
INFORMATICA, 1990, Vol.1, No.l, 167-182

VILNIUS: A SYSTEM

FOR THE CONSTRUCTION

OF INTELLIGENT APPLICATIONS

Albertas CAPLINSKAS, Vilius MATULIS, Viktor TONKICH

Institute of Mathematics and Cybernetics,
Lithuanian Academy of Sciences,
232600 Vilnius, Akademijos St.4, Lithuania

Abstract. This paper presents an overview of the system
VILNIUS, its design goals and general architecture along with some
brief remarks on the experience of work with the system. VILNIUS
is both an application shell and program develo})ment environment.
It is used to create intelligent applications and to combine several
different applications into one application system. The intended
primary application domain is the planning and scheduling of large
research and development projects.

Key words: intelligent application shell, program develop­
ment environment, life cycle model.

Introduction. In the last years numerous efforts were
made to create various software development and program­
ming environments in order to improve the quality of prod­
ucts and the productivity of programmers. A key objective of
such environments is to support all aspects of software produc­
tion through its life cycle, encompassing the project manage­
ment and technical development. At the same time numerous
efforts were made to achieve domain-specific automatic pro­
gramming. A principle behind it is that user's needs can be

168 VILNIUS

expressed in some machine independent specification language
and automatically transformed to programs. Software tools
that perform this task are called generators or synthesizers.

The system VILNIUS, developed at the Institute of Mat­
hematics and Cybernetics of the Lithuanian Academy of Sci­
ences, is both a domain-specific application shell and a pro­
gram development environment. VILNIUS, as an application
shell, can be filled with data, input, output and processing
formats and may be used to create intelligent applications,
such as the systems for planning and scheduling large research
and development projects. A target system is created from a
given set of application modules. Required linkages among the
modules are generated automatically. VILNIUS, as a program
development system, supports the development of application
modules.

Target systems are intelligent, problem-oriented applica­
tion systems, which provide fill-in -the-form input languages.
These languages allow a computationally naive user to de­
scribe problems in the terms and concepts of application do­
main. Here a user is offered a very limited set of means to
achieve a rigidly defined set of objectives. Having only a lim­
ited set of things to understand, one can concentrate on the
problem itself, rather than on the special procedures required
to solve it.

This paper presents an overview of the VILNIUS general
architecture, along with some brief remarks on the experience
of work with this system.To place the VILNIUS architecture
in a context, we shall first present the design goals, history
~nd environment in which VILNIUS is to function. Then, we
shall briefly sketch the model of the software life cycle upon
which we have based VILNIUS and the techniques by which
we intend to design and implement the target software.

Design goals and history. Our goal was to allow the
development of medium- sized (50 000-500 000 source code

A. Caplinskas et al. 169

lines) complex software projects, involving a team of up to
twenty members. The software constructed with VILNIUS
may be developed over a period of several years and must
have sufficient performance to be usable in a production envi­
ronment.

There was a number of design goals and features that had
an impact on the architecture of the system. Nevertheless, the
basic design goals are:

--to support modular programming in IBM 360/370 As­
sembler H language,

-to accommodate a programming language, a design
language and requirement specification language,

-to simulate a target software run-time environment and
allow the execution and debugging of application modules be­
fore generating a framework of target software,

-to produce target software automatically from a given
set of application modules and a given design specification,

--to allow the integration of several different applications
into one package,.

-to support the configuration management and instal­
lation of target software,

-to support a dynamic documentation of target soft­
ware,

-to provide a collection of implem~nted tools being so
highly integrated that the system could be considered as a
single tool.

