, 
the strategies of competitors will tend to z* , if this equilibrium 
exists and is stable (Moulin, 1985), and if competitors use the 
optimality criterion (1.2). So, the strategies zi will form the 
prices in the market. 

In the Section 2 a deterministic flow of customers is in­
vestigated analytically. We show, that the Nash equilibrium 
exists in special cases only. This is, due to the fact that the 
competitor do not forecast the answer of the partner. This 
forecast is natural, as the competition is permanent and the 
history of the behaviour of competitors is known. Further a 
modification of the Stakelberg equilibrium (Moulin, 1985) is 
proposed as a model of competition with a prognosis. 

Some stochastic cases of the social optimization approach 
are investigated in the Section 3. 

In Section 4 a qualitative simulation approach realized by 
the rule-based system is presented. The dynamics of rather a 
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realistic competition with unstationary queuing is simulated 
by this system, and simulation results are given. In the Section 
5 the conclusions are presented. 

2. Deterministic case. In this section it is assumed that 
all customers come and are served according to the fixed sched­
ule, i.e., customers come at the fixed moments with the fixed 
period l/a, and they are served at the fixed period l/xi. So 
the waiting time 1'i of the i-th system satisfies 

. _ {O. Xi ~ ai; 
1'.- -+oc x'<a' '. , I' 

(2.1) 

In this simple case the investigation is unsophisticated, but 
the results are rather general. We assume here, that Gi = 1'i. 

2.1. Urgent service. In this subsection it is assumed 
that a customer goes away only in the case the systems are 
busy. Thus, 

(2.2) 

In this case there exist stationary trivial queues of the length 
equal to zero. This case is very special, but the results of the 
investigation find the conditions, when the equilibrium may 
exist. 

The number of customers, served in the i-th system per 
unit of time, is such: 

{ 
min{a,xd, 

a;(z)= min{xi,max{a/2,(a-xj)}}, 
min{xi,max{O, (a - Xj))}, 

Yi < Yj; 
Yi = Yj; 
Y; > Yj· 

(2.3) 

Optimal strategies and the optimal profit of the i-th competi­
tor, calculated in accordance with (1.2, 2.3) for fixed Xj and 
Y i, are such: 



lim Ui = 00, 
1/i-+oo 
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SUpUi = 
Zi 

(Yi -+ 00, Xi > 0), Xj < aj 

lim Ui = a(fYj - 'P), 
1/i-1/j 

(Yi /' Yj, Xi = a), 'P/ f < Yj, Xj ~ aj 

0, (Xi = 0), Yj < 'P/f, Xj ~ aj 

0, (Yi = Yj, xi ~ a/2), Yj = 'P/ f, Xj ~ a. 

Theorem 1 follows from (2.4): 

215 

(2.4) 

Theorem 1. There is no Nash equilibrium situation in 
the deterministic case for urgent service. 

Mathematical formulation: The operator T has no fixed 
point in the domain Yi ~ 0, Xi ~ 0, n = 1,2, when (2.1, 2.2) 
are satisfied. 

Proof. We see from 2.4. (case 1 and case 2) that the i-th 
competitor may gain by changing its strategy. In case 1 the 
i-th competitor is a monopolist for a - Xj customers, and it 
may gain by raising its price Yi. In case 2 the i-th competitor 
may gain by reducing the price Yi until it becomes less than 
Yj. In cases 3 and 4 the i-th competitor gains by reducing its 
capacity Xi, and then the j-th competitor may gain like the 
i-th one in case 1 of (2.4). So, for any point z = (ZI, Z2) there 
exists a point z', where u~ > Ui, i E {1,2} and zj = Zj, j :/: i. 

2.2. Customers constrained by price. Here we con­
sider the case, when a customer goes away, if the total minimal 
price min(Yi + Gi) exceeds some critical level Ymax. We will 
show that the Nash equilibrium exists only when Ymax = 'P/ f. 
In this case the· optimal profit is calculated analogously to 
(2.4). In the case Ymax < 'P/ f the optimal profit equals 0, and 
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the optimal strategy is to be quite lazy: Xi = 0. ';f~s laZy 
strategy is a trivial equilibriUm situation. 

