INFORMATICA, 2018, Vol. 29, No. 3, 439-466 439
© 2018 Vilnius University
DOT: http://dx.doi.org/10.15388/Informatica.2018.175

A Comparative Study of Approaches of Ontology
Driven Software Development

Hele-Mai HAAV

Department of Software Science, Tallinn University of Technology
Akadeemia tee 15a, 12618 Tallinn, Estonia
e-mail: helemai@cs.ioc.ee

Received: October 2017; accepted: May 2018

Abstract. Ontology Driven Software Development (ODSD) combines traditional Model Based
Software Development (MBSD) techniques with ontology technology in order to provide exten-
sions to and advantages over MBSD. The goal of the paper is to identify current ODSD approaches
and to provide qualitative and comparative analysis of the collection of identified approaches. Main
research questions of the paper concern the ways of how ontologies are integrated to MBSD process
and how their usage advances MBSD. Benefits and challenges of each of the discussed approaches
are presented. The analysis is based on literature and projects reviews in the fields of ontology engi-
neering, MBSD and ODSD. The result of the analysis provides understanding of what is the role of
ontologies in ODSD and shows whether application of ontology technologies to the MBSD process
gives rise to a new paradigm called consistency preserving software development or not.

Key words: ontology, model-based software development, MBSD, ontology driven software
development, ODSD.

1. Introduction

In the Model Based Software Development (MBSD) process conceptual models of soft-
ware are used for generation of code of a software system. Conceptual models of software
are specified using formal or semiformal languages (e.g. Unified Modelling Language
(UML)Y). There is a wide range of MBSD approaches (OMG, 2003a; Gronback, 2009;
Fritzson, 2014; Kalnins et al., 2005, 2010) and tools that enable code generation from
given software models (e.g. ModelicaZ, MetaEdit+3). However, most software models
used by these approaches do not have formal semantics and related logical reasoning fa-
cilities.

On the other hand, ontologies can be considered formal models of a domain of interest.
They are expressed in languages like Ontology Web Language (OWL) (Motik et al., 2012)
that has underlying formal semantics expressible in Description Logics (DL) (Baader et
al., 2009) and supported by ontology reasoning services based on DL reasoning.

1 http://www.omg.org/spec/UML/.
thtp://www.modelica.org.
3http://www.metacase.com.

440 H.-M. Haav

Combining traditional MBSD methods and ontology technology methods in the
process of software modelling and development is called Ontology Driven Software
Development (ODSD) (Assmann et al., 2010; Pan er al., 2013; Staab et al., 2010;
Gasevic et al., 2009; Katasonov, 2012).

ODSD approaches exploit the expressive language for the representation of the knowl-
edge of software modelling domain (e.g. OWL) and the powerful ontology reasoning (e.g.
DL reasoning) (Parreiras and Staab, 2010). For example, standard ontology reasoners can
be used for consistency checking, constraint validation, and query processing of software
models. The knowledge that is described in ontology is separated from the execution logic
of software system. This makes it possible to keep domain knowledge only in the ontology
and query the ontology for getting specific knowledge of a domain (Gasevic et al., 2009;
Haav and Ojamaa, 2017; Hoehndorf er al., 2009; Katasonov, 2012; Pan et al., 2013).

Traditional MBSD approaches like the Model Driven Architecture (MDA) (OMG,
2003a) use domain models represented in UML for generation of code for specific soft-
ware systems. In contrast, ODSD uses domain models in the form of ontologies not only
for code generation, but also during run-time of the software system (Atkinson et al.,
2011).

ODSD is intended to provide advantages over traditional MBSD approaches and give
rise to the consistency preserving software development where ontology reasoning and
querying services are applied through the whole software development life cycle in order
to preserve consistency of models (Pan et al., 2013).

The main motivation of this paper is a lack of comprehensive comparative analysis of
current approaches of ODSD and corresponding tools in order to understand the state of
the art and future developments of ODSD. Existing surveys capture only some aspects re-
lated to ODSD as follows: comparison of meta-models and ontologies (Henderson-Sellers,
2011), roles of ontologies in software requirements engineering (Valaski et al., 2016) and
in domain specific languages (Sutii et al., 2014) as well as ontology-based reuse of domain
and enterprise engineering assets (Caplinskas et al., 2003).

The goal of the paper is to identify fully developed approaches of using ontologies
in the MBSD process and to provide comparative analysis of the collection of identified
approaches in order to draw some conclusions with respect to the current level of the
adoption of ODSD and consistency preserving software development.

Main research questions of the paper concern ways of how ontologies are integrated to
MBSD and what their role in the MBSD modelling pyramid is. The paper also analyses the
use of ontology reasoning. Benefits and limitations of each of the discussed approaches for
MBSD are presented and compared. The analysis is based on the literature and projects’
review in MBSD and ODSD fields.

The first contribution of this work is a review of the state of the art of ODSD ap-
proaches. The second contribution is an analytical comparison of ODSD approaches iden-
tified for this work. The third contribution is a discussion of the benefits and future chal-
lenges of ODSD with respect to consistency preserving software development.

The rest of the paper is structured as follows. Section 2 gives a brief overview of ter-
minology of MBSD and explains modelling principles of MDA. Section 3 introduces on-
tology technology principles and gives an overview of efforts of integrating ontologies to

A Comparative Study of Approaches of Ontology Driven Software Development 441

MBSD. Selection criteria and an analytical comparison of selected ODSD approaches are
given in Section 4. Section 5 is devoted to related surveys on ODSD. Section 6 concludes
the paper.

2. Model Based Software Development

Model Based Software Development (MBSD) is an improvement of the software refine-
ment method of the 1970s where in addition to manual refinement (semi)automatic model
transformations are used to derive from abstract models more concrete models of software
artefacts. Reverse connections between these models are also important. The connections
of model elements are achieved using meta-models that define sets of valid models. The
basic advantage of MBSD is the improvement of software development process by using
software models that abstract away certain implementation details and are much closer to
the problem domain comparing to general purpose programming languages.

2.1. Overview

In order to promote the usage of MBSD approach, the Object Management Group (OMG)
initialized standardization efforts and as a result in 2001 introduced Model Driven Ar-
chitecture (MDA), an architectural framework for using models in software development
(OMG, 2003a). The MDA approach is not new as using models as abstract representa-
tions of software artefacts in order to automatically produce the program code is not new.
Also, the idea of building software models that are independent of any platform is not new.
However, MDA is the first systematic approach that provides means for using models in
different stages of software development.

Another effort to promote MBSD is Eclipse Modelling Framework (EMF) (Gronback,
2009). Itis a modelling framework and code generation facility for building tools and other
applications based on a structured data model. EMF provides tools and run-time support to
produce a set of Java classes from a given model specification described in XML Metadata
Interchange (XMI) format.

2.2. Terminology

In general, a model is a representation of a world that might be the real world or an abstract
world (e.g. another model). It consists of statements in some language that follows a de-
fined syntax (Abu-Hanna and Jansweijer, 1994). Models can view the world from different
viewpoints. For example, the structural view describes the static semantics of a world and
the behavioural view expresses its dynamic semantics.

In particular, the OMG MDA document (OMG, 2003a) defines the notion of a model
of a system as follows: “A model of a system is a description or specification of that system
and its environment for some certain purpose. A model is often presented as a combination
of drawings and text. The text may be in a modelling language or in a natural language”.

442 H.-M. Haav

MDA defines three types of models (also called stereotypical models) as follows: Com-
putation Independent Model (CIM), Platform Independent Model (PIM) and Platform
Specific Model (PSM) (OMG, 2003a).

According to the MDA standard, CIM just describes concepts related to a particular
domain, but with no reference to the problem to be solved in that domain. PIM describes a
particular system that solves a particular problem but in a technology independent manner,
while a PSM describes how this system can be implemented using a given technology.
Other similar classifications of models consider conceptual models, specification models
and implementation models instead (Fowler and Scott, 1997).

In MDA, software development methods start from CIM and PIM and incrementally
transform PIM to PSMs from what the final code is automatically generated. Refactoring
from PSM to PIM is also necessary.

2.3. Meta-Modelling Principle

As already mentioned above, a model can represent other models. Models that represent a
set of models are called meta-models. They describe (specify) valid elements (structure)
of models (i.e. how a world should be modelled). A model is an instance of a meta-model.
Meta-models can have a specific purpose or domain in which they are applied (Assmann
et al., 2006).

According to meta-modelling principle, meta-meta-models can be built, too. They rep-
resent meta-models and describe valid ingredients of meta-models. A meta-model is an
instance of a meta-meta-model. Accordingly, a meta-meta-model represents a set of meta-
models.

