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Abstract. Green supplier selection has recently become one of the key strategic considerations

in green supply chain management, due to regulatory requirements and market trends. It can be

regarded as a multi-criteria group decision-making (MCGDM) problem, in which a set of alterna-

tives are evaluated with respect to multiple criteria. MCGDM methods based on Analytic Hierarchy

Process (AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are

widely used in solving green supplier selection problems. However, the classic AHP must conduct

large amounts of pairwise comparisons to derive a consistent result due to its complex structure.

Meanwhile, the classic TOPSIS only considers one single negative idea solution in selecting suppli-

ers, which is insufficiently cautious. In this study, an improved TOPSIS integrated with Best-Worst

Method (BWM) is developed to solve MCGDM problems with intuitionistic fuzzy information in

the context of green supplier selection. The BWM is investigated to derive criterion weights, and

the improved TOPSIS method is proposed to obtain decision makers’ weights in terms of differ-

ent criteria. Moreover, the developed TOPSIS-based coefficient is used to rank alternatives. Finally,

a green supplier selection problem in the agri-food industry is presented to validate the proposed

approach followed by sensitivity and comparative analyses.

Key words: supplier selection, group decision-making, best-worst method, intuitionistic fuzzy sets.

1. Introduction

In recent years, governments and industries have been attempting to decouple economic

growth from commensurate environmental burdens (Vazquez-Brust and Sarkis, 2012).

An increasing number of consumers prefer green products because of the rise of public

consciousness in environmental protection (Fahimnia et al., 2015b). Facing the changes

in consumer requirements and government policies for environment-sustainable develop-

ment has become a significant issue in modern production operation management. Green

supply chain management allowing for environmentperformance is regarded as an innova-

tive management mode. This management mode involves several core links, such as green
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supplier evaluation and selection, green product design, green production, green packag-

ing and transportation, green marketing and resource recycling (Fahimnia et al., 2015a).

Green supplier is the enterprise that holds sustainable development as its responsibility

and integrates environmental benefits and management into the entire process of enter-

prise management to provide eco-friendly products and services to its partners (Fahimnia

et al., 2015a).

Green suppliers are located upstream of the entire supply chain; thus, they can effec-

tively help enterprises move towards a green supply chain design (Blome et al., 2014).

Green supplier selection requires the incorporation of environmental criteria into the tra-

ditional supplier selection practices, and is commonly viewed as a multi-criteria group

decision-making (MCGDM) problem that selects the optimal alternative in terms of a

set of economic and environmental criteria (Govindan et al., 2015). Practically, in the

green supplier selection process, experts with different knowledge backgrounds often ex-

press disagreement in evaluation. As a result, methodologies based on traditional fuzzy

sets might be insufficient to model practical situations because of the increasing com-

plexity of the decision-making environment. Moreover, the TOPSIS (Technique for Order

Preference by Similarity to Ideal Solution) structure (Hwang and Yoon, 1981) is one of

the most effective methods for ranking alternatives (Zyoud and Fuchs-Hanusch, 2017).

Chu et al. (2007) revealed that in comparison with traditional methods TOPSIS inher-

ited better distinguishing capability for describing assessment results, such as a simple

additive weighing approach, because of its outstanding characteristics, such as straight-

forward computation, logical and rational procedures and incorporation of relative cri-

terion weights (Mufazzal and Muzakkir, 2018). Recently, TOPSIS and fuzzy TOPSIS

associated with other methods have been successfully used to solve green supplier evalu-

ation and selection problems (Govindan et al., 2015). However, the conventional TOPSIS

method adopts only a single negative ideal decision (NID) in the core structure, which

is insufficiently cautious in addressing complex MCGDM problems that involve multiple

experts (Yue, 2014). Thus, some improved MCGDM approaches for supplier selection are

needed.

The present work attempts to remedy the limitations of existing studies and develops

a hybrid MCGDM method for green supplier selection within the context of intuitionis-

tic fuzzy sets (IFSs). The innovation and contribution of this study are three-fold. Firstly,

IFSs (Atanassov, 1986) are used to capture decision-makers (DMs)’ agreements and dis-

agreements when eliciting evaluations in the green supplier selection process. Secondly,

the proposed approach combines the Best-Worst Method (BWM) and improved TOPSIS.

The BWM (Rezaei, 2015) is used to obtain the subjective weights of criteria due to its low

calculation complexity in obtaining consistent comparisons. The improved TOPSIS as-

sociated with multiple NIDs (Yue, 2014) is constructed to derive DMs’ weights and rank

alternatives. The weight information of DMs with respect to different criteria can be ob-

jectively obtained. Meanwhile, the ranking of all the alternatives can be achieved through

a comprehensive TOPSIS-based index. Lastly, the proposed hybrid MCGDM method is

applied to manage an actual green supplier selection problem.

The remainder of this study is organized as follows. Section 2 presents the current

research state on intuitionistic fuzzy TOPSIS method, BWM and green supplier selection
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methods. Section 3 comprehensively explains the developed methodology and describes

its steps. Section 4 presents an application of the proposed approach. Section 5 conducts

sensitivity and comparative analyses to verify the priority of the proposed method. Section

6 provides the conclusions.

2. Literature Review

2.1. Intuitionistic Fuzzy TOPSIS Methods

In real life, DMs frequently disagree when expressing their ideas in assessment. Fuzzy

sets (Zadeh, 1965) can only depict fuzziness of agreement but not reflect the disagree-

ment of DMs, while IFSs (Atanassov, 1986) are an appropriate tool for describing DMs’

agreement and disagreement evaluations. In the recent decades, IFSs have been widely

used in managing fuzziness in DMs’ assessments in complex socioeconomic situations

(Kahraman et al., 2016).

TOPSIS developed by Hwang and Yoon (1981) is one of the widely recognized

multi-criteria decision-making (MCDM) methods (Zavadskas et al., 2016). TOPSIS is

established on the basis of the principle that the optimal solution should be closest to

the positive ideal point and farthest to the negative ideal point (Aouadni et al., 2017;

Dwivedi et al., 2018; Opricovic and Tzeng, 2004). Recently, numerous researchers have

extended TOPSIS to solve intuitionistic fuzzy MCDM problems (Chen et al., 2016;

Shen et al., 2018; Wan et al., 2015; Yue, 2014). Furthermore, TOPSIS has been inte-

grated with other methods. Li and Wu (2016) proposed an improved interval-valued intu-

itionistic fuzzy TOPSIS integrated with a cumulative interval score function and applied

it to manage MCDM problems with unknown weight information. Aloini et al. (2014)

developed a peer-based modification to intuitionistic fuzzy MCGDM with TOPSIS and

used it in packaging machine selection. Buyukozkan and Guleryuz (2016) established an

integrated intuitionistic fuzzy MCGDM approach associated with Analytical Hierarchy

Process (AHP) and TOPSIS and employed it to select a suitable product development

partner.

2.2. BWM

The BWM proposed by Rezaei (2015) is a comparison-based method that establishes spe-

cific comparisons between items. For a comparison issue that contains n items, firstly,

the best and worst items are determined, and the important degree of the best item to the

worst one is then evaluated. Secondly, comparisons between the remaining n − 2 items

and the best and worst items are needed. Lastly, a mathematical program model is con-

structed to derive the important values of items. In comparison with the traditional AHP

(Saaty, 1980) and Analytical Network Process (ANP) (Saaty, 1996), BWM only requires

to conduct 2n − 3 comparisons. Statistical finding shows that BWM requires less com-

parison data but results in more consistent comparisons (Rezaei, 2016). To extend BWM
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to an uncertain environment, Mou et al. (2016) developed an intuitionistic fuzzy multi-

plicative BWM and applied it to MCGDM. Li et al. (2018) proposed a BWM method

and used it in MCDM with probabilistic hesitant fuzzy information. Moreover, BWM

was applied to supplier segmentation (Rezaei et al., 2015), water security sustainabil-

ity evaluation (Nie et al., 2018a), failure mode and effects analysis (Nie et al., 2018b;

Tian et al., 2018a) and performance evaluation of smart bike-sharing programs (Tian et

al., 2018b).