In the case Ymax = <P / I the opthnal profit is: 

0, (Yi = Ymax, 
Xi ~ max{O,a - Xi}), Yi <: y~a.x; 

SUPUi = 
0, (Yi = Ymax, %i 

Xi ~ max{a/2, a - Xj}), yi = YDl~X" .. ' '. 

The equillbrium is at Yi = Yj = Y~ax = ipl j, Xl' +X,2 ~ :a, 
UI = U2 = 0. 

In the case Ymax > <pI I the optimal profit is 

SUpUi = 
%i 

IIiax{(fYmax - <p)(a - Xj), 
a(fYj - <p)}, Xj < it; 

a(fYj - cp), (~.f?)' 
- (Yi /' Yj, Xi = a), <pI 1< Yj, Xj ~ CL; 

0, (Xi = 0), Yj < <pI I, Xj ~~; 
0, (Yi = Yj, Xi ~ a/2), Yi = <pI I, Xi ~ a, , 

In this case the i-th competitor may gain ~educing the pti,ce yi' 
until it becomes less than Yj or icreasing its price up to. y~~~,; 
if X j < a. The set of optimal strat-egies of the' i-th co~p'et~tor , 
doesn't contain the fixed strategy of the .i -thcompet~toi:,.' ~o,; 
there is no equilibrium in this case, and th~ folawing theo:r,em ' 
is valid. ' '" 

Theorem 2. In the case when customers are co~stra.{n..e,d 
by price, the non trivial equilibrium situati~:n exi~ts if~d 6n1y 
ifYI = Y2 = Ymax = <pII, Xl + X2 ~ a and U1 ' U2 , '0.",'" , 

The critical level Ymax = 'P / I is defin~d natllfally, if a: 
third enterprise is introduced: ' ,',' , ' 

U3 = al(<pI 1- yJ) + a2(<p1 1- Y:z}, 
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I.e., the customer may serve himself with the cost <pI j, which 
is equal to the minimal cost <p plus taxes. The customer 
chooses the third enterprise, when Yi > <pI j, i = 1,2. In this 
case ai = 0, i = 1,2. If Yi < <pI j, then ai = Xi· If Yi = <pI j, 
then, according to the customer's choice, ai is arbitrary, and 
the equilibrium is formed according to Theorem 2. 

2.3. The equilibrium with a prognosis. There are 
some reasons to criticize the strategy (1.2), which defines the 
Nash equilibrium. First, the competitor optimizes his strat­
egy, despite the optimization by another competitor. Second, 
the equilibrium exists only when the maximal price is equal 
to the minimal cost plus taxes. But usually customers may 
pay prices which are significantly higher than the cost. We 
consider the strategy of the informed leader in the Stakelberg 
equilibrium (Moulin, 1985) as a model for a long period prog­
nosis. But differently from Stakelberg we suppose that both 
competitors forecast the strategy of the partner. So, the op­
timal strategies are: 

z; = arg(ui) = arg max{ul(SI,arg maxu2(SI,S2»}, 
81 82 (2.7) 

z; = arg(u;) = arg max{u2(arg maXUl(St,S2),S2)}. 
82 81 

We suppose that there exists the equilibrium at z* , if both 
competitors gain not less than they had foreca:'>.;ed: 

ur ~ UI(Z*), 
u; ~ U2(Z*). 

Then such a theorem follows from (2.6): 

(2.8) 

Theorem 3. In the deterministic case (2.1., 2.2.) the 
equilibrium (2.7, 2.8) exists at such strategies: 

YI = Y2 = O.5(Ymax - <pI J) + <P I j, 
Xl = X2 = a/2. 

(2.9) 
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Proof. The conditions of the equilibrium folow from (2.7), 
e.g., case 1, and from (2.6) case 1: 

(fYmax - It')( a - xI) ~ a(fYl - It'). 
(2.10) 

The solution of (2.10) is (2.9). I.e., the equilibrium with a 
forecast generates nonzero profit. 

3. Social model. Now let us consider a social model. 
In this case a minimized objective function, the social service 
cost, is defined as 

2 

m]n L(ai9i + Xi), Xi > ai, (3.1) 
i=l 

where 9i is the average time a customer stays in the i-th enter­
prise, while waiting for service and being served. (We define 
that 1 unit of time = 1 unit of money, and f = r.p = 1). 