On the other hand, the notion of the model in MDSD is related to the notion of language
of expression of a model (see definition above). For example, in the MDA standard all
meta-models must be written in the Meta-Object Facility (MOF) language (OMG, 2002)
to be MDA compliant.

In general, the meta-model is a model of a modelling language (with its abstract syntax
and static semantics) to be used for describing concepts used for modelling the model (i.e.
a domain model that is an instance of a meta-model). Consequently, the meta-meta-model
defines a language for expressing meta-models. In MDSD, using explicitly given meta-
models is highly important for automation of software development (e.g. code generation).

On the basis of meta-modelling principle, OMG introduced a meta-pyramid of mod-
els used in MDA and presented it in the ISO Information Resource Dictionary System
(IRDS) standard (ISO, 1990). It contains four levels (Fig. 1) as follows: MO level (ob-
jects/system instances), M1 level (models/instance specifications), M2 level (meta-model
or language specifications), M3 level (meta-meta-model or modelling concepts level). The
OMG meta-pyramid uses MOF as the meta-meta-model on the meta-meta-model level.
In this mainstream modelling pyramid, the UML based meta-models are used.

The MDA models, CIM, PIM, and PSM are considered on M1 level (models). On M2
level they are specified by corresponding meta-models that are dialects of UML, enriching
the UML core by profiles.

A Comparative Study of Approaches of Ontology Driven Software Development 443

M1:three ontologies (domain, task,
top level)

MO:sofware

Fig. 1. The OMG meta-pyramid of models.

This meta-pyramid and MDA approach have been criticized in research community
because of its complexity, inconsistency, volume, etc. (Assmann et al., 2006). However, it
is an industrial effort (i.e. a set of specific industrial technologies) and as such supported
by various tools and used in software development practice.

Inrelation to Java, meta-modelling principles are used in the Eclipse Modelling Frame-
work (EMF) project4. The core of the EMF framework includes a meta-model (the Ecore
model) for describing models and run-time support for the models. EMF is based on two
meta-models; the Ecore and the Genmodel model. The Ecore meta-model contains the
information about the defined classes. The Genmodel contains additional information for
the code generation. EMF allows to create the meta-model via different means, e.g. XMI,
Java annotations, UML or an XML Schema. On the basis of the specified EMF meta-
model the corresponding Java implementation classes can be generated. The generated
code can be later manually extended.

3. Ontology Driven Software Development

A requirement to enhance software models to become formalized, complete, and precise
introduced a new trend in MBSD that concerns integration of various ontologies as formal
models to the MBSD process giving rise to ODSD. It refers to the different applications
of ontologies in the software engineering process and in producing its artefacts (Pan et
al., 2013). The working groups at the OMG and the W3C have carried out initial steps
towards ODSD in 2006 (OMG, 2006). Since then many researchers have provided differ-
ent ways of the use of ontologies for improvement and enhancement of traditional soft-

4http://WWW.eclipse.org/modeling/emf/?project=emf.

444 H.-M. Haav

ware engineering processes as well as of MBSD (Assmann et al., 2010; Pan et al., 2013;
Staab et al., 2010; Katasonov, 2012; Haav and Ojamaa, 2017).

3.1. Ontology: Definition, Representation Languages and Reasoning

Since the 2000s, the notion of ontology is widely used in order to represent domain knowl-
edge to be commonly understood between humans, humans and computers or computers
in various data and knowledge integration fields.

The term ontology has several definitions. In this paper, we use the definition given
in computer science by Gruber as follows: “an ontology is an explicit specification of a
conceptualization” (Gruber, 1993).

In general, an ontology includes computer-processable definitions of basic classes of
things that exist in a domain and the relationships among them as well as the properties
(or attributes) of these things.

Ontology needs to be specified formally for automated processing by computers. In
the beginning of the 1990s, several formal languages have been developed for ontology
representation. Currently, the most widely used ontology representation language is DL
based OWL that is the W3C recommendation since 2004°. The latest version of OWL,
OWL2° is a highly expressive language that allows for sound and complete calculi that
are decidable as well as practically efficient (Guizzardi, 2013).

Ontologies represented in OWL enable different reasoning services that are based on
underlying formal semantics of OWL, i.e. DL. The set of standard reasoning services
provided by the most of DL reasoners (e.g. Fact++, Pellet®) is as follows (Baader er al.,
2009): consistency checking (checks contradiction among the definitions of concepts),
satisfiability checking (finds all unsatisfiable concepts in a given ontology), subsumption
computing (computes subclasses of a given class), classification service (classification
of concepts according to subsumption of their definitions), and instance retrieval service
(retrieves instances of a class).

Ontology querying service is provided using SPARQL? that is the W3C standard query
language for Resource Description Framework (RDF)!©.

The above given reasoning services play an important role in the use of ontologies in
ODSD as reasoning capability is one of the distinguished features of ontologies comparing
to traditional software models used in MBSD.

3.2. Comparison of Ontologies and Conceptual Models of Software

Comparing to software models used in MBSD, ontologies can be considered a spe-
cific kind of models (Atkinson et al., 2006; Henderson-Sellers, 2011; Guizzardi, 2007,

5 https://www.w3.0org/TR/2004/REC-owl-features-20040210.
6https://www.w3.0rg/1“ R/owl2-overview.
7http://owl.man.ac.uk/factplusplus.
8http://www.clarkparsia.com/pe]]et.
9https://www.w3.org/TR/sparql 11-query.

1 0https://www.w3.0rg/RDF.

A Comparative Study of Approaches of Ontology Driven Software Development 445

Assmann et al., 2006). The works referred above identified the main differences between
ontologies and models in MBSD as follows:

1. Models are oriented to realization but ontologies are not.

2. Ontologies are mostly intended to be used at run-time and they have formal repre-
sentation that allows reasoning and querying. In contrast, models are basically used
at design time and they do not provide reasoning services.

3. Models use the Closed World Assumption (CWA) while ontologies apply the Open
World Assumption (OWA).

Analysing the semantics of OWL ontology and UML based models, we need to point
out that OWL does not assume unique names for individuals (called Unique Name As-
sumption (UNA)). Therefore, in order to distinguish individuals by their name we need to
explicitly state that they are distinct.

Another important difference of semantics is related to the set of instances; is it con-
sidered complete or not. The semantics of UML-based modelling assumes that the set
of instances of a given model is complete (CWA). Therefore, the lack of information in
instances of a UML-class based model is interpreted as negative information, since there
is only one interpretation and everything that does not belong to this belongs to its com-
plement (CWA). In contrast, OWL assumes incomplete knowledge by default and allows
for validating incomplete models which are still in the design phase. The set of individu-
als, literals and property assertions has many different interpretations in OWL ontologies.
Therefore, the absence of information in this set only indicates the lack of knowledge
(OWA).

3.3. Combining Ontologies with MBSD Towards ODSD

The use of declarative knowledge representation in the field of MBSD is not new (e.g.
recall the field of Knowledge Based Software Engineering in the 1980s).

Ontologies as semantic declarative models may extend a set of models used in the
MDA. In the beginning of the 2000s, W3C issued the Ontology Driven Architecture
(ODA) note that was a starting point of bringing together software engineering methodolo-
gies (e.g. MDA and UML) and semantic web technologies (e.g. RDF and OWL) (Tetlow et
al., 2006). This activity later resulted in issuing Ontology Definition Metamodel (ODM)
by the OMG. The OMD is an OMG specification of application of concepts of the MDA
to the ontology engineering in order to exploit features of UML tools for the creation of
vocabularies and ontologies (OMG, 2003b). The latest version of the ODM is from the
year 2014. Figure 2 depicts the hierarchy of the MOF-based meta-models for the OWL
ontologies in the ODM.

M2 level defines OWL meta-model that is intended to be used for defining ontology
models. Ontology of a particular domain belongs to M1 level and ontology instances to
MO level.

In general, there have been identified much more benefits of bridging semantic web
technologies with the MDA than the ODM. A number of novel ways of extending ca-
pabilities of MBSD have been provided by many researchers (Assmann et al., 2010;

446 H.-M. Haav

M3: MOF

g

M2: a MOF class model describing the
structure of OWL (e.g. ontology
metamodel)

M1: a particular OWL ontology

MO: instances of a particular OWL
ontology

Fig. 2. The ODM hierarchy of models.

Pan et al., 2013; Staab et al., 2010; Katasonov, 2012; Haav and Ojamaa, 2017). These
works have been basically motivated by the fact that MDA-based languages are not logic-
based and do not enable reasoning. Therefore, their capabilities to describe the seman-
tics of the domain are rather limited compared to ontology representation languages (e.g.
OWL).