2.3. Green Supplier Selection Methods

Numerous researchers have studied the criteria and decision models involved in the pro-

cess of selecting a suitable supplier (Chai et al., 2013). An increasing number of enter-

prises incorporate the green concept into the supplier chain management to comply with

the trend of sustainable development. Numerous studies have focused on green supplier

selection problems that allow for a set of conventional and environmental criteria (Beske

et al., 2014; Govindan et al., 2015). In this regard, Govindan et al. (2015) found that envi-

ronmental management system (EMS) was the most significant and comprehensive envi-

ronmental criterion in the process of evaluating enterprises’ environmental performance

and operation efficiency. Banaeian et al. (2015) identified EMS as a green criterion and

financial, delivery and service and qualitative as the primary conventional criteria associ-

ated with a set of sub-criteria. These criteria were applied to select a green supplier in the

food industry.

Recently, large numbers of green supplier evaluation and selection approaches have

been developed, ranging from a single method to hybrid methods that are integrated with

multiple techniques (Govindan et al., 2015). Dobos and Vorosmarty (2014) used Data

Envelopment Analysis (DEA) as an evaluation tool. Dou et al. (2014) and Hashemi et al.

(2015) combined ANP and Grey Relational Analysis (GRA) and applied them to evaluate

green supplier development programs. Kuo et al. (2015) employed DEMATEL (DEcision

MAking Trial and Evaluation Laboratory) associated with ANP to determine criterion

value and VIKOR (Vlsekriterijumska optimizacija I KOmpromisno Resenje) to evaluate

the environmental performance of suppliers in the electronic industry. Banaeian et al.

(2014) proposed a hybrid model using Delphi and DEA. Tsui et al. (2015) developed a

hybrid MCDM method using DEMATEL, ANP and PROMETHEE (Preference Ranking

Organization METHod for Enrichment Evaluations) for green supplier selection. Freeman

and Chen (2015) presented a comprehensive framework integrated with AHP, entropy and

TOPSIS. Vahidi et al. (2018) developed a novel bi-objective two-stage mixed possibilistic-

stochastic programming model to manage green supplier selection.

However, in green supplier evaluation and selection processes, some criteria are of-

ten precisely unknown, especially for environmental factors, such as easy recycling and

reuse capability. Under this environment, fuzzy set theory can be regarded as an effective

tool for addressing uncertainty. Kannan et al. employed a fuzzy TOPSIS method to se-

lect green suppliers for a Brazilian electronics company (Kannan et al., 2014). They also

developed a fuzzy axiomatic design to select green suppliers for a Singapore plastic man-

ufacturing company (Kannan et al., 2015). Akman (2015) combined the fuzzy c-means
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Table 1

Summary of studies using decision-making methods for green supplier selection.

Category Method MCGDM Industry Literature

Optimization

model

DEA Dobos and Vorosmarty

(2014)

Bi-objective programming Automotive industry Vahidi et al. (2018)

Fuzzy

clustering

Fuzzy c-means and

VIKOR

Automotive industry Akman (2015)

MCDM

model

ANP and GRA; fuzzy

NGT and VIKOR; fuzzy

ANP, DEMATEL and

TOPSIS; fuzzy TODIM;

fuzzy QUALIFLEX

Yes Automotive industry Hashemi et al. (2015),

Awasthi and Kannan (2016),

Buyukozkan and Cifci

(2012), Qin et al. (2017), Li

and Wang (2017)

ANP, DEMATEL and

VIKOR; AHP, entropy

and TOPSIS; fuzzy

TOPSIS

Yes Electronic industry Kuo et al. (2015), Freeman

and Chen (2015), Kannan et

al. (2014)

Delphi and DEA; fuzzy

TOPSIS, VIKOR and

GRA

Yes Food industry Banaeian et al. (2014),

Banaeian et al. (2018)

ANP and GRA Pivot irrigation

equipment industry

Dou et al. (2014)

Fuzzy axiomatic design Engineering plastic

material industry

Kannan et al. (2015)

Fuzzy WASPAS Yes Ghorabaee et al. (2016)

DEMATEL, ANP and

PROMETHEE

Yes Polariser industry Tsui et al. (2015)

Fuzzy AHP and TOPSIS Yes Fashion industry Wang and Chan (2013)

Fuzzy AHP, ARAS and

MSGP

Yes Light industrial

machinery industry

Liao et al. (2016)

clustering and fuzzy VIKOR methods. Awasthi and Kannan (2016) incorporated the fuzzy

Nominal Group Technique (NGT) with fuzzy VIKOR methods for green supplier devel-

opment. Wang and Chan (2013) integrated the fuzzy AHP with fuzzy TOPSIS to support

green supply chain management. Furthermore, fuzzy hybrid MCDM methods with mul-

tiple techniques, such as fuzzy ANP, DEMATEL and TOPSIS (Buyukozkan and Cifci,

2012), fuzzy AHP, Additive Ratio Assessment (ARAS) and Multi-Segment Goal Pro-

gramming (MSGP) (Liao et al., 2016), and fuzzy TOPSIS, VIKOR and GRA (Banaeian

et al., 2018) were developed. Interval type-2 fuzzy MCGDM methods based on Weighted

Aggregated Sum Product Assessment (WASPAS) (Ghorabaee et al., 2016) and TODIM

(An Acronym in Portuguese of Interactive and MCDM) (Qin et al., 2017), and probabil-

ity hesitant fuzzy QUALIFLEX (QUALItative FLEXible Multiple Criteria Method) (Li

and Wang, 2017) were proposed to manage green supplier selection. Table 1 presents a

summary of preceding literature on green supplier selection.

As shown in Table 1, fuzzy set theory equipped with MCGDM methods has been ap-

plied to solve green supplier selection problems. However, minimal attention has been

paid to intuitionistic fuzzy environment to address multi-criteria green supplier evalua-

tion and selection problems. Furthermore, AHP and ANP methods are often employed

to obtain criterion weights in green supplier selection. However, they may be tedious and
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complex in calculation to achieve consistent comparisons. The MCGDM methods with

TOPSIS are used to rank green suppliers. The decision process is insufficiently cautious

because DMs with different knowledge backgrounds are assigned with the same weights

with respect to different criteria.

3. Proposed Methodology

This section introduces the methodology used in this study for solving green supplier

selection problems. Some concepts of IFSs are presented, followed by the developed

methodology and steps.

3.1. Preliminaries

Definition 1. (See Atanassov, 1986.) Let X be a fixed set. An IFS is denoted by:

A =
{〈

x,µA(x), νA(x)
〉∣

∣x ∈ X.
}

,

where µA(x) ∈ [0,1] and νA(x) ∈ [0,1] are characterized by membership and non-

membership functions, respectively, satisfying the condition 0 6 µA(x) + νA(x)6 1 for

any x ∈ X. Moreover, πA(x) = 1 − µA(x) − νA(x) indicates a hesitancy function.

For an IFS {〈x,µA(x), νA(x)〉|x ∈ X.}, the ordered tuple components 〈µA(x), νA(x)〉

are described as intuitionistic fuzzy numbers (IFNs). Any IFN 〈µ,ν〉 must satisfy the

conditions µ,ν ∈ [0,1] and 0 6 µ + ν 6 1.

Definition 2. (See Atanassov, 1994; Xu, 2007.) Let aj = 〈µaj , νaj 〉 (j = 1,2) be any two

IFNs. Then, (1) a1 ⊕a2 = 〈µa1
+µa2

−µa1
µa2

, νa1
νa2

〉; (2) λa1 = 〈1 − (1 −µa1
)λ, νλ

a1
〉,

λ > 0; (3) ac
1
= 〈νa1

,µa1
〉, where ac

1
is the complement of a1.

Definition 3. (See Xu, 2007.) Let aj = 〈µaj , νaj 〉 (j = 1,2) be two IFNs. Moreover,

let S(aj ) = µaj − νaj and H(aj ) = µaj + νaj be the score and accuracy functions of aj

(j = 1,2), respectively. Then,

(1) If S(a1) < S(a2), then a1 is inferior to a2, denoted by a1 < a2;

(2) If S(a1) < S(a2), then

(i) If H(a1) = H(a2), then a1 is equal to a2, denoted by a1 = a2;

(ii) If H(a1) < H(a2), then a1 is inferior to a2, denoted by a1 < a2.