The design and implementation of the system VILNIUS
was begun in 1975 (VaiCiulis and others, 1976) and a demon­
strable prototype version was in operation under DOS /ES
on ES-1020 computer in 1978. The first commercially avail­
able version runs under OS/ES MVT 6.0 since 1980.A version
VILNIUS-2 (Caplinskas and Matulis, 1981;Caplinskas, Matu­
lis and Tonkich, 1982) was the first version that could rea­
sonably be called an integrated environment. This version

170 VILNIUS

runs under OS/ES MVT 6.0 and under VM BOS since 1985.
At present we a..re developing a more elaborate version VIL­
NIUS-3, which is to be implemented on ES-1045 computer
and IBM PC/AT compatible jointly. ES-1045 is used as a
mainframe and IBM PC/AT as a workstation. Further we
describe the version VILNIUS-3.

Enviromnent. The environment in which we intend
VILNIUS to be used is composed of software developers and
software managers who have several years of experience in
construeting software. Several different applications can be
developed by different teams together. The system VILNIUS
administrator function is provided. This function includes var­
ious tasks, such as the system installation and maintenance,
applications cataloguing, creation of data bases and program
libraries, etc.

Life cycle model. We follow some variation of the struc­
tured life cycle model. Our life cycle concept (Caplinskas and
Pamediene, 1983) is that ap'plication development consists of
the following four phases and their primary activities:

l.Requirement evaluation.
2.Requirement analysis and logical design (requirements

analysis, object and relationship identification, action identifi­
cation, operation identification, user interface design, domain
dictionary preparation).

3. Structured detailed design (evaluation of detailed de­
sign specification, identification of modules and interfaces be­
t ween modules, algorithm design).

4. Top-down implementation (generation of target sys­
tem kernel, module coding, documentation preparation, test
design, kernel acceptance test, module acceptance test, appli­
cation integration, application acceptance test).

Our approach to a logical design is fundamentally based
on the object cOllcept(Shlaer and Mellor,1989). Its purpose is:

A. Gaplinskas et al. 171

- to capture the domain-specific knowledge of applica­
tion in a f~rm that lends itself to verification by domain ex­
perts;

- to represent the requirements in a form that is easily
mapped into a non-object-oriented design;

- to provide, through a formal model of the problem
domain, a foundation upon which detailed design decisions
can be made;

- to transfer the domain knowledge to the low level de­
signers and programmers.

Our view is that application can be broken up into en­
tities and relationships, which are meaningful to a user. The
conceptual entities of the problem domain must be identified
and represented by objects that have properties (attributes).
Objects are abstractions of like instances of any concept in the
real world. A property represents a fact about the correspond­
ing real-world entity. Each object consists of some state (its
properties) and a set of operations that determine its external
behaviour. A relationship is an abstraction of a systematic
pattern of association that exists between the corresponding
real-world entities.

Problem domain information is expressed as much as pos­
sible in terms of objects, attributes and relationships. After
a structural model has been produced, a designer must turn
his attention to the dynamic behaviour of the conceptual enti­
ties and associations. A life cycle of an object or relationship
must be represented as a number of states. Each state repre­
sents a condition of the object. An object is moving from one
state to another by some operation. An application must be
represented as a number of actions, which have been created
to control operations on objects. Actions are abstractions of
the corresponding tasks in problem domain. An action can be
made of any number of actions.

172 VILNIUS

A user interface is represented as a set of forms. The
forms in our approach can be much more general and elaborate
than business paper forms. They are considered as general
mappings,which, with the attribute values given, generate the
appropriate input or output messages. The forms represent a
structured approach to these messages and guide a user to
filling a request for information.

The results of the logical design work are represented in
the form of an application domain dictionary. The require­
ment specification language is used for this purpose.

The next step in our approach is the structured detailed
design. In this step, the focus shifts from the real-world ap­
plication problem to the solution of this problem in an auto­
mated system. During a detailed design phase, the structure of
the target system should be defined in detail, the inputs, func­
tions and outputs for each module being specified. The design
language is used for this purpose. The results should be repre­
sented in a form of detailed design specification. A framework
of this specification is generated automatically from a domain
dictionary.