The most common way of applying ontologies in MBSD is to consider ontologies to be
conceptual domain models, which are used in domain engineering to describe the problem
domain that a software system should support (Guizzardi, 2013; Walter et al., 2010; Staab
et al., 2010). For example, in Walter ef al. (2010), ontologies are considered to be one
single representation for meta-model and domain model. In this case, the terminological
part (the TBox in DL) of the ontology consists of language concepts typically defined in
the meta-model of a DSL. A set of instance assertions (the ABox in DL) relates individuals
to the concepts described in the corresponding TBox.

In addition, in Falbo ef al. (2002) an ontology-based approach to domain engineering
is proposed. According to this method, a domain ontology is used as a domain model and
domain analysis is replaced by ontology engineering. During the domain design stage the
ontology is mapped to an object model.

Another broad area of application of ontologies in MBSD involves approaches that
incorporate ontologies directly into software models themselves or use references to se-
mantic metadata in software models or combine both approaches (Tetlow et al., 2006).

4. An Analytical Comparison of ODSD Approaches
In this Section we provide the results of a comparative study that evaluates four identified

complete ODSD approaches that exploit several ways of integration of ontology technol-
ogy and MBSD. The goal is to discover the most distinguishing ways of the usage of

A Comparative Study of Approaches of Ontology Driven Software Development 447

ontologies in ODSD enabling successful and applicable integration of both technologies.
The analysis also aims at understanding whether state-of-the-art ODSD approaches may
give rise to a new consistency preserving software development paradigm or not.

4.1. The Research Methodology and the Selection of Approaches

The analytical focus of this study is to identify similarities, differences and complemen-
tarity of the selected ODSD approaches according to the following aspects of interest:

1. Ways of integrating ontologies into the meta-modelling pyramid of MDA and their
roles in ODSD.

2. The use of ontology services in ODSD.

3. Benefits of ODSD approaches beyond traditional MDA or MBSD.

4. Applications and limitations of ODSD approaches.

In order to be included into this analytical comparison task the ODSD approaches have
been selected from a set of approaches we have found through extensive literature and
project review applying the following selection criteria:

1. Availability of a method of systematic integration of ontologies into the meta-
modelling pyramid of a particular ODSD approach.

2. Application of ontology reasoning services at run-time of a software system.

3. Availability of a tool that implements the ODSD approach and its application do-
main.

These selection criteria are related to the analytical focus of this study meaning that se-
lected ODSD approaches may expose more characteristics than used for this study. After
evaluation of the approaches we have identified four ODSD approaches that systematically
utilize ontologies as software and domain models as well as provide some set of tools for
ontology-based system modelling.

The most well-known approach among them is developed within the framework of the
MOST project (Walter and Ebert, 2009; Pan et al., 2013; Assmann et al., 2010). It tries to
bridge system modelling and ontological modelling in the field of software development.
The main goal of the MOST approach is to enhance UML based syntactic modelling
(structural modelling) by using OWL ontologies for representation of static semantics of
software systems. This is done by providing transformations from MDA models to OWL
and integration of these two technical spaces in software development process. Secondly,
we analyse a hybrid ODSD framework (Katasonov, 2012) that is based on the main idea
of the MOST approach but extends it with the usage of several types of ontologies and
ontological services. It uses SPARQL patterns in addition to OWL (and DL) for ontolog-
ical modelling. Third approach that is analysed in this paper is also a hybrid approach,
where OWL ontologies are integrated into model-based software technology that uses
automated program synthesis for generating software from models (Haav and Ojamaa,
2017). We call it the DSL meta-model ontology based approach in this paper. Last but not
least, we analyse the three ontology method (Hoehndorf et al., 2009) that uses domain,
task and top-level ontologies for ontological modelling of a software system.

448 H.-M. Haav

Integratlon
/ Integratlon

model Integratlon M1: OWL ontology (Abox)

MO: software MO:sofware
A\
\ f E
\\

Fig. 3. The MOST model and language transformation approach.

M3: OWL metamodel
(RDFS)

M2: DSL metamodel

M1: Application specific

M2:0WL ontology (Tbox)}

/
/ M3: Ecore metamodel

4.2. Integration of Ontologies into Meta-Modelling Pyramid

In general, ODSD approaches exploit several kinds of ontologies representing knowledge
of various domains. On the other hand, ontologies as descriptive models play different
roles in the meta-modelling pyramid of MBSD and software architecture. Therefore, the
integration of ontologies into the well-established meta-modelling pyramid of MDA is not
a straightforward task to be solved by any ODSD approach.

4.2.1. The Approach of the MOST Project

The EU project MOST has been carried out by many researchers during several years and
the results of the approach are well published in Staab er al. (2010), Walter et al. (2010),
Pan et al. (2013), Walter ez al. (2014).

The general goal of this approach is to improve software development by integrat-
ing ontology engineering into MBSD. The technology provided by the MOST approach
is more general than the ODM described above (see Section 3.2). The MOST approach
provides a platform independent solution to the integration of UML and OWL modelling.

Integration of MBSD and ontology engineering is considered on two levels in the
MOST approach. First, software modelling language (i.e. UML) and ontology represen-
tation language (i.e. OWL) are integrated by providing a unified view of meta-models.
These integrated meta-models can contain, in addition to software modelling constructs,
also semantic descriptions and axioms based on OWL. Second, ontologies and models are
integrated so that ontologies can be used in models, and vice versa.

According to the MOST approach, OWL meta-model described in RDFS!! is located
on M3 level of the ontology meta-modelling pyramid. Terminological part of OWL on-
tologies (TBox) is on M2 level corresponding to meta-models in MDA and instances of
ontologies (ABox) belong to M1 level that corresponds to models in MDA metapyramid
(see Fig. 3 at right hand).

The Most approach distinguishes between model transformations and model integra-
tions. Model transformations automatically generate target models from source models

1 https://www.w3.org/TR/rdf-schema.

A Comparative Study of Approaches of Ontology Driven Software Development 449

using a set of transformation rules. First of all, the MOST approach provides transforma-
tions from the levels of Ecore meta-modelling pyramid to the levels of ontology meta-
modelling pyramid as shown in Fig. 3 and described in more detail in Walter et al. (2014),
Staab et al. (2010).

The Most approach defines 2 transformation bridges on M3 and M2 levels that could
be used on M2 and M1 levels accordingly (see Fig. 3).

The transformation bridge on M3 level provides the transformation from software lan-
guage constructs (e.g. Ecore) to the corresponding OWL constructs. Mappings between
Ecore and OWL constructs are defined and later used by the OWLizer that is a program
implementing transformations from Ecore meta-model or model into the OWL ontology
TBox or ABox. One transformation takes the UML meta-model and the annotations as in-
put and generates the corresponding OWL ontology TBox. Another transformation takes
the UML model created by the UML user and generates individuals in the same OWL
ontology (Staab et al., 2010).

The transformation bridge on M2 level describes a transformation between models on
M1 level.

In order to enable using models based on constructs of both modelling languages in
a combined way (e.g. to integrate UML class diagrams and OWL) the MOST approach
uses integration bridges (Staab et al., 2010). These require existence of mappings be-
tween modelling concept on M3 level and between meta-models on M2 level belonging
to both technological spaces. The MOST approach defines two integration bridges as fol-
lows (Staab et al., 2010):

1. Metalanguage Integration Bridge is defined on M3 level and it provides an inte-
grated meta-modelling language consisting of all classes of the Ecore meta-meta-
model and OWL meta-model. It is used for designing language meta-models at M2
level with integrated constraints.

2. Language Integration Bridge is defined on M2 level between meta-models of the
MDA meta-pyramid and OWL meta-modelling pyramid. This integration bridge is
applied on M1 level for integrating software models and ontologies. A designer can
use it for building integrated models that combine UML class diagrams and OWL.

4.2.2. The Hybrid ODSD Framework
The hybrid ODSD framework (Katasonov and Palviainen, 2010; Palviainen and Kata-
sonov, 2011; Katasonov, 2012) extends the MOST approach by using four different types
of ontologies and SPARQL patterns in addition to OWL for representing ontological
knowledge.

The hybrid framework proposes to explicitly use the following types of ontologies for
meta-modelling (Katasonov, 2012):

1. Domain ontology that describes the application domain of software.

2. Task ontology that describes platform independent problem-solving tasks that exist
in the domain.

3. Software ontology that describes the software artefacts themselves, including the
structural and the functional perspectives.

450 H.-M. Haav

M3:0WL

J

M2:0WL ontologies (domain, tasks,
software, interaction)+SPARQL
patterns

Fig. 4. The hybrid ODSD framework.