Definition 4. (See Xu, 2007.) Let aj = 〈µaj , νaj 〉 (j = 1,2, . . . , n) be a collection of

IFNs. An intuitionistic fuzzy ordered weighted average (IFOWA) operator is a mapping

IFOWA: �n → � and is defined as follows:

IFOWA(a1, a2, . . . , an) =

n
∑

j=1

̟jaσ(j) =

〈

1 −

n
∏

j=1

(1 − µσ(j))
̟j ,

n
∏

j=1

ν
̟j

σ(j)

〉

, (1)
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where (σ (1), σ (2), . . . , σ (n)) is a permutation of (1,2, . . . , n), such that aσ(j−1) > aσ(j)

for all j . ̟ = (̟1,̟2, . . . ,̟n) represents the associated weight vector, where ̟j > 0

and
∑n

j=1
̟j = 1.

Definition 5. (See Szmidt and Kacprzyk, 2000; Yu et al., 2018.) Let aj = 〈µaj , νaj 〉

(j = 1,2) be any two IFNs. The Euclidean distance between a1 and a2 is defined as fol-

lows:

d(a1, a2) =

√

1

2

(

(µ1 − µ2)2 + (ν1 − ν2)2 + (π1 − π2)2
)

, (2)

where π1 = 1 − µ1 − ν1 and π2 = 1 − µ2 − ν2.

The Euclidean distance between two intuitionistic fuzzy matrices can be defined as

follows:

Definition 6. (See Yue, 2014.) Let Ak = (〈µk
ij , νk

ij 〉)m×n (k = 1,2) be two intuitionistic

fuzzy matrices, where the elements in Ak are IFNs. Then, the distance between A1 and

A2 is defined as follows:

d(A1,A2) =

√

√

√

√

1

2mn

m
∑

i=1

n
∑

j=1

((

µ1

ij − µ2

ij

)2
+

(

ν1

ij − ν2

ij

)2
+

(

π1

ij − π2

ij

)2)

, (3)

where π1

ij = 1 − µ1

ij − ν1

ij and π2

ij = 1 − µ2

ij − ν2

ij (i = 1,2, . . . ,m; j = 1,2, . . . , n).

3.2. Steps of the Integrated Methodology

This subsection presents an integrated methodology for green supplier selection on the

basis of BWM and improved TOPSIS. Figure 1 shows the flowchart of the proposed ap-

proach.

For convenience, let M = {1,2, . . . ,m}, N = {1,2, . . . , n} and T = {1,2, . . . , t}. The

MCGDM problem concerned is described as follows.

Let A = {a1, a2, . . . , am} be a set of m alternatives, C = {c1, c2, . . . , cn} be a set of n

criteria, and E = {e1, e2, . . . , et } be a set of t DMs. Assume that wj (j ∈ N) is the weight

value of cj , where wj > 0 and
∑n

j=1
wj = 1. Suppose that rk

ij (i ∈ M , j ∈ N , k ∈ T )

represents the rating of alternative ai with respect to criterion cj provided by DM ek . Thus,

the individual decision matrix provided by DM ek can be expressed as Rk = (rk
ij )m×n.

Denote the weight vector of criteria by w = (w1,w2, . . . ,wn), and the weight vector of

DMs by ω = (ω1,ω2, . . . ,ωt ).

The focus is how to rank alternatives on the basis of individual decision matrices Rk

(k ∈ T ) associated with weight information. To solve this type of MCGDM problem, a

methodology integrated with intuitionistic fuzzy TOPSIS and BWM is introduced. The

main steps of the proposed approach are briefly presented as follows.
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Fig. 1. Assessment framework of the proposed approach.

Step 1: Define the overall goal, criteria, sub-criteria and associated alternatives for

decision-making problems, and then establish the hierarchy of the considered

problem.

Step 2: Design and select the evaluation scale of IFS.

The study by Aloini et al. (2014) is employed to assign the evaluation values

of alternatives by using the scale, as shown in Table 2.

Step 3: Determine the weight vectors of criteria and sub-criteria.

In accordance with the principle of BWM developed by Rezaei (2015, 2016), DMs

firstly select the best (e.g. most important and desirable) and the worst (e.g. least important

and desirable) criteria.
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Table 2

Rating alternatives with linguistic terms (Aloini et al., 2014).

Linguistic terms IFNs

Absolutely good (AG)/absolutely high (AH) 〈0.9,0.05,0.05〉

Very good (VG)/very high (VH) 〈0.8,0.1,0.1〉

Good (G)/high (H) 〈0.7,0.2,0.1〉

Medium good (MG)/medium high (MH) 〈0.6,0.3,0.1〉

Fair (F)/medium (M) 〈0.45,0.4,0.15〉

Medium poor (MP)/medium low (ML) 〈0.4,0.5,0.1〉

Poor (P)/low (L) 〈0.3,0.6,0.1〉

Very poor (VP)/very low (VL) 〈0.2,0.7,0.1〉

Absolutely poor (AP)/absolutely low (AL) 〈0.05,0.9,0.05〉

Secondly, DMs determine the preferences of the best criterion over all the other criteria

by using a number from 1 to 9 (1 means equally important and 9 signifies extremely

important). The result is presented as a ‘best-to-others (BO)’ vector as follows:

UB = (uB1, uB2, . . . , uBn),

where uBj indicates the preference of the best criterion B over criterion j , and uBB = 1.

Thirdly, DMs determine the preferences of the other criteria over the worst criterion

by using a number from 1 to 9 (1 means equally important and 9 signifies extremely

important). The result is presented as an ‘others-to worst (OW)’ vector as follows:

VW = (v1W , v2W , . . . , vnW )T ,

where vjW indicates the preference of criterion j over the worst criterion W , and

vWW = 1.

Lastly, establish a mathematical model and derive the optimal weights (w∗
1
,w∗

2
, . . . ,w∗

n).

For each pair of wB/wj and wj/wW , the optimal weight should satisfy the conditions

wB/wj = uBj and wj/wW = vjW . To meet these requirements, the maximum absolute

differences |wB

wj
− uBj | and |

wj

wW
− vjW | for all j should be minimized. Thus, the fol-

lowing model can be constructed by considering the sum condition and non-negativity of

weights.

min max
j

{∣

∣

∣

∣

wB

wj

− uBj

∣

∣

∣

∣

,

∣

∣

∣

∣

wj

wW

− vjW

∣

∣

∣

∣

}

108pt]s.t.

{

wj > 0, forall j
∑n

j=1
wj=1.

(4)
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Table 3

Consistency index of BWM (Rezaei, 2015).

1 2 3 4 5 6 7 8 9

Consistency index 0.00 0.44 1.00 1.63 2.33 3.00 3.73 4.47 5.23

Here, Model (4) can be transformed into the following linear programming model:

min ξ

s.t.























∣

∣

wB

wj
− uBj

∣

∣ 6 ξ, for all j
∣

∣

wj

wW
− vjW

∣

∣6 ξ, for all j

wj > 0, for all j
∑n

j=1
wj = 1.

(5)

The optimal weights (w∗
1
,w∗

2
, . . . ,w∗

n) and consistency index ξ∗ can be derived by

solving Model (5). Furthermore, calculating the consistency level of comparisons is re-

quired. Rezaei (2015) defined the consistency index as follows.

Definition 7. (See Rezaei, 2015.) A comparison is fully consistent when vBj × vjW =

vBW for all j , in which vBj , vjW and vBW indicate the preference of the best criterion

over criterion j , the preference of criterion j over the worst criterion and the preference

of the best criterion over the worst criterion, respectively.

The consistency ratio (CR) of the BWM can be calculated, combining the obtained ξ∗

and its corresponding consistency index (Table 3) as follows:

CR =
ξ∗

Consistency index
, (6)

where CR ∈ [0,1]. The closer the CR is to zero, the more consistent the obtained vector

will be, and vice versa. Generally, CR 6 0.1 shows that the obtained vector is acceptable.

Step 4: Determine DMs’ weights with respect to different criteria.

As every DM is skilled in only some specific fields, it is more appropriate to allocate

different weight values of each DM on different criteria.