In top-down implementation step, the kernel of the tar­
get system from a given detailed design specification is gener­
ated automatically. The application modules must be coded
in IBM Assembler H, Fortran IV or PL/llanguage. The ker­
nel and a set of application modules are integrated into the
framework of the ultimate system.

Architecture. VILNIUS consists of two main parts:
a framework and a set of tools. The VILNIUS framework
supports the approach described in the previous section by
maintaining an independent database and independent set of
libraries for each individual project. \Vhen a new project
is initiated, a database and libraries by a system adminis­
trator are created. vVork on each project can be proceeded
autonomously, using the full resources of VILNIUS. The re-

A. Caplinskas et al. 173

sources availahle to work on each individual project have the
following main components: a database; a program library;
a task library; a test library; a documentation library; and a
working file store.

At present the system VILNIUS consists of the following
tools:

-requirement specification language processor;
-design language processor;
-programming language processor;
-debugger;
-document preparation system;
--data management tools;
-configuration management tools;
-skeleton of kernel;
-scheduling module;
-dynamic document editing tool;
-user teaching system.
The VILNIUS requirement specification language is an

interactive form-oriented language, which allows to describe
objects, relationships, operations, actions and forms. The ap­
plication designer defines requirements in a form of domain
terms dictionary. Each entry in this dictionary is a descrip­
tion of some object, operation, relationship, action or form.
Each description consists of ~wo main parts: a conceptual de­
scription and a design decision description. The requirement
sp~cificati6n language processor supports the capturing, orga­
nization and analysis of user requirements. In addition, this
processor generates automatically a framework of a detailed
design specification from user requirements. The processor
runs on IBM PC/AT.

The VILNIUS design language is a form-oriented batch
language. This language allows to describe the schemes of data
bases, computational schemes and their implementation. The
designers define computational schemes in the form of mul-

174 VILNIUS

tilevel controlled production systems (Georgeff,1982). These
schemes describe how procedural task execution plans can be
produced from a non-procedural task descriptions (user's mes­
sages) . The plan is used for interconnection of given modules.
Our approach to module interconnection is similar to the ap­
proach reported in (Prieto- Diaz and Neighbors,1986). The
design language processor performs a detailed design speci­
fication analysis and transforms these specifications into in­
ternal representation (semantic model of a given application
domain) (Caplinskas and l\iatulis,1981).

Though PL/I and FORTRAN IV as the application mod­
ule implementation languages are provided in VILNIUS, VIL­
NIUS has its own application module implementation lan­
guage (MIL) (Caplinskas and JazukeviCius ,1986), too. MIL
is a macroextension of IBM.360/370 Assembler H language.
It supports modular programming and allows separate com­
pilation of application modules. MIL also provides interac­
tion means between application modules and run-time envi­
ronment of a target system. MIL processor is implemented
as IBM 360/370 Assembler H preprocessor. A special pur­
pose checker is used to implement a guard,which is a filter for
the values of a certain parameter type and within a specific
subrange. This checker was developed at the Institute of Com­
puters in Minsk as a single autonomous tool (Margolin,1982).

VILNIUS-debugger simulates a target system run-time
environment and allows the execution and debugging of appli­
cation modules before generating a framework of this system.

A documentation preparation system is a special pur­
pose word processor. It was developed at the Computing Cen­
ter,the Siberian branch of the USSR Academy of Sciences, as
a single autonomous tool and was incorporated into VILNIUS.

Data management tools allow to creat.e and reorganize
data base files, t.o add or change dat.a, to filter data with a
given query, and to print or display reports. A data base in

A. Caplinskas et al. 175

VILNIUS is thought of as a segment hierarchy. The individual
data items are grouped together into segments. The segments

. are associated together in parent-child relationships. For data
manipulation and modification, query and reporting language
(QRL) is provided. QRL is a non-procedural linear keyword­
oriented language, which is embedded as a sublanguage in MIL.
QRL data retrieval facilities allow a multiple entity target and
relational operators as qualification expressions. The report­
ing facilities allow an automatic column alignment, placement
of headings and titles, data editing and other output format­
ting functions. All required views of data base must be pre­
liminary described in a detailed design specification as data
base subschemes.