4. Interaction ontology that describes the interaction between software and its envi-
ronment/domain.

The hybrid framework considers semantic descriptions of software on M1 level and con-
cepts used for these descriptions are represented on M2 meta-model level as a set of on-
tologies (e.g. of four different types of ontologies listed above). Ontologies on M2 level
can be defined using OWL or RDFS, which are located on M3 meta-meta-model level
(see Fig. 4).

According to the semantic web technology, RDF is used to describe a set of individuals
and relationships between them and therefore the hybrid framework assumes that M1 level
models are given in RDF. Using RDF on M1 level makes it possible to exploit SPARQL
patterns for encoding ontological knowledge as an alternative or extension to OWL. How-
ever, the hybrid framework does not replace OWL with SPARQL patterns as a whole, but
only its mechanism for defining classes as restrictions (owl: Restriction class).

4.2.3. The DSL Meta-Model Ontology Based Approach

The DSL meta-model ontology based approach (Haav et al., 2015; Haav and Ojamaa,
2017) uses a concept of a DSL meta-model ontology that links ontologies of different
kinds for ODSD. This approach is an extension to the existing MBSD method (Kotkas et
al., 2011), where DSL meta-models are originally described in the CoCoViLa modelling
language. The extension of the CoCoViLa incorporates OWL ontologies to M2 level of
meta-models as depicted in Fig. 5.

The CoCoViLa modelling language on M3 level enables to describe meta-models of
DSLs for various domains (see Fig. 5). A DSL meta-model ontology (its TBox and ABox)
is created on M2 level of meta-modelling pyramid for each DSL to be developed and it
integrates the following basic types of modular ontologies:

A Comparative Study of Approaches of Ontology Driven Software Development 451

M3: the CoCoVilLa model

J
H
M2: DSL meta model in CoCoVilLa
modelling language

M1: application specific model

MO:sofware

Fig. 5. The DSL meta-model ontology based approach.

1. The system ontology of a MSDB tool (e.g. CoCoViLa, Kotkas et al., 2011) serves
as a conceptual model of the MBSD tool (e.g. CoCoViLa) used for a DSL develop-
ment and is a standard part of a DSL meta-model ontology that is imported to it. It
describes concepts of a particular modelling language and the corresponding tool
as well as relationships among them.

2. The domain ontology provides a specification of domain knowledge for a DSL.
More than one domain ontologies can be linked if necessary. In principle, the DSL
meta-model ontology can integrate additional ontologies for software modelling.
For example, in Ojamaa et al. (2015) two additional ontologies were used for the
attack tree DSL as follows: ontology of generic reusable components of the CoCoV-
iLa simulation toolbox and ontology of a library of attack models.

Links to external software artefacts (e.g. several types of components of a DSL meta-
model like Java classes from Java libraries, diagrams and their elements, the Java source
code, etc.) can be represented in a DSL meta-model ontology using corresponding data
property assertions or via the implementation relationship.

A DSL meta-model on M2 level is semi-automatically generated from the correspond-
ing DSL meta-model ontology according to the predefined mappings from OWL to the
CoCoViLa modelling language (Ojamaa et al., 2015). This dynamic semantic composi-
tion of a DSL meta-model uses SPARQL in order to have access to the OWL descriptions
of ontologies that are stored as RDF documents.

According to this approach, models on M1 level are automatically transformed to the
corresponding valid logical representation in order to use the method of automatic con-
struction of algorithm of a program (Mints and Tyugu, 1982) on MO level and for efficient
generation of the corresponding Java source code.

452 H.-M. Haav

M1:three ontologies (domain, task,
top level)

Fig. 6. Three ontology method.

4.2.4. Three Ontology Method

Three ontology method (Hoehndorf et al., 2009) proposes to use three ontologies in or-
der to define software models on M1 level as follows: a task ontology, a domain ontology
and a top-level ontology. A task ontology (a conceptual model) captures the conceptu-
alization of the problem domain that the software to be developed is intended to solve.
A domain ontology represents domain-specific knowledge that is used by the software.
A top-level ontology is a foundational ontology for both of these ontologies by providing
foundation for concepts used in task and domain ontologies. Consequently, the task and
domain ontologies are interrelated via top-level ontology and this makes it possible that
a task ontology can be extended with the concepts and relations and axioms of a domain
ontology.

According to the MDA modelling pyramid, three ontologies discussed above are lo-
cated on M1 level (see Fig. 6). OWL is considered on M2 meta-model level. The authors
of the three ontology method state in Hoehndorf et al. (2009) that MOF can be considered
on M3 meta-meta-model level in case MOF specification of OWL is available.

The software implemented according to the three ontology method applies the task and
the top-level ontologies to specify an interface for using entities from domain ontologies.
Therefore, domain ontologies are replaceable modules in this software architecture and
can be changed for the given task ontology. This makes it easy to adapt the software to a
particular domain. Using ontologies as a part of software models enables the software to
access its own ontological commitment (made explicit) during the run-time.

For example, the software can verify the semantics and integrity of data using these
ontologies. The authors of the three ontology method argue in Hoehndorf er al. (2009)
that it will be possible that the software model generated according to their method can
be used for automated code generation.

A Comparative Study of Approaches of Ontology Driven Software Development 453

Table 1
Ways of integration of ontologies to meta-modelling pyramid.

Level The MOST project Three ontology Hybrid Meta-model ontology
M3 OWL metamodel (RDFS) MOF OWL The CoCoViLa model
M2 OWL ontology (Tbox) OWL Four OWL ontologies DSL meta-model ontology

SPARQL patterns and DSL specification
M1 OWL ontology (Abox) Domain, task, top-level RDF Application model

OWL ontologies

MO Software Software Software Software

4.2.5. Conclusion

On the basis of the previous analysis, we draw some conclusions about the similarities,
differences, and complementarity of the ODSD approaches with respect to the integration
of ontologies to the meta-modelling pyramid of MBSD.

All ODSD approaches under consideration use OWL for representation of ontologies
and SPARQL for providing ontology query services. In addition, these approaches exploit
ontologies as machine processable knowledge resources during the design and the run time
of a software system.

There are significant differences among approaches related to kinds of ontologies that
are exploited for software development as well as roles of these ontologies play in the
meta-modelling pyramid of MBSD. The results of the analysis are shortly summarized in
the Table 1.

The MOST approach basically transforms UML meta-models to corresponding OWL
ontology for creation of ontologies that are translations of modelling languages them-
selves. Although it provides integration bridges for using combined models (e.g. UML
combined with OWL), the scope of ontologies is restricted to with modelling language
itself.

As seen from the Table 1, other three approaches provide wider range of ontologies
that are used for software modelling on M2 and M1 levels as well as during the run-
time of the software system. The hybrid framework uses four kinds of OWL ontologies
on M2 level. The DSL meta-model ontology based approach exploits on M2 level rather
flexible number of different ontologies that all are imported or linked to the DSL meta-
model ontology and to its core component (i.e. previously defined system ontology of the
corresponding modelling tool). The three ontology method uses three different ontologies
on M1 level.

Concerning the ways of incorporation of ontologies into the meta-modelling pyramid
of MBSD we may conclude on the basis of the Table 1 that the MOST approach follows
ODE and has the similar hierarchy separating OWL ontology TBox and ABox to M2
and M1 levels accordingly. The same idea is picked up by the hybrid framework, which
uses RDF data on M1 level that is basically the same as ABox. In contrast, the DSL meta-
model ontology based approach and three ontology method do not separate OWL ontology
TBox and ABox to be used at the different levels of modelling. However, these approaches
differ in the levels these ontologies are exploited. The DSL meta-model ontology based
approach uses ontologies on M2 meta-modelling level and the three ontology method on
M1 modelling level.

454 H.-M. Haav

4.3. The Use of Ontology Services

The use of ontology services is an important feature of any ODSD approach as this extends
capability of ordinary MBSD approaches. Ontology services can be applied during design
time of the software model as well as during the run-time of the software system that needs
to use a DL reasoner for processing of the ontologies.

4.3.1. The MOST Project

The MOST approach runs the standard ontology reasoning services and SPARQL queries
on an ontology (TBox and ABox) which is a representation of the meta-model of a mod-
elling language and corresponding models created by the language user (Walter ez al.,
2014; Staab et al., 2010). This means that those services are integrated to M2 and M1 lev-
els of model transformations. Accordingly, a model designer is provided with consistency
checking service to examine does a model fulfil restrictions set by the ontology.

Satisfiability and subsumption checking services are applied on the checking the on-
tology itself, i.e. to check the consistency of the meta-model and to infer the hierarchy of
defined classes that could be used to improve the corresponding meta-model.

Ontology querying using SPARQL provides the designer with an ability to query the
model more flexibly than provided by standard modelling tools.