We suppose that the rates of customers ai satisfy the con­
dition 

a1 + a2 = a, 

where a is the average total number of comming customers 
per unit of time. Here customers don't have a possibility to 
give up a service, when the service price is too high for them, 
i.e., all the comming customers without fail are served in a 
certain enterprise. In our case the service prices Yi, i = 1,2, 
for one customer in the i-th enterprise are fixed and equal in 
each enterprise 

Yl = Y2· 

Note that if the service price Yi is fixed so that the profit 
of a social enterprise equals zero 
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then the social service cost becomes equal to customers losses. 
We may suppose that the number of customers, comming 

to one enterprise, is distributed corresponding to the Poisson 
law, and the service time has an exponential distribution. So, 
the formula to calculate the average waiting time 9 is (see 
Kleinrock, 1975) 

Ca8e A. Distributed customer flow. Let us investigate 
the case when the distribution of customer flows is fixed. It 
is natural to suppose that in social enterprises the rates of 
customers ai, i = 1,2 are equal 

Thus, the minimized objective function is 

In solving this problem we find that 

are the optimal values for the social seryic~ cost function (3.2). 
Not'e this solution as xt, Vi. 

Hence, we may write the minimum of the objective func­
tion (3.2) 

LA = min ~ ( a + Xi) = 2( a + 2v1a). 
:z; L...J xi - a 

i=1 
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Case B. One social enterprise. If the rates of cus­
tomers in each enterprise of the social system are determined, 
it is reasonable to unite these enterprises. Thus, instead of 
some (in our case two) enterprises working side by side, there 
appears one enterprise with a service rate equal to the total 
service rate of former enterprises. Then, the customers, in­
stead of queuing in different enterprises, queue up only in one 
enterprise and are served in turn. 

Let us consider the case of one social enterprise, where 
the rate of customers is equaJ. to a. Here, the minimized social 
service cost is 

min(ag + x). 
x 

(3.3) 

As in the previous case, we suppose the service price y 
to be fixed and the average time, spent by a customer in the 
enterprise, 9 to be expressed as 

1 
g=--, 

x-a 
x> a. (3.4) 

Replacing the average time, that a customer stays in the 
enterprise, 9 by (3.4) in (3.3), the objective function becomes 
equal to 

a --+x. 
x-a 

Analogously to case A we seek the optimal service rate, 
that gives the minimal social service cost. The optimal service 
rate is 

B _~ x - a+ya, 

and the minimal social service cost is 

LB = min (_a_+ x ) =a+2va. 
x x- a 
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Thus, when the price for a service is fixed, the amalgama­
tion of enterprises reduces the total service rate and the social 
service cost 

A A A rn-2 c B x = Xl + X2 = a + YL.a > a + ya = X , 

Therefore, in the social system that is more preferable to 
have only one enterprise instead of two ones. In particular, 
that is a good explanation of the social system practice of 
building only one polyclinic or only one supermarket in one 
residential district of a town. 

4. Rule-based Monte Carlo simulation of the 
competition. 

4.1. The rule-based qualitative simulation method. 
In order to investigate the competitive model (consisting of 2 
service enterprises and one common customers' flow) the rule­
based discrete time simulation method (Maskeliunas, 1993) 
was applied. The qualities of this method are the following: 

- convenience for realization of research prototypes; 
- convenience for modification of simulation system com-

ponents, subsystems, parameters; 
- faster and simpler debuging of the simulation system 

because of its hierarchical organization; 
- good visualization capabilities, applicability in getting 

acquainted of novices with the investigated problem 
area. 

The simulation here proceeds in 2 phases: 
1) a qualitative evaluation of the current state and se­

lection of the corresponding set of systems parameter change 
equations; 

·2) calculation of system state changes in the next simula­
tion step (according to the selected set of equations of phase 1). 
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So, a simulation system can be organized as a diagnos­
tic, evaluation system with feed-back links and state-change 
calculations of the simulated process. 

Up till now the proposed rule-based simulation method 
was used for simulating a water heater (Maskeliunas, 1993). 
Using it for the competitive system simulation two additional 
important features were introduced: 1) variable duration of 
the simulation step; 2) combination with the global optimiza­
tion. 