Configuration management tools provide some facilities
for the creation and maintenance of various libraries and for
a target software integration and installation.

The design language processor, MIL processor,debugger,
documentation preparation system, data managements tools
and configuration management tools run on mainframe com-
puter. .

The architecture D.p of any target software P is defined
as follows:

D.p =< 1(, Alp >,

where K is the kernel of a system P, Alp is a semantic model
for a given application domain. . .

The kernel K is a built-in component of any target soft­
ware. Currently it includes the following components: a task
statement translator Tl , an action scheduler T2 , a problem
solving plan constructor T3 , a problem solving plan inter­
preter T4 and a VILNIUS-virtual-machine p.. For details
about these components see (Caplinskas and Matulis,1981;
Caplinskas and Tiesis ,1986).

A semantic model !'vIp provides the following levels of
application domain description: a communication level (7 p ,a

176 VILNIUS

functional level 'Pp , a static properties description level wp ,
an algorithmicallevel G. p and an application modules level "(p.

The main way, in which the components of K and Mp
interact in a system P , is illustrated by Fig. 1. T5 in this
figure denotes a set of data management tools. For details
about the semantic model Mp and target system's architecture
see (Matulis,Tonkich and Caplinskas,1989).

The set of schedule modules includes 11 modules. These
modules can be used as the basis for building network analysis
and critical path scheduling tools in target softwares.

The dynamic document editing tool allows to fill up a
skeleton of documents, prepared using the \VORDSTAR 2000
system, by the current options of target software, retrieved
from a detailed design specification.

The users learning system provides an introduction to
VILNIUS command language. The system runs 011 mainframe
computer.

All VILNIUS tools that run on mainframe computer are
integrated into a single system. The inclusive integration style
is used. The inclusive integration is based on the existence of
a VILNIUS-framework, which is considered as the dominant
component. All other components are subservient.A user can
work with a subservient component only through or in con­
junction with the dominant component. The user interface is
based on a user-driven interaction through a linear keyword­
oriented command language (Laurinskas and Tonkich,1984).

Experience with VILNIUS. The intended primary
VILNIUS application domain is the development of systems
for the planning and scheduling of large research and develop­
ment projects.

Fourteen various applications, such as multi-project ana­
lysis by time, cost evaluation, short-term and long-range plan­
ning, scheduling, control of research and development projects
and activities in an enterprise or its divisions was developed

A.Caplinskas et al.

A task statement t(tE T)
encoded in the language L

6)6)-----------
Internal representation er
of a problem rt defined by t

er(er E !!p)-the sequence
of prim1tive subproblem
names used for rt sol­
ving a problem

~ 6)- - - - - - - - - - -

Kr -a problem rt solving plan

177

Ts data

data
T4 ~---~6)

Idata basel
1 t H H

evep~s commands

Fig. 1 The interaction of components of the system
VILNIUS-2 target systems

178 VILNIUS

under the contracts with government departments of the
USSR and Machine Construction Bureaux in Leningrad, N 0-

vosibirsk, Kiev, Kharkov and Vilnius. Most applications were
integrated into two management information systems, NIOKR
and TOPAZ, that are based on the arrow-oriented network
model and the node-oriented network model, respectively. De­
pending on the disc storage available, up to 5 000 activities
in each project and up to several hundred projects in both
systems can be processed.

Conclusions. In -this paper we have described the main
components of the system VILNIUS. The design of VILNIUS
addresses two distinct sets of concerns. First, we are seeking
for tools to support the .development of intelligent applica­
tions. The second set of concerns arises from our interest
in the application of formal design methods to practical large
scale software development. A particular challenge is the com­
bining of formal and informal approaches in the development
of a large system. The positive aspects of out approach are:

1) VILNIUS is designed from a coherent software engi­
neering philosophy and is not a collection of ad hoc tools;

2) it provides the integration of traditional data base fa­
cilities as well as problem-solving system facilities.