In addition to this, the MOST approach includes services that explain inferences in
ontologies (could be used for debugging), services which notify a user about needed cor-
rections to be made to ontologies in order to achieve consistent ontologies and services to
link different ontologies (Walter et al., 2014; Staab et al., 2010).

4.3.2. The Hybrid Framework

In addition to traditional ontological services, the hybrid framework provides new onto-
logical services as follows: semantic search in model repositories, semi-automated model
composition services and policy enforcement service (Katasonov, 2012).

The hybrid framework allows semantic annotations of models of software components.
Models are stored together with their semantic annotations in local or online repositories.
This makes it possible to automatically discover models based on their annotations (i.e.
perform semantic search) by model composition services (Katasonov, 2012). The hybrid
framework provides the following model composition services (Katasonov, 2012):

1. Task-based model composition service enables to discover models of components
on the basis of high-level tasks they realize and then incorporate these into the
model.

2. Result-based model composition service implements a backward-chaining reason-
ing starting from the given resource that is to be produced as a part of the designed
software. Next, using the semantic search service, models of components annotated
as producing this kind of resource are retrieved. After that, the current model is
searched for possible suppliers of the inputs required by these retrieved components.

3. Opportunistic-based model composition service provides a kind of forward chaining
reasoning that analyses the current model with respect to what resources are being

A Comparative Study of Approaches of Ontology Driven Software Development 455

available, and after that models of components that can consume those resources
are searched for.

4. Policy enforcement service enables to check policies defined in relation to the de-
signed software, i.e. on policies about allowed model compositions, not the mod-
elling language as such.

4.3.3. The DSL Meta-Model Ontology Based Approach

The DSL meta-model ontology based approach uses standard DL reasoning services in
order to ensure the consistency of a DSL meta-model ontology (Haav et al., 2015; Haav
and Ojamaa, 2017). The consistency of the DSL meta-model ontology is checked by using
ontology inference provided by Apache Jena. This approach also uses SPARQL queries
during the run-time of the software system. For example, queries are used to get an access
to external software artefacts linked to the DSL meta-model ontology used by the software
system and to obtain knowledge about the software model.

4.3.4. Three Ontology Method
The three ontology method uses standard ontology reasoning services on the software
model that consists of three interrelated ontologies as follows: the top-level ontology, the
conceptual model (software ontology) and the domain ontology (Hoehndorf et al., 2009).
The consistency checks of these ontologies are performed either for each of the component
ontologies separately or for the combination of the top-level ontology and the conceptual
model or the top-level ontology and the domain ontology. Inconsistencies are automati-
cally detected and eliminated.

In addition to the model checking, ontology querying services are used during the
run-time of the software system for querying the model of the software system itself. This
enables the software to access the types, relations and constraints of its model.

4.3.5. Conclusion

All ODSD approaches under consideration use standard ontology services for consistency
checking of ontologies related to software models on M2 and M1 levels. The approaches
differ from each other on what ontology reasoning services are applied.

The MOST approach uses consistency checks on ontology of the meta-model of a mod-
elling language and conforming models of the software system. Three other approaches
apply consistency checks on a set of ontologies that are used for software modelling ac-
cording to the respective approach.

Besides that, two approaches, the MOST approach and the hybrid framework, provide
additional services. The MOST approach provides explanation, repairing and linking ser-
vices. The hybrid framework enables services for semi-automated model composition and
retrieval.

All the approaches provide ontology (model) querying service during the run-time of
software system using SPARQL.

456 H.-M. Haav

4.4. Advantages of ODSD Approaches

The OBSD approaches have a number of advantages over traditional MBSD. In the fol-
lowing analyses we take under consideration benefits that are pointed out by the authors
of the ODSD approaches discussed in this paper.

4.4.1. The MOST Project

The authors of the approach of the MOST project consider to be the most important benefit
of integration of UML and OWL giving to software developers possibilities to design
and use more expressive models than previously (Pan et al., 2013; Walter et al., 2014).
Specifically, when using the MOST approach software developers can combine object-
oriented concepts and ontology concepts in a platform independent way.

They also underline that currently software development faces requirements of using
and managing large and complex ontologies in many application fields like medical IS,
multimedia and engineering applications, etc. (Staab et al., 2010). To meet these new
software requirements the integration of UML and OWL worlds is needed.

4.4.2. The Hybrid Framework

The authors of the hybrid framework (Katasonov and Palviainen, 2010; Palviainen and
Katasonov, 2011; Katasonov, 2012) also emphasize that OWL ontologies as descrip-
tive models provide greater expressiveness comparing to models created using meta-
modelling tools like Ecore.

The hybrid framework basically utilizes SPARQL patterns instead of pure OWL. This
has some technical advantages and extends expressive power of ontological modelling.
Most important technical advantages include higher performance of using SPARQL pat-
terns comparing to OWL as only RDF data storage supporting SPARQL querying is used.
SPARQL queries are also useful for model checking purposes as they return all possi-
ble inconsistencies and do not stop upon discovery of the first one as DL reasoners do
(Katasonov, 2012).

Concerning the expressiveness of ontological modelling, SPARQL patterns provide
additional useful features that are not available in OWL. The authors of the hybrid frame-
work (Katasonov and Palviainen, 2010; Katasonov, 2012) draw attention to at least four
cases, where SPARQL patterns are very useful for ODSD. For example, OWL allows
to define restrictions on the classes of RDF atoms (e.g. single model elements) while
SPARQL patterns can be used for describing restrictions on non-atomic RDF structures
(e.g. compositions of model elements).

4.4.3. The DSL Meta-Model Ontology Based Approach
The authors of the DSL meta-model ontology based approach point to the following gen-
eral advantages of their approach as follows (Haav et al., 2015; Haav and Ojamaa, 2017):

1. Applying ontology services on domain ontologies and on the DSL meta-model on-
tology is useful for debugging DSL meta-models.

A Comparative Study of Approaches of Ontology Driven Software Development 457

2. Support for the distributed DSL development process is provided by using dis-
tributed artefacts (e.g. images, multi-media resources, linked data, etc.) linked to
a DSL meta-model and used as components of a DSL.

In addition, the authors of the DSL meta-model ontology based approach evaluated specif-
ically their work according to the following criteria: a level of alignment of domain knowl-
edge captured in domain ontologies with DSL meta-models and independence of reusable
knowledge from the internal representation of DSL meta-models (Ojamaa et al., 2015).
According to this work, the following benefits of ontology based meta-modelling approach
can be distinguished:

1. A level of alignment of domain ontologies with DSL meta-models was improved
in the structural parts of the specification of modelling concepts as well as building
correct inheritance structures of concepts.

2. Alevel of independence of reusable knowledge from the internal representation of
DSL meta-models was grown. The separation of different kinds of knowledge about
the system, domain and a DSL into modular OWL ontologies makes the knowledge
more reusable.

4.4.4. Three Ontology Method
The authors of the three ontology method underline benefits of their method over current
MBSD approaches as follows (Hoehndorf ez al., 2009):

1. Providing a set of ontologically well-founded models and enabling ontology ser-
vices on the conceptual model of the software and on the domain ontology.

2. The use of domain ontology as a module in a software model.

3. Application of ontology services during run-time of the software system. This is
made possible due to the availability of the software model during the run-time of
the software and can be used to verify constraints on data that is processed by the
software.

4.4.5. Conclusion

It is generally recognized by the community of ODSD that OWL ontologies when used in
MBSD make it possible to create more expressive software models than ordinary meta-
modelling languages (e.g. Ecore). Application of ontology services on domain models
as well as for verification of consistency of software models is considered to be another
important advantage of ODSD approaches over MBSD.

Different ODSD approaches have their specific features that extend their modelling
capability comparing to ordinary MBSD approaches.

The MOST approach provides a platform independent integration of UML and OWL
(Staab et al., 2010), the hybrid framework provides additional modelling power with using
SPARQL patterns (Katasonov, 2012), the DSL meta-model ontology based approach sup-
ports the distributed ODSD by linking different artefacts (including ontologies) to DSL
meta-model ontology (Haav et al., 2015), and the three ontology method provides onto-
logically well-founded software model that is made available during the run-time of the
software for application of ontology services (Hoehndorf et al., 2009).

458 H.-M. Haav
4.5. Applications and Limitations

Practical applicability and limitations are important characteristics of OBSD approaches
providing information about what works and what does not work well when trying to apply
ODSD to software development. Therefore, in this section we analyse tools implementing
the corresponding ODSD approaches, their application domains and limitations of using
a particular tool (and approach). According to our selection criteria, all the approaches
under consideration are implemented within the framework of the corresponding tool.

4.5.1. The MOST Project

The MOST approach is implemented in the TwoUse Toolkit (Parreiras and Staab, 2010;
Staab et al., 2010), a model-based software development tool that enables developing
software models with incorporated OWL ontologies and OWL ontologies that are related
to software models.