For each criterion cj , the criterion value expressed by DM ek is transformed into an

IFN vector rk
j = (rk

1j , r
k
2j , . . . , r

k
mj ). Let ωk

j be the weight of ek with respect to cj . To de-

termine the criterion weight ωk
j , two aspects should be considered simultaneously. One

aspect is the closeness coefficient that captures the similarity between the individual de-

cision matrix provided by DM ek and the collective one by the group of DMs. The other

aspect is the proximity degree that measures the proximity between the individual decision

matrix provided by DM ek and those matrices provided by all other DMs.

In accordance with the previous analysis, ωk
j (j ∈ N ; k ∈ T ) can be derived from

two aspects. On one hand, an improved TOPSIS method inspired by the idea of TOPSIS
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(Hwang and Yoon, 1981; Wang et al., 2017; Yue, 2014) is developed to calculate the

closeness coefficient. On the other hand, the proximity degree can be calculated on the

basis of distance measure.

(1) Calculate the closeness coefficient on the basis of the improved TOPSIS.

(i) Determine the positive ideal decision (PID) vector r∗
j on criterion cj .

The PID vector r∗
j on criterion cj is defined as the arithmetic average of all individual

decision vectors rk
j (k ∈ T ) on the basis of Eq. (1), that is, r∗

j = (r∗
1j , r

∗
2j , . . . , r

∗
mj ), where

r∗
ij =

〈

µ∗
ij , ν

∗
ij

〉

= IFOWA
(

r1

ij , r
2

ij , . . . , r t
ij

)

=

〈

1 −

t
∏

k=1

(

1 − µ
σ(k)
ij

)̟k
,

t
∏

k=1

(

ν
σ(k)
ij

)̟k

〉

(i ∈ M, j ∈ N), (7)

where ̟k is the associated weight value of the IFOWA operator, and its value can be

determined in accordance with the normal distribution-based method (Xu, 2005).

(ii) Determine all the NID vectors on criterion cj .

The NID vectors consist of the individual negative ideal decision (INID) vector, left

individual negative ideal decision (LINID) vector and right individual negative ideal de-

cision (RINID) vector. The INID, LINID and RINID vectors on criterion cj are denoted

by rc
j = (rc

1j , r
c
2j , . . . , r

c
mj ), r l−

j = (r l−
1j , r l−

2j , . . . , r l−
mj ) and rr−

j = (rr−
1j , rr−

2j , . . . , rr−
mj ), re-

spectively. In accordance with the complement operation in Definition 2,

rc
ij =

〈

µc
ij , ν

c
ij

〉

, where µc
ij = ν∗

ij =

t
∏

k=1

(

ν
σ(k)
ij

)̟k and

νc
ij = µ∗

ij = 1 −

t
∏

k=1

(

1 − µ
σ(k)
ij

)̟k , (8)

r l−
ij =

〈

µl−
ij , νl−

ij

〉

, where µl−
ij = min

k∈T

{

µk
ij

}

and νl−
ij = max

k∈T

{

νk
ij

}

, (9)

rr−
ij =

〈

µr−
ij , νr−

ij

〉

, where µr−
ij = max

k∈T

{

µk
ij

}

and νr−
ij = min

k∈T

{

νk
ij

}

. (10)

(iii) Calculate distances d(rk
j , r∗

j ), d(rk
j , rc

j ), d(rk
j , r l−

j ) and d(rk
j , rr−

j ) by using

Eq. (3).

Subsequently, an extended closeness coefficient of each individual decision vector rk
j

with respect to the ideal decision vectors, including r∗
j , rc

j , r l−
j and rr−

j , is defined as

follows:

ϕk
j =

d(rk
j , rc

j ) + d(rk
j , r l−

j ) + d(rk
j , rr−

j )

d(rk
j , r∗

j ) + d(rk
j , rc

j ) + d(rk
j , r l−

j ) + d(rk
j , rr−

j )
(j ∈ N, k ∈ T ). (11)
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(2) Calculate the average proximity degree on the basis of distance measure.

The proximity degree between rk
ij and r l

ij is denoted by γ lk
ij and can be calculated as:

γ lk
ij = 1 − d

(

r l
ij , rk

ij

)

, (12)

where d(r l
ij , r

k
ij ) is the distance between rk

ij and r l
ij on the basis of Eq. (2).

Furthermore, on the basis of Eq. (12), the average proximity degree ηk
j between DM

ek and all the other DMs el (l ∈ T , l 6= k) on criterion cj can be calculated as follows:

ηk
j =

1

m(t − 1)

t
∑

l=1, l 6=k

m
∑

i=1

γ lk
ij = 1 −

1

m(t − 1)

t
∑

l=1, l 6=k

m
∑

i=1

d
(

r l
ij , rk

ij

)

, (13)

where d(r l
ij , r

k
ij ) is the distance between rk

ij and r l
ij on the basis of Eq. (2).

(3) Derive the weights of DMs with respect to different criteria.

To comprehensively consider the closeness coefficient and proximity degree, a control

parameter θ (0 6 θ 6 1) is employed to construct the unified criterion weight λk
j of DM

ek on criterion cj , as shown as follows:

λk
j = θϕk

j + (1 − θ)ηk
j . (14)

The unified criterion weight λk
j can tradeoff the closeness efficient versus the proximity

degree by altering the values of parameter θ . Particularly, λk
j will only depend on the

closeness efficient if θ = 1, and it will only depend on the proximity degree if θ = 0.

Without loss of generality, a default control parameter θ = 0.5 can be set in practical

application.

The unified criterion weights λk
j (k ∈ T ) are normalized, and the weight ωk

j of DM ek

with respect to criterion cj can be obtained as follows:

ωk
j =

λk
j

∑t
l=1

λl
j

(j ∈ N, k ∈ T ). (15)

Let R̂k = (r̂k
ij )m×n be the weighted individual decision matrix. Then, the following

result can be obtained:

R̂k =
(

r̂k
ij

)

m×n
=

(

ωk
j r

k
ij

)

m×n
=

(〈

µ̂k
ij , ν̂

k
ij

〉)

m×n
(k ∈ T ), (16)

where µ̂k
ij = 1 − (1 − µk

ij )
ωk

j and ν̂k
ij = (νk

ij )
ωk

j on the basis of the operations in Defini-

tion 2. ωk
j denotes the obtained weight of DM ek using Eq. (15).

Step 5: Rank all the alternatives and select the optimal one (s).

In the following, the target is to rank all the alternatives on the basis of the improved

TOPSIS method.
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(1) Obtain the group decision matrix with respect to criteria.

For each alternative ai (i ∈ M), the weighted individual decision matrix in Eq. (16) is

transformed into a group decision matrix of DMs with respect to the following criteria:

H i = (hi
kj )t×n =

(〈

µ̂i
kj , ν̂

i
kj

〉)

t×n
(i ∈ M), (17)

where the element hi
kj in H i is the same as the element r̂k

ij in R̂k in Eq. (16). Similar to

the individual decision matrix Rk , the matrix H i is called the alternative decision matrix.

For each criterion cj , the weighted criterion values of alternative ai expressed by all the

DMs ek (k ∈ T ) are denoted as an IFN vector hi
j = (hi

1j , h
i
2j , . . . , h

i
tj ).

(2) Determine the alternatives’ PID vector h∗
j and the NID vectors hc

j and h−
j on cri-

terion cj .