Our effort is not only a theoretical proposal, but also
an actual tool for constructing intelligent applications. Our
experience of work with VILNIUS has been favorable.. The
applications were developed and integrated with less effort,
few bugs have been reported and fixed easily .

. The organization of VILNIUS has benefited from the les­
sons of several rounds of implementation. On the other hand/
some other systems, including DISUPPP (Perevozdlikova and
Jushchenko, 1986), MEMO (Pruuden, 1983), PRIZ (Tyugu,
1984), VIKAR (Karatuev, 1982), (Dixon and others, 1989),
(Hagino and others,1983), also influenced the VILNIUS archi­
tecture.

A.Caplinskas et al. 179

Many issues are touched up~m in this paper, but we have
only attempted to sketch our approach. More details can be
found in(Caplinskas and Matulis, 1981; Caplinskas and Pame­
diene, 1983; Caplinskas, 1988).

Acknowledgement. Since 1976 over thirty persons
have spent time working on the VILNIUS project. VILNIUS
is primarily an outcome of their work and enthusiasm. vVe
wish to thank everyone,who has contributed to the design and
implementation of this system.However, we feel it is important
to acknowledge the major contributors. E. Tiesis implemented
much of the kernel and a part of design language processor;
V. JazukeviCius - MIL processor; Z. Pamedys, A. Brazunis,
B.BagdonaviCiene, R .Pamediene - data management tools;
R. Jonusas, V. Kucas - configuration management tools; and
R. Siniuviene, 1. Cikotaite, A. JanaviCiute - a requirement
specification language processor. Our thanks ciIso to B.Piks­
riene for her constructive comments.

The development of VILNIUS has been partly supported
by a grant from the USSR State Committee for Science and
Technology.

REFERENCES

Caplinskas, A. A., and V. A. Matulis (1981). The System VILNIUS.
Conception, Structure and Using Technology. Inst. Math. and
Cybern. Acad. Sci. Lith. S$R, Vilnius. 146pp. (in Russian).

Caplinskas, A. A. , V. A. Matulis and V. D. Tonkich (1982). VIL­
NIUS-2 -the problem-oriented software development system. In
V.Matulis and A. Caplinskas (Eds.), Avtomatizatsija protsesov
planirovanija i upravlenija, Vo1.9. Inst. Math. and Cybern.
Acad. Sci. Lith. SSR, Vilnius. pp. 108-120 (in Russia,n).

Caplinskas, A. A., and R. J. Pamediene (1983). The System
VILNIUS. Logical Design of Target Software Packages. Inst.

180 VILNIUS

Math. and Cybern. Acad. Sci. Lith. SSR, Vilnius. 180pp.
(in Russia.n).

Caplinskas, A. A., and A. E. Tiesis (1986). VILNIUS-2 monitor
as a virtual ma.chine. In V. Matulis and R. Kanopa (Eds.),
A vtomatizatsija protsesov planirovanija i upravlenija, Vol.11.
Inst. Math. and Cybern. Acad. Sci. Lith. SSR, Vilnius.
pp. 18-25 (in Russian).

Caplinskas, A. A. (1988). Design Principles of Problem- Oriented
Software Systems. Inst. Math. and Cybern. Acad. Sci. Lith.
SSR ,Vilnius. 174pp. (in Russian).

Caplinskas, A. A., and A. V. JazukeviCius (1986). The use of the
implementation language in the development support system
VILNIUS-2 for module interaction with the application run-time
system. In V. Matulis and R.Kallopa (Eds.), Avtomatizatsija
protsesov planirovanija i upravlenija, Vol.11. Inst. Math. and
Cybern. Acad. Sci.Lith. SSR, Vilnius. pp. 9-17 (in Russian).