The TwoUse Toolkit'? has user profiles for model-driven software developers and for
OWL ontology engineers. Therefore, the tool can also be used for ontology engineer-
ing. Model-driven software developers can use the toolkit for describing classes in UML
class diagrams using OWL class descriptions, designing business rules using the UML
Profile for Semantic Web Rule Language (SWRL!3), extending software design patterns
with OWL class descriptions and using some other OWL extensions to UML. In addi-
tion, ontology reasoning, explanation and query services are supported by the tool. The
tool uses a SPARQL-like query language called SPARQLAS (Parreiras and Staab, 2010).
The TwoUse Toolkit is implemented in the Eclipse Platform using the Eclipse Modelling
Framework (Gronback, 2009).

The MOST approach is a general purpose ODSD approach and therefore it can be used
for software engineering in many different domains (Parreiras and Staab, 2010). TwoUse
and its principles have been used by its authors for different tasks within model-based soft-
ware engineering field. For example, in Parreiras and Staab (2010) TwoUse principles are
used for defining integrated meta-model of a DSL enriched by formal class descriptions
in OWL in order to check the consistency of the model.

The TwoUse tool was also used for creation of a platform independent approach for
ontology translation (Parreiras et al., 2008) and for automatic generation of ontology APIs
for semantic web applications (Parreiras et al., 2009).

The authors of the TwoUse Toolkit point out the following limitations of their approach
(Parreiras and Staab, 2010):

1. SPARQLAS queries may return OWL classes that are not part of the TwoUse model.
This case needs to be handled separately.

2. From the point of view of TwoUse users, understanding of OWL and its semantics
in addition to UML is important to be able to work with both modelling paradigms
within one tool. Currently, model-based software developers are not experienced in
working with OWL ontologies.

12http://code. google.com/p/twouse.
1 3https://www.w3.0rg/Submissi0n/SWRL.

A Comparative Study of Approaches of Ontology Driven Software Development 459

4.5.2. The Hybrid Framework

The hybrid framework is implemented as an extension of the model-driven software en-
gineering tool called Smart Modeller that is a main component of the ontology-driven
application development toolkit of SOFIA (Liuha et al., 2009). A description of the mod-
elling language used in Smart Modeller and some technical details of this tool can be
found in Katasonov and Palviainen (2010), Palviainen and Katasonov (2011).

Smart Modeller defines a domain-specific modelling language that meets needs of
SOFIA and provides a graphical editor for that language implemented in Java using
Eclipse Graphical Modelling Framework (GMF).'# The editor of Smart Modeller enables
the developer to create a model of an application (presented as a directed graph consisting
of elements and connectors) and then to automatically generate executable programming
code for it. In Smart Modeller, the reuse of software components and models is supported
by repositories, which are RDF data stores.

The implementation of the hybrid approach includes extensions of Smart Modeller
providing the classification and model consistency checking services, the repository
mechanism, three model composition services, as well as the policy enforcement service.
Processing of RDF, SPARQL querying, and RDF-S reasoning are handled in Smart Mod-
eller by exploiting OpenRDF Sesame”.

Smart Modeller and its extensions are used for building applications for smart envi-
ronments (Katasonov and Palviainen, 2010) and for implementation of home automation
system and for a personal assistant application (Palviainen et al., 2014).

One limitation that is mentioned by the authors of the approach concerns using
SPARQL patterns instead of OWL for modelling (Katasonov, 2012). Inheritance over
subsumption hierarchy cannot be expressed when using SPARQL patterns because these
should be complete and defined in terms of the ground data on which the query is in-
tended to be run. The hybrid approach overcomes this limitation by using a combination
of SPARQL patterns and DL based approaches.

OWL constructs can be used but a patterns pre-processing engine is exploited for con-
structing the full pattern for a class before it is used in a query. This means that OWL con-
struct for defining classes as restrictions (owl: Restriction class) is replaced by SPARQL
pattern.

4.5.3. The DSL Meta-Model Ontology Based Approach

The DSL meta-model ontology based approach is prototypically implemented as an ex-
tension to the current version of the model-based software development tool CoCoViLa'®
Haav et al. (2015). Modelling and implementing DSLs with CoCoViLa can be done by
diagrammatically defining different elements of a DSL and their interactive aspects as
well as by using the textual specification language and Java. The CoCoViLa extensions
provide developers with domain ontology-driven DSL modelling facilities.

14http://www.ec]ipse.org/modelin g/gmp/.
15 http://www.openrdf.org/.
I6http://cocovila. github.io/.

460 H.-M. Haav

The CoCoViLa extension is complemented with the CoCoViLa system ontology as a
resource that formally describes the CoCoViLa modelling language and system concepts.
This ontology can be reused as a part of a DSL meta-model ontology for the development
of different kinds of DSLs.

The CoCoViLa extension helps to improve the DSL development process. A DSL ap-
plication for solving a particular problem is semi-automatically done by means of the Co-
CoViLa tool. For that the DSL meta-model ontology is pre-processed in order to convert
it to the internal structure of a DSL meta-model using Apache Jena tools and SPARQL
queries. The CoCoViLa extension has been used in the domain of the IT security risk
analysis for building threat modelling tools for educational purposes in IT security study
programs (Ojamaa et al., 2015).

One of the limitations of the approach is related to its implementation that is tightly
related to the existing CoCoViLa system and its modelling language. This in turn is con-
nected to another limitation that concerns different expressive power of DL that is a basis
of OWL and a subset of Intuitionistic Propositional Calculus (IPC) that is a basis of the se-
mantics of the CoCoViLa modelling language and program synthesis method used by the
tool (Mints and Tyugu, 1982). This leads to the limited ability of the approach to capture
full knowledge from OWL domain ontologies as IPC is less expressive than DL.

The semantic integration of artefacts from external tools and models into the
CoCoViLa extension requires the commitment to a common system ontology or avail-
ability of system ontologies of external tools. In addition, the DSL meta-model ontology
should be developed for building a DSL meta-model within the framework of a particular
tool. The authors of the approach also mention that there is a lack of ontology engineering
skills among model-based software developers limiting the exployment of ODSD methods
(Ojamaa et al., 2015).

4.5.4. Three Ontology Method

The three ontology method has been applied to the development of the ontology based se-
mantic wiki in the domain of biology (Hoehndorf et al., 2006). The wiki is called BOWiki
and it is used for the annotation of genes and gene products with terms from ontologies.
The conceptual model for the BOWiki (the task ontology) is a part of the top-level ontology
GFO (Herre et al., 2006). As a domain ontology (i.e. biological ontology) the biological
core ontology GFO-Bio (Hoehndorf et al., 2008) is used.

The authors of the three ontology method emphasize the following limitation of their
approach (Hoehndorf ef al., 2009). This concerns the performance of DL reasoners. The
software that is developed according to their approach needs to invoke a DL reasoner
many times during the run-time providing ontology services to its operations. This slows
down the overall performance of the software system. Although the performance of DL
reasoners is improving, the authors of the method see that this is currently a bottleneck of
using their approach for developing software that requires high performance.

4.5.5. Conclusion
The ODSD approaches analysed in this paper are implemented in original tools or as
extensions to the existing MBSD tools.

A Comparative Study of Approaches of Ontology Driven Software Development 461

Table 2
Tools, their application domains and specific limitations.
The TwoUse The Smart The CoCoViLa The BOWiki
extension Modeller extension extension software
Application Definition of Smart environments IT security Semantic wiki
domains integrated DSL and applications risk analysis

meta-models,
generation of
ontology APIs

Specific Special handling Limitations Inability of Low runtime

limitations of SPARQLAS related to transforming performance
queries SPARQL all ontological due slow
(see Section 4.5.1) patterns knowledge DL reasoning

to object system

The MOST approach is implemented as the TwoUse toolkit intended for software de-
velopment and ontology engineering providing UML means extended with OWL. The
three ontology method is implemented to be used for development of a particular type of
applications (i.e. semantic wikis).

The hybrid approach and the DSL meta-model ontology approach are implemented as
extensions to the existing MBSD tools: Smart Modeller and CoCoViLa, accordingly.

It seems that the performance of DL reasoners do not satisfy the requirements of
ODSD, especially when used during the run-time of the software system. Three ap-
proaches from four exploited specific methods to overcome this bottleneck. The Smart
Modeller extension uses SPARQL patterns for modelling (Katasonov, 2012). The CoCoV-
iLa extension only loads and validates the DSL meta-model ontology before transform-
ing it to internal structure and uses SPARQL queries during the run-time of the software
system (Haav and Ojamaa, 2017). The TwoUse uses SPARQLAS queries (Parreiras and
Staab, 2010). Except for the hybrid approach, all other approaches use RDF documents
(files) for storing ontologies but not RDF stores. This may explain slow reasoning services.
Modern RDF stores provide fast and scalable reasoning services.