Similar to the procedures in Step 4, let h∗
j = (h∗

1j , h
∗
2j , . . . , h

∗
tj ) denote the alternatives’

PID vector. The alternatives’ PID vector should be the best decision of all H i (i ∈ M) in

Eq. (17). The elements in the alternatives’ PID vector can be calculated as follows:

h∗
kj =

〈

µ̂∗
kj , ν̂

∗
kj

〉

, where µ̂∗
tj = max

i∈M

{

µ̂i
kj

}

and ν̂∗
kj = min

i∈M

{

ν̂i
kj

}

. (18)

Similar to the individual NID decision vectors, the alternatives’ NID vector should

have maximum separation from the alternatives’ PID vector h∗
j . It can naturally consider

the complement (h∗
j )

c of h∗
j , which shows the maximum separation from h∗

j . Let hc
j =

(hc
1j , h

c
2j , . . . , h

c
tj ) denote the complement (h∗

j )
c of h∗

j , where

hc
kj =

〈

µ̂c
kj , ν̂

c
kj

〉

, where µ̂c
kj = ν̂∗

kj = min
i∈M

{

ν̂i
kj

}

and ν̂c
kj = µ̂∗

kj = max
i∈M

{

µ̂i
kj

}

. (19)

Moreover, the following alternatives’ decision vector also shows the maximum sepa-

ration from the alternatives’ PID vector h∗
j . Let h−

j = (h−
1j , h

−
2j , . . . , h

−
tj ) denote one of

the alternatives’ NID vectors, where

h−
kj =

〈

µ̂−
kj , ν̂

−
kj

〉

, where µ̂−
kj = min

i∈M

{

µ̂i
kj

}

and ν̂−
kj = max

i∈M

{

ν̂i
kj

}

. (20)

(3) Calculate the TOPSIS-based index CI i
kj and the comprehensive TOPSIS-based

index CI(ai).

The distances between each alternative’s decision value hi
kj and h∗

kj , hc
kj and h−

kj

are calculated on the basis of Eq. (2) and are denoted as d(hi
kj , h

∗
kj ), d(hi

kj , h
c
kj ) and

d(hi
kj , h

−
kj ), respectively.

Furthermore, an improved TOPSIS-based index is developed to measure the discrim-

ination of hi
kj with respect to h∗

kj , hc
kj and h−

kj and is defined as:

CI i
kj =

d(hi
kj , h

c
kj ) + d(hi

kj , h
−
kj )

d(hi
kj , h

∗
kj ) + d(hi

kj , h
c
kj ) + d(hi

kj , h
−
kj )

(i ∈ M, j ∈ N, k ∈ T ). (21)
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The improved TOPSIS-based index CI i
kj can be employed to evaluate the performance

of alternative ai with respect to criterion cj . By coupling the criterion weight wk
j in terms

of DM ek , the comprehensive TOPSIS-based index CI(ai) of the characteristics for alter-

native ai is expressed as follows:

CI(ai) =
1

t

t
∑

k=1

n
∑

j=1

(

wk
j CI i

kj

)

=
1

t

t
∑

k=1

n
∑

j=1

(

wk
j

d(hi
kj , h

c
kj ) + d(hi

kj , h
−
kj )

d(hi
kj , h

∗
kj ) + d(hi

kj , h
c
kj ) + d(hi

kj , h
−
kj )

)

. (22)

Significantly, the closer the alternatives’ decision value hi
kj is to alternatives’ PID

value h∗
kj , and the farther hi

kj is from the alternatives’ NID values hc
kj and h−

kj , the closer

the CI(ai) is to 1. Thus, the comprehensive TOPSIS-based index CI(ai) can be used to

rank the preference order of all alternatives. A larger CI(ai) indicates a better alterna-

tive ai .

4. Numerical Application of the Proposed Methodoloy

This section presents the result of an empirical case study conducted on a well-known

agri-food process company in China.

4.1. Problem Description

Agriculture plays an important role in China as China consumes a large number of agri-

culture products. Agri-food production significantly contributes to the consumption of re-

sources and presents remarkable environmental impacts. Company ABC, located in East

China, is one of the leading manufacturers of processed vegetable, edible vegetable oils

and condiments in China. With 26 large manufacturing facilities, company ABC has paid

a major contribution to the economy and growth in the food sector. Recently, China’s

government has paid considerable attention on sustainable development, which can push

company ABC to incorporate the green concept into its management and administration.

Company ABC is certified by ISO 14000 and uses the related guidelines to perform en-

vironmental duties, including encouraging its suppliers to improve their environmental

practices and performance continuously. Company ABC needs to complete a supplier

selection analysis. Under these circumstances, a decision committee consisting of three

members, namely, the chief executive officer (e1), the chief marketing manager (e2) and

an environmental expert (e3), has been formed to determine the optimal supplier among

four possible alternatives. Experts use the BWM to obtain the subjective weights of cri-

teria. Moreover, they assess the performance of each potential green supplier in terms of

criteria. The collected opinions of experts are expressed in linguistic terms, which will

then be transformed into IFNs.
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Fig. 2. Hierarchical structure for green supplier evaluation (Banaeian et al., 2015).

4.2. Evaluation Steps

The detailed procedures for evaluating and selecting the most appropriate green supplier

are shown as follows.

Step 1: Define the overall goal, criteria, sub-criteria and associated alternatives for

decision-making problems, and then establish the hierarchy of the considered problem.

A conventional and green supplier evaluation standard is identified on the basis of an

extensive review of green supplier evaluation literature in the agri-food industry (Banaeian

et al., 2018, 2015, 2014; Beske et al., 2014; Borghi et al., 2014; Brodt et al., 2013). This

standard contains four main criteria associated with 15 sub-criteria, as shown in Fig. 2.

Financial (c1):

Capital and financial power of supplier company (c11), proposed raw material price

(c12) and transportation cost to the geographical location (availability) (c13).

Delivery and service (c2):

Communication system (willingness to trade, attitude, acceptance of procedures and

flexibility) (c21), on time delivery (lead time) (c22), after sales service (police, quality

assurance and damage ratings) (c23) and production capacity (c24).

Qualitative (c3):

Quality (suppliers’ ability to access quality characteristics) (c31), operational control

(reporting, quality control, inventory control and research and development) (c32), ex-

pert labour, technical capabilities and facilities (c33) and business experience and position

among competitors (c34).
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Table 4

Linguistic evaluation information for alternatives.

c11 c12 c13 c21 c22 c23 c24 c31 c32 c33 c34 c41 c42 c43 c44

e1 a1 FG FG M M M G FG FG M FG G FG G FG M

a2 VG VG FG M M FG M M G M FG M FG M FG

a3 VG FG G FG M M FG M M FG M M M FG VG

a4 G G FG VG FG G G G G VG G VG G FG G

e2 a1 G M G G VG G VG M G FG G VG FG VG G

a2 VG VG G G FG FG M FG FG FG FG FG FG M FG

a3 G M FG M FP FP M M FG G M M M FG M

a4 G VG G G M G FG M G G VG G FG G M

e3 a1 FG G VG G FG FG VG G FG VG FG VG FG FG FG

a2 G VG FG FG M G M FG FG FG FG G G FG G

a3 M M FG M FG M FG M G G FG FG M M M

a4 G VG G M G FG G M G FG VG M FG M FG

Table 5

BO and OW pairwise comparison vectors of criteria provided by DMs.

BO pairwise comparison vector Uk
B OW pairwise comparison vector V k

W

e1 e2 e3 e1 e2 e3

Main criteria (c1–c4) (1,3,1,5) (2,2,1,5) (4,5,1,3) (5,2,4,1)T (3,2,5,1)T (1,1,5,2)T

Sub-criteria (c11–c13) (3,5,1) (2,6,1) (1,5,2) (2,1,5)T (4,1,6)T (5,1,2)T

Sub-criteria (c21–c24) (5,1,3,3) (5,1,2,2) (6,2,1,4) (1,5,2,2)T (1,5,2,2)T (1,4,6,2)T

Sub-criteria (c31–c34) (1,4,2,2) (1,5,2,2) (1,5,1,2) (4,1,2,2)T (5,1,3,2)T (5,1,4,2)T

Sub-criteria (c41–c44) (1,2,2,5) (1,1,2,6) (1,2,4,5) (5,3,2,1)T (5,6,4,1)T (5,3,1,1)T

EMS (c4):

Environmental prerequisite (environmental staff training) (c41), environmental plan-

ning (program to reduce environmental impacts and green research and development)

(c42), environmentally friendly material (low waste: easy recycling and reuse capability)

(c43) and environmentally friendly technology (emission of pollutant: CO2 equivalent and

VOC, BOD and COD contents and etc.) (c44).

Step 2: Design and select the evaluation scale of IFS.

In the decision process, DMs use the 9 scale linguistic terms to evaluate the perfor-

mance of suppliers in terms of each criterion. Furthermore, the linguistic evaluation values

are transformed into IFNs (see Table 2 for linguistic terms used for the comparative rating

of suppliers). Table 4 shows the linguistic evaluation information provided by DMs.