1) The simulation process here is a combination of three 
asynchronous sub-processes (i.e., the income flow of custo­
mers, serving at the 1st and the 2nd service enterprise). The 
checked time moments are such, when a qualitative change 
occurs in any of the simulated subsystems. The duration of a 
simulation step varies, dependent on the concrete calculated 
sequence of qualitative changes. Such an improvement allows 
to realize any usual qualitative simulation (Kuipers, 1986), 
(Trave-Massuyes, 1990), not only constant step simulations. 
Thus, qualitative simulations can be realized by the rule-based 
system (i.e., by the available expert system shell), without ap­
plying specialized qualitative simulation tools. 

2) The search for the optimal strategy (cost&price posi­
tioning) was simulated. The rule-based simulation method 
was combined with the Monte Carlo global optimization me­
thod, realized using the same rule-based system. The simu­
lation process includes 2 subprocesses: search for the' optimal 
case, and simulation with the selected best cost&price levels. 
After the current simulation phase both competing enterprises 
suppose that the competitor will keep the current cost&price 
of its service and seek (using a generator of random numbers 
and a trial simulation run for every generated alternative) his 
best possible cost&price combination. I.e., the optimizer (1.2) 
is used, and the Nash equilibrium is sought. When both com­
petitors have their prepared cost&price pair, the simulation 



V. Tieiis et al. 223 

using them is executed. The checked number of random gen­
erated alternatives and the number of optimization steps are 
given by the user. 

The control parameters of the competitive enterprise sim­
ulator are: the price and cost range; the means and variances 
of customers' flow and service durations at every service en­
terprise; the factors of service duration/service cost (for both 
enterprises); the duration of a separate trial simulation and 
the number of the last checked time moments of a qualitative 
change (the results gained at those moments are averaged for 
decreasing effects of a concrete stopping moment); the num­
ber of checked Monte Carlo alternatives; and the number of 
optimization steps. 

The content of the main simulation videogram given to 
the user during the simulation time is presented in Fig. 1. 

At any moment of the simulation process the user can tem­
porarily interrupt it and: print the current simulation state 
data, change simulation parameters, continue or terminate the 
simulation. The final results of simulation are optimal prices· 
and costs of both enterprises (Yi, Xi, i = 1,2) and their means 
calculated during the whole simulation process. The results 
of one concrete simulation and the conclusions of gained ex­
perience are presented in subsections 4.2 and 4.3. 

4.2. The experiment with two competitive servers. 
The simulation system was used to construct a model of two 
competitive servers, say, hairdressing saloons. We assume that 
the service prices range from 10Lt to 50Lt. Clients come every 
10 minutes with the deviation of 5 minutes; one trial simula­
tion (one work day) continues 12 hours. So, one day simulation 
processes are not yet steady, and rather a realistic dynamics of 
competition is investigated. Obviously, the results essentially 
depend on limitations of the simulation duration, limitations 
of prices and so on. The queues are not extended to the next 
day, therefore the asymptotic optimal strategy may become 
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COlpetitive service simulation and optilization Accolplishlent 

Price range: [.1-(.1 Lt IStability}: (q Optilization step ii:(.1 -) (,1 

• Probe: Ivarl:( .. 1 -) var:I .. 1 . . Probe: ivar2:1 •• ) -) var:( .• ) 
xloptl ... ~.);rlopt[ ••••. J;ulopt[ ..•.. 1 x20ptl ..... ) ;y20pt[ ..... 1 ;u20ptl ..... 1 
xlo:I ..... I; ,10:1 ..... 1; ulo:[ ..... 1 x20:1 ..... I; '20:[ ..... ); u20:1 ..... ) 
xl:I ..... I; ,1:[ ..... 1; ul:I ..... 1 x2:[ ..... 1 ; ,2: [ ..... ); u2:[ ..... ) 

Sml~e price: '1:1 .... 1 Lt/cust.~ 
SerVlce cost. xl:{ .•.• ) Lt/hour 

Servi~e price: rl:I ••.. ) Lt/CU8t.~ 
Servlce cost: x2:{ .••. 1 Lt/bour 

Service duration: { •••. )+/-II.in/cust Service duration: ( •.•. I+/-I).in/cust 

Smed:I·1I Profit: ul: I ...... ) Served: 1 .11 Profit: u2: I ••••.. ) 

Queue (1) : [ .. I Now is: i:l .. J step Queue (2) : ( .. 1 
Clle custoaers! 11: I .. I t : I .. 1 -) [ .. I linute Clle custolera!21: I .. ) 