The authors of the TwoUse and the CoCoViLa extension mentions also that develop-
ers need knowledge of OWL in addition to traditional MBSD languages (e.g. UML) and
usually they do not have it (Haav et al., 2015; Parreiras and Staab, 2010).

Tools, their application domains and specific limitations are summarized in the Table 2.

5. Related Work

Most of the related work has already been discussed and cited in Sections 2 and 3. In
this Section we consider and refer to related surveys. The application of various kinds
of ontologies in software engineering process life cycle is analysed in Happel and See-
dorf (2006). This work shows that ontologies could be or are used in almost all stages of
software engineering. They provide a categorization of the usage of ontologies in the soft-
ware engineering process including the run-time and the development time of a software
system. They also looked at the kind of knowledge the ontology actually describes. As a

462 H.-M. Haav

result, they distinguished between the problem domain that the software system tries to
tackle and infrastructure aspects to make the software or its development more convenient.
Their main conclusion was that the most important benefit of using ontologies in software
engineering is related to reusing of domain knowledge through the software engineering
life cycle.

Ontologies play important roles in software requirements engineering. According to
the results of a systematic review in Valaski et al. (2016), ontologies have an effective
role in the analysis, specification and elicitation activities. It is considered that ontologies
have potential to be also applied in the negotiation and validation activities. Ontologies
are more widely applied to conceptual understanding of the domain related to producible
software. In addition to the requirements engineering, there are many ontology proposals
applied to various kinds of models that are not only related to the requirements analysis,
but are important to the model transformation in the software design phase. According
to this survey, the most important contributions of ontologies are as follows: identifying
problems in specification and models, improving communication, building more complete
models, allowing traceability among artefacts and improving the quality of requirements
identification.

A survey of two approaches of combining standard domain engineering techniques
with ontology technology in order to reuse domain and enterprise engineering knowledge
is provided in Caplinskas et al. (2003). According to the results of this work, both analysed
approaches are not fully developed to be used for solving practical problems.

Although Valaski et al. (2016) identified a great number of ontology proposals, there
was no top-level ontology that integrated knowledge of all the software engineering arte-
facts. Usually, ontologies are developed for a specific software engineering field and they
are not sufficiently interrelated (Calero et al., 2006; Souza et al., 2013). In order to over-
come this limitation SEON (a Software Engineering Ontology Network) initiative (Ruy
et al., 2016) tries to achieve consistent software engineering ontologies including core
ontologies for software and software processes as well as domain ontologies for the main
technical software engineering subdomains, namely requirements, design, coding and test-
ing.

There is a literature review of using ontologies in DSLs (Sutii et al., 2014) that is
tightly related to this paper. The goal of their paper is to analyse what value application
of ontologies creates to DSL development. The main conclusion of their paper is that
ontology technology complements DSL development with formal description of concepts
and relationships among concepts as well as with the reasoning services. However, the
authors point to the complexity of integration of ontologies and DSL meta-models and
models because this involves manual work that cannot be easily automated.

Our comparative study in this paper differs from surveys discussed above in that we
consider fully developed ODSD approaches that also are implemented and applied to soft-
ware development in some problem domain. This enables us to discover most important
advantages and limitations of ODSD in order to understand whether ODSD may grow to
become a new consistency preserving software development approach.

A Comparative Study of Approaches of Ontology Driven Software Development 463

6. Conclusions and Discussion

In this paper we provided a comparative analysis of fully developed ODSD approaches
that met our selection criteria. The approaches were searched out from projects and re-
search papers. We found four ODSD approaches that met our requirements. These ap-
proaches have been analysed according to their methods of integrating ontologies into
meta-modelling pyramid of MDA, application of ontology services, benefits and limita-
tions comparing to traditional MBSD.

Findings of analysis of each of the features have been summarized in the corresponding
sections. Therefore, in this section we draw only some larger conclusions and discuss some
issues.

There are significant differences between ontology technology and ordinary MBSD
technology (e.g. standard MOF based techniques). However, when combined in a smart
way these technologies can provide ODSD frameworks, where both technologies comple-
ment each other and give some advantages in MBSD.

Most important advantage of ODSD over MBSD is the ability to create more expres-
sive software models than ordinary meta-modelling languages (e.g. the MOST approach).
Another advantage is the provision of access to ontologies as rich declarative models dur-
ing the runtime of the software system in order to handle user interfaces or to control the
behaviour of an application (e.g. Smart Modeller, BOWiki or CoCoViLa applications).
In contrast, ordinary MBSD approaches provide access to their models only at design
time of the software system. In addition, ontology technology provides better support for
model checking using logical inference, integration of various artefacts of software devel-
opment and interoperability of different models and systems than ordinary MBSD using
MOF-based languages.

On the other hand, requirements of new semantic applications related to run-time ac-
cess of models draw attention to unsatisfied performance of current DL reasoners. Three
approaches from four exploited specific methods to overcome this bottleneck. In addition,
there is a lack of ontology technology skills among model-based software engineers in
order to work with both paradigms (i.e. ontology engineering and software engineering)
within one ODSD framework.

On the basis of applications of ODSD approaches analysed in this paper, we may say
that ODSD approaches are not yet widely accepted by industrial software engineering
community as applications reported in the corresponding papers are not industrial ones.
However, ODSD has impact to MBSD as it raises the level of abstraction of software
models and expands the use of formal methods (e.g. reasoning).

Findings of this study do not convince us that a new consistency based software devel-
opment paradigm will take place in near future because full integration of ontology tech-
nology and MBSD still needs more research, methodological and technological issues to
be solved. Currently, software developers do not accept ODSD as a mature technology.

Acknowledgements. This work was partially supported by the Institutional Research
Grant IUT33-13 of the Estonian Research Council.

464 H.-M. Haav

References

Abu-Hanna, A., Jansweijer, W. (1994). Modeling domain knowledge using explicit conceptualization, /EEE
Expert, 9(5), 53-64.

Assmann, U., Zschaler, S., Wagner, G. (2006). Ontologies, meta-models, and the model driven paradigm. In:
Calero, C., Ruiz, F., Piattini, M. (Eds.), Ontologies for Software Engineering and Software Technology.
Springer, pp. 249-273.

Assmann, U., Bartho, A., Wende, C. (Eds.) (2010). In: Reasoning Web. Semantic Technologies for Software
Engineering. Tutorial Lectures. LNCS, Vol. 6325. Springer.

Atkinson, C., Gutheil, M., Kiko, K. (2006). On the relationship of ontologies and models. In: Proceedings of
the 2nd International Workshop on Meta-Modelling (WoMM 2006). LNI, Vol. 96. GI, pp. 47-60.

Atkinson, C., Kennel, B., Goss, B. (2011). Supporting constructive and exploratory modes of modeling in multi-
level ontologies. In: Proceedings of ISWC2011. Online
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Workshops/SWESE/1.pdf.

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider P.F. (Eds). (2009). The Description
Logics Handbook. Cambridge University Press.

Calero, C., Ruiz, F., Piattini, M. (2006). Ontologies for Software Engineering and Software Technology. Springer
Science and Business Media, Heidelberg.

Caplinskas, A., Lupeikiene, A., Vasilecas, O. (2003). The role of ontologies in reusing domain and enterprise
engineering assets. Informatica, 14(4), 455-470.

Falbo, R., Guizzardi, G., Duarte, K.C. (2002). An ontological approach to domain engineering. In: Proceedings
of the XIV International Conference on Software Engineering and Knowledge Engineering (SEKE-2002).
ACM Press.

Fowler, M., Scott, K. (1997). UML Distilled — Applying the Standard Object Modeling Language. Addison-
Wesley-Longman.

Fritzson, P. (2014). Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-
Physical Approach. John Wiley and Sons, Inc.

Gasevic, D., Djuric, D., Devedzic, V. (2009). Model Driven Engineering and Ontology Development. Springer,
Berlin.

Gronback, R.C. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-Wesley
Professional.

Gruber, T.R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2),
199-220.

Guizzardi, G. (2007). On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. In:
Databases and Information Systems 1V: Selected Papers from the Seventh International Baltic Conference
on Databases and Information Systems (DBIS 2006), FAIA, Vol. 155. 10S Press, pp. 18-39.

Guizzardi, G. (2013). Ontology-based evaluation and design of visual conceptual modeling languages. In:
Reinhartz-Berger, 1., et al. (Eds.), Domain Engineering, Product Lines, Languages, and Conceptual Models.
Springer, pp. 317-347.