Step 3: Determine the weight vectors of criteria and sub-criteria.

In accordance with the principle of BWM developed by Rezaei (2015, 2016), DMs

initially select the best and worst criteria. Then, the DMs determine the preferences of the

best criterion over all the other criteria and the preferences of the other criteria over the

worst criterion by using a number from 1 to 9 (1 means equally important and 9 signifies

extremely important). The BO vector U k
B and the OW vector V k

W provided by ek (k =

1,2,3) are shown in Table 5.
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Table 6

Weight values and CRs for the main criteria.

e1 e2 e3

Weights CRs Weights CRs Weights CRs

c1 0.418 0.087 0.254 0.097 0.133 0.087

c2 0.150 0.203 0.111

c3 0.349 0.452 0.558

c4 0.083 0.091 0.198

For the main criteria (c1–c4), the BO vector (1, 3, 1, 5) and the OW vector (5, 2, 4, 1)T

of e1 are used as examples. By incorporating the elements of the vectors into Model (5),

then Model (23) can be established.

min ξ1

s.t.































































∣

∣

∣

w1

w4
− 5

∣

∣

∣6 ξ1,
∣

∣

∣

w1

w2
− 3

∣

∣

∣6 ξ1,
∣

∣

∣

w1

w3
− 1

∣

∣

∣6 ξ1,
∣

∣

∣

w2

w4
− 2

∣

∣

∣6 ξ1,
∣

∣

∣

w3

w4
− 4

∣

∣

∣6 ξ1,

wj > 0,
∑

4

j=1
wj = 1.

(23)

The optimal weights w∗
1

= (0.418,0.150,0.349,0.083) and the consistency index

ξ1
∗ = 0.2 can be derived by solving Model (23) with the aid of MATLAB software. Fur-

thermore, CR = 0.2/2.30 = 0.087 < 0.1. Thus, the consistency level of comparisons is

acceptable.

Similarly, the other results can be derived, as shown in Table 6 and Table 7.

Step 4: Determine DMs’ weights with respect to different criteria.

The weight ω1

1
of DM e1 with respect to criterion c11 is used as an example.

(1) Calculate the closeness coefficient ϕ1

1
of DM e1 with respect to criterion c11.

Use Eq. (7) to obtain the individual PID vector r∗
1

for criterion c11. In accordance with

the normal distribution-based method (Xu, 2005), the associated weight vector in Eq. (7)

is ̟ = ((0.2429),0.5142,0.2429).

r∗
1

=
(

r∗
11

, r∗
21

, r∗
31

, r∗
41

)

=
(

〈0.627,0.272,0.101〉, 〈0.779,0.118,0.102〉,

〈0.685,0.2,0.115〉, 〈0.7,0.2,0.1〉
)

.

Similarly, use Eqs. (8), (9) and (10) to calculate the individual NID vectors rc
1
, r l−

1
and

rr−
1

in terms of criterion c11, respectively.

rc
1

=
(

rc
11

, rc
21

, rc
31

, rc
41

)

=
(

〈0.272,0.627,0.101〉, 〈0.118,0.779,0.103〉,

〈0.2,0.685,0.115〉, 〈0.2,0.7,0.1〉
)

;
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Table 7

Weight values and CRs for the sub-criteria.

e1 e2 e3 e1 e2 e3

Weights CRs Weights CRs Weights CRs Final weights (wk
j
)

c11 0.229 0.075 0.337 0.099 0.601 0.064 0.096 0.085 0.080

c12 0.125 0.091 0.125 0.052 0.023 0.017

c13 0.646 0.572 0.274 0.271 0.145 0.036

c21 0.102 0.075 0.098 0.064 0.079 0.099 0.015 0.020 0.009

c22 0.526 0.472 0.291 0.079 0.096 0.032

c23 0.186 0.215 0.496 0.028 0.044 0.055

c24 0.186 0.215 0.134 0.028 0.044 0.015

c31 0.444 0.076 0.452 0.097 0.397 0.084 0.155 0.204 0.221

c32 0.112 0.091 0.083 0.039 0.041 0.046

c33 0.222 0.254 0.339 0.078 0.115 0.189

c34 0.222 0.203 0.181 0.078 0.092 0.101

c41 0.452 0.097 0.315 0.099 0.501 0.087 0.038 0.029 0.100

c42 0.254 0.392 0.279 0.021 0.036 0.056

c43 0.203 0.231 0.119 0.017 0.021 0.024

c44 0.091 0.062 0.101 0.008 0.006 0.020

r l−
1

=
(

r l−
11

, r l−
21

, r l−
31

, r l−
41

)

=
(

〈0.6,0.3,0.1〉, 〈0.7,0.2,0.1〉, 〈0.45,0.4,0.15〉, 〈0.7,0.2,0.1〉
)

;

rr−
1

=
(

rr−
11

, rr−
21

, rr−
31

, rr−
41

)

=
(

〈0.7,0.2,0.1〉, 〈0.8,0.1,0.1〉, 〈0.8,0.1,0.1〉, 〈0.7,0.2,0.1〉
)

.

Use Eq. (3) to calculate the distances d(r1

1
, r∗

1
), d(r1

1
, rc

1
), d(r1

1
, r l−

1
) and d(r1

1
, rr−

1
).

Furthermore, use Eq. (11) to calculate the extended closeness coefficient ϕ1

1
of DM e1

with respect to criterion c11.

ϕk
j =

d(r1

1
, rc

1
) + d(r1

1
, r l−

1
) + d(r1

1
, rr−

1
)

d(r1

1
, r∗

1
) + d(r1

1
, rc

1
) + d(r1

1
, r l−

1
) + d(r1

1
, rr−

1
)

=
0.541 + 0.171 + 0.050

0.057 + 0.541 + 0.171 + 0.050
= 0.931.

(2) Calculate the proximity degree η1

1
of DM e1 with respect to criterion c11.

Use Eqs. (2) and (12) to calculate the proximity degrees γ l1
i1 (i = 1,2,3,4, l = 2,3,4).

γ 21

11
= 0.9, γ 21

21
= 1, γ 21

31
= 0.9 and γ 21

41
= 1; γ 31

11
= 1, γ 31

21
= 0.9, γ 31

31
= 0.672 and

γ 31

41
= 1.

Furthermore, use Eq. (13) to calculate the average proximity degree η1

1
.

η1

1
=

1

4 × 2

3
∑

l=1, l 6=k

4
∑

i=1

γ lk
ij =

0.9 + 1 + 0.9 + 1 + 1 + 0.9 + 0.672 + 1

8
= 0.922.
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Table 8

Closeness coefficients, proximity degrees and criterion weights of DMs.

ϕk
j ηk

j λk
j (θ = 0.5) ωk

j

e1 e2 e3 e1 e2 e3 e1 e2 e3 e1 e2 e3

c11 0.931 0.949 0.840 0.922 0.921 0.893 0.926 0.935 0.866 0.340 0.343 0.317

c12 0.912 0.908 0.931 0.913 0.926 0.930 0.913 0.917 0.931 0.331 0.332 0.337

c13 0.826 0.940 0.922 0.868 0.909 0.909 0.847 0.924 0.915 0.315 0.344 0.341

c21 0.836 0.922 0.846 0.811 0.873 0.856 0.823 0.897 0.851 0.320 0.349 0.331

c22 0.841 0.838 0.878 0.870 0.820 0.859 0.855 0.829 0.869 0.335 0.325 0.340

c23 0.958 0.929 0.877 0.952 0.941 0.914 0.955 0.935 0.896 0.343 0.335 0.322

c24 0.865 0.895 0.958 0.921 0.917 0.946 0.893 0.906 0.952 0.325 0.329 0.346

c31 0.828 0.842 0.890 0.881 0.910 0.914 0.854 0.876 0.902 0.325 0.332 0.343

c32 0.849 0.921 0.921 0.885 0.917 0.917 0.867 0.919 0.919 0.320 0.340 0.340

c33 0.882 0.943 0.884 0.879 0.921 0.883 0.881 0.932 0.884 0.327 0.345 0.328

c34 0.923 0.962 0.899 0.946 0.958 0.929 0.934 0.960 0.914 0.333 0.341 0.326

c41 0.857 0.964 0.853 0.835 0.888 0.831 0.846 0.926 0.842 0.324 0.354 0.322

c42 0.898 0.940 0.914 0.938 0.963 0.950 0.918 0.951 0.932 0.328 0.340 0.332

c43 0.925 0.876 0.822 0.913 0.876 0.864 0.919 0.876 0.843 0.348 0.332 0.320

c44 0.838 0.857 0.896 0.819 0.860 0.876 0.828 0.858 0.886 0.322 0.334 0.344

(3) Derive the weight ω1

1
of DM e1 with respect to criterion c11.