Dixon, N., G. D. Parrington, S. K. Shrivastava and S. M. Wheater
(1989). The treatment of persistent objects in Arjuna. The Com­
puter Journal, 32(4),323-332.

Georgeff, M. P. (1982). Procedural control in production systems.
Artificial intelligence, 18(2), 175-201.

Hagino, T., M. Honda, A. Koga, K. K?jima, R. Nakajima,
E. Shibayama and T. Yuasa (1983). The IOTA Programming
System. In R. Nakajima and T. Yuasa (Eds.), Lecture notes in
computer science, Vol.160. Springer-Verlag, Berlin- Heidelberg­
New York- Tokyo. 217.pp.

Karatuev, V. G. (1982). A method for applications program pack­
age kernel construction. In V. M. Matrosov (Ed.), Paketi
prikladnich program i ich postroenie, Nauka, Novosibirsk.
pp. 161-179 (in Russian).

Laurinskas, J.V., and V. D. Tonkich (1984). The System VIL­
NIUS. An Input Language. Inst. Math. and Cybern. Acad.
Sci. Lith. SSR ,Vilnius. 65pp. (in Russian).

Margolin, M. C. (1982). Parameter filtering of program objects.

A.Oaplinskas et al. 181

Progra1111nirovanie, 4, 19-26 (in Russian).
Perevozchikova ,0.1., and E. L. Jushchenko (1986). System,s

for C01ltputer Solution of Dialogue Problem,s. N aukova Dumka,
Kiev. 264pp. (in Russian).

Prieto-Diaz, R., and J. M. Neighbors (1986). Module intercon­
nection languages. The Journal at Systems and Software, 6,
307-334.

Pruuden, J. I. (1983). The MEMO metamonitoring systems family.
In A. Vauglaid (Eds.), Proceedings of the 2nd Conference "Au­
tomation of Applied Software Packages Production (Automation
of Translators Production)". TaBinn. pp. 86-88 (in Russian).

Shlaer, S., and S. J. MeBor (1989). An Object- Oriented Approach
to Domain Analysis. ACM SIGSOFT, 14(5), pp. 66-77.

Tyugu, E. H. (1984). Conceptual Programming. Nauka, Moscow.
255pp. (in Russian).

Vaiciulis, B.,V. Matulis, R. Siniuviene and A. Caplinskas (1976).
Toward a design of application packages. In B. VaiCiulis (Eds.),
Avtomatizatsija protsesov planirovanija i upravlenija, Vo1.3.
Inst. Math. and Cybern. Acad. Sci. Lith. SSR, Vilnius.
pp. 9-47 (in Russian).

Received January 1990

A. Caplinskas studied Mathematics. at the Univer­
sity of Moscow, where he received his Diploma in 1966. From
1966-1970 he was working at the Vilnius University. Since
then he is working at the Department of Mathematical Logic
and Theory of Algorithms, Institute of Mathematics and Cy­
bernetics of the Lithuanian Academy of Sciences. His pro­
fessional interests concentrate on programming methodology,
software engineering and knowledge based systems.

v. Matulis received the Dipl.-Math. Degree from
the Vilnius University in 1956, and the Degree of Candidate

182 VILNIUS

of Physical and Mathematical Sciences from the University
of Leningrad in 1964. At present he heads the Department
of Mathematical Logic and Theory of Algorithms at the In­
stitute of Mathematics and Cybernetics. His professional in­
terests concentrate on computer aided planning and control
of projects, decision support systems, provability in formal
systems, software system design methods and advanced pro­
gramming environments.

V. Tonkich received the Dipl.-Math. Degree from
the Vilnius University in 1972. At present he is the Managing
Director of the Soviet -Austrian joint venture Baltic Amadeus.
His professional interests concentrate on computer and prog­
ramming tools for planning and control of software projects.