- - - -- - - ---
xllean:[ ...... I Total nUlber of arrived custolers: I .. ) xZlean:[ .••..• ) 
rllean:I ...... 1 r2uan:[ •...•• ) 
uhean:I ..•.•. 1 Duration between 2 custolera: 1.1 t/-II lin. u2lean: I ..•... 1 

(For telporal stopping - please press any key) 
Saulius 11., 1994 csso-3 

Fig. 1. The main videogramme of the rule-based simu­
lation system. 

a bad one. The service rate is measured in h -1. The devia­
tion of the service rate is 4 minutes. The rate of cost price 
<p = 15Lt. The taxes are negligible: f = 1. 

The competitive hairdressing saloon uses the object of op­
timization (1.2) and the Monte Carlo optimizer in the way 
described in the previous section. Each of them looks over 
a lot of random versions of its own service price for one day 
simulation with the purpose to maximize its profit, expect-
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ing that the competitor's service price will be the same as 
today. Next day both competitors change their service prices 
according to their yesterday's calculations. And everything is 
repeated. We set the number of random versions (looked over 
by every hairdressing saloon) equal to 200. An example of 
one simulation run is presented in Table 1. The influence of 
initial values of Xi, Yi, i = 1,2 is insignificant: in all cases the 
analogous process is reached finally. 

4.3. Rule-based Monte Carlo simulation experi­
ence and results. In the investigation of the competitive 
model several different simulation versions were tried, gradu­
ally increasing the complexity and improving the simulation 
system. 

The simulation versions were these: 
- the step-wise simulation of competition; 

the competition simulation combined with the Monte 
Carlo optimization, giving a broad menu of control pos­
sibilities to the user; 
a significantly accelerated Monte Carlo simulation (the 
acceleration was gained by limiting control possibilities 
in the intermediate simulation states, and by informing 
the user about the simulation current stage only when 
requested, not at every simulation step); 
the application of additional heuristics. 

Analysing the competitive system the simulation param­
eters and the applied assumptions got gradually complicated 
from the simplest to more realistic cases of competition. At 
first, the deterministic case was probed. Later on, the ran­
dom deviation's of the customers' flow and of the service du­
rations were introduced. At the next investigation stage the 
simulation parameters were adjusted to some hairdressing sa­
loons competition case. Finally, the additional features were 
introduced: (1) increasing the stability of the simulation re­
sults (i.e., decreasing the fluctuations by averaging the re-
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Table 1. Dynamics of the service price change in the com­
petitive model 

day CPZ1 Y1 U1 CPZ2 Y2 U2 

1 28.07 30.07 -34.37 25.84 27.84 33.97 
2 25.19 26.19 26.18 28.20 29.20 -30.06 

3 27.93 28.43 -27.93 24.70 25.20 22.36 
4 22.87 23.87 19.36 26.41 26.91 -23.82 
5 24.85 25.85 -16.98 22.10 22.60 15.66 

6 19.40 19.90 9.04 24.47 24.97 -11.53 
7 21.68 23.68 -3.77 16.94 18.44 5.32 
8 16.27 18.27 4.32 21.82 22.32 -8.06 
9 18.28 20.28 0.18 16.18 18.18 4.56 

10 13.86 17.36 2.40 17.73 18.73 1.06 

11 15.78 18.28 4.49 17.63 19.63 -0.30 
12 15.83 18.33 -0.75 16.35 16.85 3.10 
13 18.18 20.18 -0.68 16.19 18.19 4.21 
14 16.65 18.15 2.52 16.67 18.67 -0.62 
15 16.86 18.36 0.56 14.89 17.89 3.35 

16 15.31 17.31 2.67 16.89 17.89 -0.84 
17 16.81 17.31 1.79 15.89 17.89 -0.19 
18 16.43 17.43 -0.27 15.15 17.15 3.14 
19 16.06 18.06 -0.63 15.15 17.15 1.49 
20 14.64 16.64 2.07 14.93 17.93 1.23 

21 14.56 17.56 2.59 16.48 18.98 1.16 
22 15.48 18.48 3.00 14.32 17.32 2.08 
23 15.48 18.48 0.48 16.67 18.17 2.89 
24 15.68 17.68 2.19 16.63 18.13 -0.89 
25 15.42 17.92 1.09 14.84 16.34 1.67 