Use Eq. (14) to calculate the unified weight of DM e1 on c11, with the controlling

parameter θ = 0.5. The unified weight is λ1

1
= 0.926. Similarly, λ2

1
= 0.935 and λ3

1
=

0.866. Then, use Eq. (15) to normalize the unified weights, that is, ω1

1
= 0.340,ω2

1
= 0.343

and ω3

1
= 0.317.

Analogously, the other results can be calculated, as shown in Table 8.

Step 5: Rank all the alternatives and select the optimal one (s).

In the following, the target is to rank all the alternatives on the basis of the improved

TOPSIS method.

(1) Obtain the group decision matrix with respect to criteria.

Use Eq. (16) to calculate the weighted individual decision matrices R̂k = (r̂k
ij )4×15

(k = 1,2,3). Then, use Eq. (17) to transform them into H i = (hi
kj )3×15 (i = 1,2,3,4),

as shown in Table 9 and Table 10. The hesitancy function π is not presented because of

the limited layout.

(2) Determine the alternatives’ PID vector h∗
j , and NID vectors hc

j and h−
j on crite-

rion cj .

The alternatives’ PID vector h∗
1

= (h∗
11

, h∗
21

, . . . , h∗
31

) and NID vectors hc
1

=

(hc
11

, hc
21

, . . . , hc
31

) and h−
1

= (h−
11

, h−
21

, . . . , h−
31

) on criterion c11 are used as an exam-

ple.

Use Eqs. (18), (19) and (20) to derive the alternatives’ PID and NID vectors, respec-

tively.

h∗
1

=
(

h∗
11

, h∗
21

, . . . , h∗
31

)

=
(

〈0.4210.458,0.121〉, 〈0.424,0.454,0.122〉, 〈0.318,0.600,0.082〉
)

;
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Table 9

Weighted decision information (H 1 and H 2).

a1 a2

e1 e2 e3 e1 e2 e3

µ ν µ ν µ ν µ ν µ ν µ ν

c11 0.267 0.664 0.338 0.576 0.252 0.682 0.421 0.458 0.424 0.454 0.318 0.600

c12 0.261 0.672 0.180 0.738 0.334 0.581 0.413 0.467 0.414 0.465 0.419 0.460

c13 0.172 0.749 0.339 0.575 0.422 0.456 0.251 0.684 0.339 0.575 0.268 0.664

c21 0.174 0.746 0.343 0.570 0.329 0.587 0.174 0.746 0.343 0.570 0.262 0.671

c22 0.182 0.736 0.407 0.474 0.268 0.664 0.182 0.736 0.257 0.676 0.184 0.732

c23 0.338 0.576 0.332 0.583 0.255 0.679 0.270 0.662 0.265 0.668 0.321 0.596

c24 0.257 0.677 0.411 0.468 0.427 0.451 0.176 0.743 0.179 0.740 0.187 0.728

c31 0.257 0.677 0.180 0.737 0.338 0.576 0.176 0.743 0.263 0.670 0.269 0.662

c32 0.174 0.746 0.336 0.579 0.268 0.664 0.320 0.597 0.268 0.664 0.268 0.664

c33 0.259 0.675 0.271 0.660 0.410 0.470 0.177 0.741 0.271 0.660 0.259 0.674

c34 0.330 0.585 0.337 0.577 0.258 0.676 0.263 0.670 0.269 0.663 0.258 0.676

c41 0.257 0.677 0.435 0.442 0.405 0.476 0.176 0.743 0.277 0.653 0.321 0.595

c42 0.326 0.590 0.267 0.664 0.263 0.670 0.259 0.674 0.267 0.664 0.330 0.585

c43 0.273 0.657 0.414 0.466 0.254 0.681 0.188 0.727 0.180 0.738 0.254 0.681

c44 0.175 0.745 0.331 0.585 0.271 0.661 0.255 0.679 0.263 0.669 0.339 0.574

Table 10

Weighted decision information (H 3 and H 4).

a3 a4

e1 e2 e3 e1 e2 e3

µ ν µ ν µ ν µ ν µ ν µ ν

c11 0.421 0.458 0.338 0.576 0.173 0.748 0.336 0.579 0.338 0.576 0.318 0.600

c12 0.261 0.672 0.180 0.738 0.183 0.734 0.328 0.587 0.414 0.465 0.419 0.460

c13 0.316 0.602 0.270 0.661 0.268 0.664 0.251 0.684 0.339 0.575 0.336 0.578

c21 0.254 0.680 0.188 0.726 0.180 0.738 0.403 0.479 0.343 0.570 0.180 0.738

c22 0.182 0.736 0.153 0.798 0.268 0.664 0.264 0.668 0.176 0.743 0.336 0.578

c23 0.185 0.730 0.158 0.792 0.175 0.745 0.338 0.576 0.332 0.583 0.255 0.679

c24 0.257 0.677 0.179 0.740 0.272 0.659 0.323 0.593 0.260 0.673 0.341 0.573

c31 0.176 0.743 0.180 0.737 0.185 0.731 0.323 0.593 0.180 0.737 0.185 0.731

c32 0.174 0.746 0.268 0.664 0.336 0.579 0.320 0.597 0.336 0.579 0.336 0.579

c33 0.259 0.675 0.340 0.573 0.326 0.590 0.409 0.471 0.340 0.573 0.259 0.674

c34 0.180 0.737 0.185 0.731 0.258 0.676 0.330 0.585 0.423 0.455 0.408 0.473

c41 0.176 0.743 0.191 0.723 0.256 0.679 0.406 0.475 0.347 0.565 0.175 0.744

c42 0.178 0.741 0.184 0.733 0.180 0.737 0.326 0.590 0.267 0.664 0.263 0.670

c43 0.273 0.657 0.262 0.670 0.174 0.746 0.273 0.657 0.330 0.586 0.174 0.746

c44 0.404 0.476 0.181 0.737 0.186 0.729 0.321 0.596 0.181 0.737 0.271 0.661

hc
1

=
(

hc
11

, hc
21

, . . . , hc
31

)

=
(

〈0.458,0.421,0.121〉, 〈0.454,0.424,0.122〉, 〈0.600,0.318,0.082〉
)

;

h−
1

=
(

h−
11

, h−
21

, . . . , h−
31

)

=
(

〈0.267,0.664,0.068〉, 〈0.338,0.576,0.086〉, 〈0.173,0.748,0.080〉
)

.
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(3) Calculate the TOPSIS-based index CI i
kj and comprehensive TOPSIS-based index

CI(ai).

Use Eq. (2) to calculate the distances d(h1

11
, h∗

11
), d(h1

11
, hc

11
) and d(h1

11
, h−

11
). Fur-

thermore, use Eq. (21) to obtain the TOPSIS-based index CI1

11
.

CI1

11
=

d(h1

11
, hc

11
) + d(h1

11
, h−

11
)

d(h1

11
, h∗

11
) + d(h1

11
, hc

11
) + d(h1

11
, h−

11
)

=
0.222 + 0

0.186 + 0.222 + 0
= 0.544.

Similarly, the other TOPSIS-based indices can be obtained. Then, use Eq. (22) associ-

ated with the obtained final weights in Table 7 to derive the comprehensive TOPSIS-based

indices CI(ai) (i = 1,2,3,4).

CI(a1) = 0.849, CI(a2) = 0.814, CI(a3) = 0.755 and CI(a4) = 0.848.

Descend the comprehensive TOPSIS-based indices. And the ranking of all the alter-

natives is a1 ≻ a4 ≻ a2 ≻ a3, where a1 is the best one.