Haav, H.-M., Ojamaa, A. (2017). Semi-automated integration of domain ontologies to DSL meta-models. The
International Journal of Intelligent Information and Database Systems (IJIIDS), 10(1-2), 94-116.

Haav, H.-M., Ojamaa, A., Grigorenko, P., Kotkas, V. (2015). Ontology-based integration of software artefacts
for DSL development. In: Ciuciu, L, et al. (Eds.), Proceedings of Confederated International Workshops of
on the Move to Meaningful Internet Systems Conference. LNCS, Vol. 9416. Springer, pp. 309-318.

Happel, H.J., Seedorf, S. (2006). Applications of ontologies in software engineering. In: Proceedings of Inter-
national Workshop on Semantic Web Enabled Software Engineering (SWESE’06) on the 5th International
Semantic Web Conference, ISWC 2006. LNCS, Vol. 4273. Springer, pp. 1-14.

Henderson-Sellers, B. (2011). Bridging metamodels and ontologies in software engineering. The Journal of
Systems and Software, 84, 301-313.

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H. (2006). General Formal Ontology (GFO)
— A Foundational Ontology Integrating Objects and Processes [Version 1.0]. Onto-Med Report 8, Research
Group of Ontologies in Medicine, Institute of Medical Informatics, Statistics and Epidemiology, University
of Leipzig, Leipzig.

Hoehndorf, R., Priifer, K., Backhaus, M., Herre, H., Kelso, J., Loebe, F., Visagie, J. (2006). A proposal for a
gene functions wiki. In: Proceedings of OTM2006 Workshops. Part I, Workshop of Knowledge Systems in
Bioinformatics, KSinBIT 2006. LNCS, Vol. 4277. Springer, pp. 669-678.

A Comparative Study of Approaches of Ontology Driven Software Development 465

Hoehndorf, R., Loebe, F., Poli, R., Herre, H., Kelso, J. (2008). GFO-Bio: a biological core ontology. Applied
Ontology, 3(4), 219-227.

Hoehndorf, R., Ngonga Ngomo, A.-C., Herre, H. (2009). Developing consistent and modular software models
with ontologies. In: Proceedings of the Eighth Conference on New Trends in Software Methodologies, Tools
and Techniques. 10S Press, pp. 399-412.

ISO, (1990). IEEE Standards Association, Information Technology — Information Resource Dictionary System
(IRDS). International Standard ISO/IEC 10027, ISO and IEC.

Kalnins, A., Barzdins, J., Celms, E. (2005). Model transformation language MOLA. In: Proceedings of MDAFA
2003. LNCS, Vol. 3599. Springer, pp. 62-76.

Kalnins, A., Kalnina, E., Celms, E., Sostaks, A. (2010). From requirements to code in a model driven way. In:
Proceedings of Advances in Databases and Information Systems (ADBIS) 2009. LNCS, Vol. 5968. Springer,
pp. 161-168.

Katasonov, A. (2012). Ontology-driven software engineering: beyond model checking and transformations. /n-
ternational Journal of Semantic Computing, 6(2), 205-242.

Katasonov, A., Palviainen, M. (2010). Towards ontology-driven development of applications for smart envi-
ronments. In: Proceedings of Workshops of IEEE International Conference on Pervasive Computing and
Communications. IEEE Press, pp. 696-701.

Kotkas, V., Ojamaa, A., Grigorenko, P., Maigre, R., Harf, M., Tyugu, E. (2011). CoCoViLa as a multifunctional
simulation platform. In: SIMUTools: Proceedings of ICST Conference on Simulation Tools and Techniques,
ICST, pp. 198-205.

Liuha, P., Lappetelainen, A., Soininen, J.-P. (2009). Smart objects for intelligent applications — first results made
open. ARTEMIS Magazine, 5, 27-29.

Mints, G., Tyugu, E. (1982). Justification of the structural synthesis of programs. Science of Computer Program-
ming, 2(3), 215-240.

Motik, B., Patel-Schneider, P.F., Horrocks, I. (2012). OWL 2 web ontology language: structural specification
and functional-style syntax. http://www.w3.org/TR/owl2-syntax.

Ojamaa, A., Haav, H.-M., Penjam, J. (2015). Semi-automated generation of DSL meta models from formal do-
main ontologies. In: MEDI: Proceedings of the Model and Data Engineering Conference. LNCS, Vol. 9344.
Springer, pp. 3-15.

OMBG. (2002). Meta Object Facility (MOF) Specification, Version 1.4. OMG.

OMG. (2003a). MDA guide 1.0.1. Online http://www.omg.org/mda.

OMG. (2003b). Ontology Definition Metamodel Request for Proposal. OMG Document ad/2003-03-40 and
http://www.omg.org/spec/ODM/.

OMBG. (2006). Ontology Definition Metamodel RFP. Online http://www.omg.org/dontology/.

Palviainen, M., Katasonov, A. (2011). Model and ontology-based development of smart space applications. In:
Pervasive Computing and Communications Design and Deployment: Technologies, Trends, and Applica-
tions. IGI Global, pp. 126-148.

Palviainen, M., Kuusijarvi, J., Ovaska, E. (2014). A semi-automatic end-user programming approach for smart
space application development. Pervasive and Mobile Computing, 12, 17-36.

Pan, J., Staab, S., Assmann, U., Ebert, J., Zhao, Y. (2013). Ontology-Driven Software Development. Springer.

Parreiras, F.S., Staab, S. (2010). Using ontologies with UML class-based modeling: the TwoUse approach. Data
and Knowledge Engineering, 69(11), 1194-1207.

Parreiras, F.S., Staab, S., Schenk, S., Winter, A. (2008). Model driven specification of ontology translations.
In: Proceedings of 27th International Conference on Conceptual Modeling. LNCS, Vol. 5231. Springer, pp.
484-497.

Parreiras, F.S., Walter, T., Staab, S., Saathoff, C., Franz, T. (2009). Apis agogo: automatic generation of ontology
apis. In: Proceedings of the 3rd IEEE International Conference on Semantic Computing (ICSC 2009). IEEE
Computer Society Press, pp. 342-348.

Ruy, F.B., de Almeida Falbo, R., Barcellos, M.P., Costa, S.D., Guizzardi, G. (2016). SEON: a software engi-
neering ontology network. In: Proceedings of EKAW’ 2016, pp. 527-542.

Souza, E.F., Falbo, R.A., Vijaykumar, N.L. (2013). Using ontology patterns for building a reference software
testing ontology. In: Proceedings of 17th IEEE International Enterprise Distributed Object Computing Con-
ference Workshops. IEEE Press, pp. 21-30.

Staab, S., Walter, T., Groner, G., Parreiras, F.S. (2010). Model driven engineering with ontology technologies.
In: Proceedings of Summer School on ReasoningWeb. LNCS, Vol. 6325. Springer, pp. 62-98.

466 H.-M. Haav

Sutii, A.M., Verhoeft, T., van den Brand, M.G.J. (2014). Ontologies in domain specific languages — a systematic
literature review. Computer Science Reports, 14-09. Eindhoven. http:/library.tue.nl/catalog/.

Tetlow, P., Pan, J., Oberle, D., Wallace E., Uschold, M., Kendall, E. (2006). Ontology driven architectures and
potential uses of the semantic web in software engineering. W3C, Semantic Web Best Practices and Deploy-
ment Working Group, Draft online https://www.w3.0rg/2001/sw/BestPractices/SE/ODA/060103/.

Valaski, J., Reinehr, S., Malucelli, A. (2016). Which roles ontologies play on software requirements engineering?
A systematic review. In: Proceedings of International Conference of Software Engineering Research and
Practice, (SERP’16). CSREA Press, pp. 24-30.

Walter, T., Ebert, J. (2009). Combining DSLs and ontologies using metamodel integration. In: Taha, W.M. (Ed.),
Domain-Specific Languages: IFIP TC 2 Working Conference, DSL 2009. LNCS, Vol. 5658. Springer, pp.
148-169.

Walter, T., Parreiras, F.S., Staab, S., Eberet, J. (2010). Joint language and domain engineering. In: Proceedings of
6th European Conference on Modelling Foundations and Applications. LNCS, Vol. 6138. Springer, pp. 321-
336.

Walter, T., Parreiras, F.S., Staab, S. (2014). An ontology-based framework for domain-specific modeling. Soft-
ware and System Modeling, 13(1), 83-108.

H.-M. Haav is a senior researcher at the Department of Software Science of Tallinn Uni-
versity of Technology, Estonia. She received her PhD in Computer Science from the In-
stitute of Cybernetics of the Estonian Academy of Sciences, Estonia. Her current research
is focused on ontology engineering and ontology integration to model-based software de-
velopment.