26 15.20 16.20 1.26 16.93 18.93 -1.00 
27 16.76 18.76 -1.15 15.98 18.48 4.92 
28 16.17 17.67 3.06 15.98 18.48 0.44 
29 17.17 17.67 -1.15 16.51 17.51 1.83 
30 16.33 17.33 2.98 15.98 17.48 -1.36 

31 16.33 17.33 -0.13 14.83 16.83 2.12 
32 17.05 19.55 5.02 14.33 16.83 2.12 
33 18.71 20.71 -5.94 17.92 18.42 4.61 
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suIts gained at the indicated number of last checked quali­
tative change moments of the trial simulations); (2) setting 
the maximal price levels the customer can pay for his/her ser­
vice; (3) introducing the heuristics for seeking better (Xi, Yi) 

pairs (as the complement to the Monte Carlo generation of 
service rates and prices). 

Some regularities of the competition dynamics, compat­
ible with the theory presented in Section 2, may be derived 
from the simulation results. When the service rate Xi is small 
(less than the rate of clients Xi < ai), every competitor raises 
the service price in accordance with (2.6. case 1) (in our case 
the service price is limited from above and from below). When 
the service prices become very large, competitors begin to re­
duce them in accordance with (2.6 cases 1, 2). The Nash 
equilibrium was not reached, and that is consistent with The­
orems 1, 2. But at the end of the competition process the 
prices vary in a rather narrow zone. This variation is compat­
ible with the reduction or the raise in conformity with (2.6). 
The width of the variation zone depends on the limitations of 
duration of one day simulation and on those of prices. The 
averaged final prices Yi, i = 1,2 are slightly greater than the 
critical level cp. 

The rule-based Monte Carlo simulation system enables us 
to vary a set of control parameters, i.e., to vary the conditions 
of the competition and the strategies of competitors. Some 
new regularities were observed in this way: 

1) The influence of the initial values of Xi, Yi on the simu­
lation results is insignificant: after the transitional period the 
same final process is reached; 

2) The result of the competition has no steady solution 
(where: T( zi ,z2) = (zi, zi», but here a fuzzy zone exists in 
which Xi and Yi values fluctuate at random. Random fluc­
tuations depend on the customers' flow and service duration 
random deviations, on the number of tested random alterna-
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tives, and on the inner parameters of the simulated system; 
3) The fluctuation character is similar to the "saw" shape, 

i.e., a gradual reduction with a sudden raise. On overstepping 
some limit level, the next reduction increases the probability of 
a sudden raise. The deviations from the averaged fluctuation 
form can be reduced by increasing the number of the tried 
Monte Carlo alternatives, and by averaging the results, gained 
at the indicated number of the last checked time moments 
of a qualitative change in eachtrial simulation (e.g., taking 
last 6 values). The last mode is especially effective because 
it decreases the dependence of the simulation results on the 
incidence of the very last event of simulation time; 

4) It is reasonable to combine the random generation of 
(Xi, Yi) pairs with the use of heuristics. (An example ofheuris­
tic: if we know the strategy of partner's service cost and price 
pair generation - it is reasonable to reject the assumption that 
he will keep steady values of his choice). The heuristics can 
be derived as the effective conclusions of the simulation pro­
cess regularities, that, in their turn, were cleared up by the 
analysis of previous simulation. That allows us to increase 
the efficiency, the quality, and the stability of searching for 
(Xi, Yi) pairs. Various heuristics can be tested assigning them 
to different simulated competitors. The use of the rule-based 
system for combining the Monte Carlo simulation with strate­
gic heuristics is especially promising for future investigations. 

5. Conclusions. Both analytical and simulation inves­
tigations show that there are models of competition, where 
wide used N ash equilibrium does not exist. This occurs as the 
competitor optimizes his strategy, without considering the op­
timization of another competitor. We have proposed and in­
vestigated a modification of the Stakelberg equilibrium as a 
model for the optimization with a prognosis. This equilibrium 
forms more realistic prices and it represents more reasonable 
strategies of competitors. 
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The design, modification and experience. with the simu­
lation system have shown that the rule-based simulation ap­
proach is useful for designing prototype simulation systems, 
convenient for obtaining principal operatior'3 of the simulated 
system, for a comparative investigation of d.ifferent alternative 
cases, educational and training purposes. 
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