5. Results and Discussion

This section presents the analysis of the influence of varying θ on the performances of al-

ternatives. Moreover, a comparison analysis is conducted between the proposed approach

and the existing methods.

5.1. Sensitivity Analysis

In the existing methods (Yue, 2014), only the closeness coefficient is applied to obtain

the DMs’ weights or criterion weights, which is insufficient in a prudent group decision-

making (GDM) process (Wan et al., 2015). Table 8 shows that the closeness coefficients

of DMs e1 and e2 in terms of criterion c12 are 0.912 and 0.908, respectively. The closeness

coefficient of e1 is larger than that of e2. However, the proximity degree of DM e1 (0.913)

is smaller than that of e2 (0.926). Similar results occur in DMs e2 and e3 with respect to

c13, DMs e1 and e3 with respect to c22, and so on. Thus, a large closeness coefficient may

not guarantee a large proximity degree. In this study, the closeness coefficient and the

proximity degree are considered simultaneously, and a comprehensive measurement is

developed with a control parameter θ , which can balance the effectiveness of the duplex

measurements. The result of the effect of the measurements on the final performances

of alternatives is shown in Table 11 and Fig. 3. When 0 6 θ 6 0.2, the comprehensive

TOPSIS-based index CI(a4) is the largest, and alternative a4 is optimal. When 0.3 6

θ 6 1, alternative a1 becomes the best one. Although the influence is slight in the ranking

result, cautiously considering the factors in a complex GDM process is necessary to select

an appropriate green supplier. Generally, it is suggested to set θ = 0.5, which is simple

and can balance the closeness coefficient and proximity degree.
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Table 11

Comprehensive TOPSIS-based indices with different θ .

θ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CI(a1) 0.8483 0.8484 0.8485 0.8486 0.8487 0.8488 0.8489 0.8490 0.8491 0.8492 0.8493

CI(a2) 0.8136 0.8136 0.8137 0.8137 0.8138 0.8139 0.8139 0.8140 0.8140 0.8141 0.8141

CI(a3) 0.7555 0.7554 0.7553 0.7552 0.7550 0.7549 0.7548 0.7547 0.7545 0.7544 0.7542

CI(a4) 0.8488 0.8487 0.8486 0.8485 0.8484 0.8484 0.8483 0.8482 0.8481 0.8480 0.8479

Fig. 3. Ranking orders of alternatives with varying θ .

Table 12

Results with different methods.

IF-TOPSIS method IF-VIKOR method Proposed approach

CCi Ranking result Si Ri Qi Ranking result CI(ai ) Ranking result

a1 0.688 2 0.225 0.087 0.079 {a1, a2} 0.849 1

a2 0.408 3 0.581 0.144 0.583 0.814 3

a3 0.138 4 0.859 0.193 1 0.755 4

a4 0.755 1 0.248 0.067 0.018 0.848 2

Furthermore, this study inherits the idea of Yue (2014), and only calculates the dif-

ferent weights between DMs, instead of those with respect to different criteria. The other

steps remain the same as this study. The outcome shows that the ranking is a1 ≻ a4 ≻ a2 ≻

a3, when θ = 0.5. The ranking results are always a1 ≻ a4 ≻ a2 ≻ a3 even if the control

parameter θ uses different values. In this way, the weights of a DM with respect to differ-

ent criteria are the same, and the familiarity degree of the DM in terms of different criteria

is not seriously considered. In real life, DMs may be skilled in some specific fields. Thus,

allowing for the difference of DMs’ weights with respect to different criteria is reasonable.
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5.2. Comparative Analysis

The proposed approach is compared with two other distance-based methods, namely, the

integrated AHP and IF-TOPSIS method (Buyukozkan and Guleryuz, 2016) and the inte-

grated Delphi and IF-VIKOR method (Roostaee et al., 2012), to verify its feasibility and

validity. Some foundational and conceptual differences are observed among these meth-

ods. The integrated AHP and IF-TOPSIS method (Buyukozkan and Guleryuz, 2016) uses

the AHP and has to conduct (n2 − n)/2 pairwise comparisons to obtain the criterion

weights. Meanwhile, the integrated Delphi and IF-VIKOR method (Roostaee et al., 2012)

uses the Delphi to calculate the criterion weights and may have to conduct several rounds

of questionnaire to achieve a stable result. However, the proposed method employs the

BWM and only requires to conduct (2n − 3) comparisons. The statistical result shows

that the BWM can require less comparison data but achieves more consistent and stable

results (Rezaei, 2016). As for the ranking process, TOPSIS considers a majority rule, and

VIKOR focuses on the smallest deviations and considers potential side effects (Opricovic

and Tzeng, 2004; Shen and Wang, 2018; Wang et al., 2018). The proposed method in-

corporates multiple NIDs into the core structure of TOPSIS. Logically, a NID can avoid

a risk, and the process will further become cautious (Yue, 2014). Thus, the result yielded

by the proposed approach will be more robust and cautious than those yielded by the other

MCGDM methods.

Furthermore, the three methods are used to solve the same green supplier selection

problem. Firstly, assume that the parameter θ = 0.5 and employ the DMs’ weights and

criterion weights yielded by the proposed method. Then, the IF-TOPSIS (Buyukozkan

and Guleryuz, 2016) and IF-VIKOR (Roostaee et al., 2012) methods are used to obtain

the ranking of all alternatives. The result is shown in Table 12. The best alternative yielded

by the IF-TOPSIS method (Buyukozkan and Guleryuz, 2016) is a4, and a compromise so-

lution set yielded by the IF-VIKOR method (Roostaee et al., 2012) is {a1, a4}. A slight

difference is observed in the outcomes among the three methods. This difference may

be caused by the different principles of information fusion of these methods. Figure 4

presents a visual radar diagram on the basis of the outcomes yielded in Step 5 to show

the performances of alternatives with respect to criteria. Alternative a1 exhibits saliency

in criteria c31 and c33, followed by a4. Meanwhile, Table 7 shows that the final weights of

criteria c31 and c33 are significantly larger than those of the other major criteria. Therefore,

the comprehensive indices of alternatives a1 and a4 are larger and the two alternatives are

ranked higher than the others. Along with the variation of parameter θ , the optimal alter-

native is within the set {a1, a4}. It is enough to aid an agri-food firm select an appropriate

green supplier. Therefore, the proposed method is feasible and effective in solving green

supplier selection problems to some degree.

6. Conclusions

The green supplier selection problem is one of the most significant issues in green supply

chain management. Particularly, in China’s agri-food industry, green practices play an
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Fig. 4. Performances of alternatives with respect to criteria.

important role in leading the society towards green economy. This work develops a novel

MCGDM method for solving green supplier selection problems. The proposed MCGDM

model contributes to the evaluation and selection of green suppliers. This study provides

the following conclusions.

(1) A new way to derive criterion weights by using BWM, which requires less com-

parison data, but leads to more consistent comparisons than traditional AHP, is

presented.

(2) The familiarity of DMs with respect to different criteria is considered, and an im-

proved TOPSIS structure integrated with a proximity measure is provided to cal-

culate the DMs’ weights in terms of criteria. Moreover, a comprehensive TOPSIS-

based index is utilized to describe the performances of alternatives cautiously.

(3) The developed methodology is applied to address the green supplier selection prob-

lem in the agri-food industry. The sensitivity and comparative analyses demon-

strate the priority and effectiveness of the proposed method.
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However, some limitations are present in this study. The calculation process of the

proposed approach is more complex than that of the traditional fuzzy method, such as

simple arithmetic average, IF-TOPSIS and IF-VIKOR. Moreover, the consensus reaching

process is not considered in the proposed MCGDM. In the future, the proposed method

can be further improved by designing effective algorithms to reduce the complexity and

overcome the limitation of rank reversal (Aouadni et al., 2017). The consensus reaching

process (Cabrerizo et al., 2015; Dong et al., 2016) is necessary to yield satisfactory results

in MCGDM. Moreover, the BWM and TOPSIS methods are worth incorporating into

other qualitative GDM situations (Cabrerizo et al., 2017, 2013; Nie et al., 2017). This

study can also be extended to manage other similar evaluation and selection problems, in

which the number of alternatives is relatively small.
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