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Abstract. Certificate-based cryptography (CB-PKC) is an attractive public key setting, which re-

duces the complexity of public key infrastructure in traditional public key settings and resolves the

key escrow problem in ID-based public key settings. In the past, a large number of certificate-based

signature and encryption schemes were proposed. Nevertheless, the security assumptions of these

schemes are mainly relied on the difficulties of the discrete logarithm and factorization problems.

Unfortunately, both problems will be resolved when quantum computers come true in the future.

Public key cryptography from lattices is one of the important candidates for post-quantum cryptog-

raphy. However, there is little work on certificate-based cryptography from lattices. In the paper, we

propose a new and efficient certificate-based signature (CBS) scheme from lattices. Under the short

integer solution (SIS) assumption from lattices, the proposed CBS scheme is shown to be existen-

tial unforgeability against adaptive chosen message attacks. Performance comparisons are made to

demonstrate that the proposed CBS scheme from lattices is better than the previous lattice-based

CBS scheme in terms of private key size and signature size.

Key words: lattice, certificate-based signature, post-quantum cryptography, short integer solution.

1. Introduction

In traditional public key settings (Rivest et al., 1978; ElGamal, 1985), a public key in-

frastructure (PKI) is required to manage users’ certificates, which are issued by a trusted

certificate authority (CA) to offer the link relationships between users’ identities and the

associated public keys. When a party would like to use the other party’s public key, she/he

must first inquire and validate the certificate of the other party using the public key infras-

tructure. Typically, certificate management in such a public key infrastructure is pricey.

To simplify certificate management in traditional public key settings, Shamir (1984)

presented the notion of identity (ID)-based public key settings while Boneh and Franklin

(2001) realized the ID-based public key setting from the Weil pairing and presented the

first ID-based encryption scheme. For the cryptographic schemes (Tseng et al., 2016;

Tsai et al., 2017) under ID-based public key settings, a trusted private key generator

(PKG) is responsible to generate private keys of all users, but such settings suffer from the
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key escrow problem. To solve the key escrow problem, Al-Riyami and Paterson (2003)

proposed a new public key paradigm, namely, certificateless public key setting. Nev-

ertheless, both ID-based and certificateless public key settings did not employ public

key certificates so that both public key settings must offer extra revocation mechanisms

to revoke compromised users from the public key settings. Fortunately, several studies

(Tseng and Tsai, 2012; Tsai and Tseng, 2015; Hung et al., 2016b; Tseng et al., 2018;

Wu et al., 2018) have well addressed the revocation problem of ID-based and certificate-

less public key settings.

The other solution resolving the key escrow problem in ID-based public key set-

tings is the notion of certificate-based public key settings, which is presented by Gentry

(2003). In the meantime, it also simplifies certificate management and the complexity

of public key infrastructure, in traditional public key settings. In Gentry’s certificate-

based public key setting, a user independently generates the associated private/public

keys while sending the public key to a certificate authority (CA). By the user’s pub-

lic key and identity information, the CA generates a certificate and sends it to the

user. For the revocation problem, the CA may update non-revoked users’ certificates

periodically without requiring extra revocation mechanisms. When a user would like

to decrypt a ciphertext or sign a message, the user must own both private key and

valid certificate. Numerous certificate-based cryptographic studies have been proposed,

such as certificate-based encryption schemes (Galindo et al., 2008; Lu and Li, 2014;

Gao et al., 2015) and certificate-based signature schemes (Li et al., 2007; Wu et al., 2009;

Li et al., 2012; Hung et al., 2016a).

As we all know, the security of cryptographic mechanisms must be based on the diffi-

culties or assumptions of some hard problem. Typically, most of the existing cryptographic

schemes/protocols under aforementioned public key settings are mainly relied on the dif-

ficulties of the discrete logarithm and factorization problems with large prime numbers.

Unfortunately, both problems will be resolved when quantum computers come true in the

future. In such a case, those cryptographic schemes/protocols based on both hard prob-

lems would become insecure (Shor, 1997). Recently, researchers have constructed several

new mathematical approaches to withstand quantum attacks. Lattice-based cryptography

is one of the main candidates for post-quantum cryptography because of its efficiency and

security (Bernstein, 2009).

1.1. Related Work

Under traditional public key settings, Goldreich et al. (1997) proposed the first signature

and encryption schemes from lattices. Afterward, several lattice-based signature schemes

(Gentry et al., 2008; Lyubashevsky, 2009; 2012) were proposed to enhance security and

performance. Gentry et al. (2008) adopted the Gaussian sampling technique to generate a

user’s private key while employing the hash-and-sign approach to sign a message. In such

a case, the size of the resulting private key is too large while the computation cost of the

signing process is inefficient. To improve the signing performance, Lyubashevsky (2009)

employed the Fiat-Shamir transformation technique to generate signatures. Furthermore,
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Lyubashevsky (2012) proposed the other lattice-based signature scheme which uses the

rejection sampling technique to sign a message while reducing the signature size.

By employing Gentry et al.’s private key generation method (Gentry et al., 2008),

Ruckert (2010) presented two ID-based signature schemes from lattices. Both schemes

were, respectively, proved to be secure in the random oracle model and the standard

model. However, the sizes of private key and the resulting signature are still lengthy.

To improve the security and performance, lattice-based IBS schemes (Liu et al., 2013;

Tian and Huang, 2014) were proposed. For the revocation problem of ID-based public

key settings, Xiang (2015) adopted the binary tree structure to construct a revocable ID-

based signature scheme from lattices. In addition, by the revocation technique in Tseng

and Tsai (2012), Tseng et al. (2018), Hung et al. (2017a) employed the NTRU lattices in

Ducas et al. (2014) to shorten the private key and signature sizes.

Tian and Huang (2015) proposed the first lattice-based certificateless signature

scheme. They also employed Gentry et al.’s method (Gentry et al., 2008) to generate

users’ private keys so that the sizes of private key and the resulting signature turn out to

be lengthy. Very recently, Hung et al. (2017b) employed the revocation technique of cer-

tificateless public key setting in Tsai and Tseng (2015), Hung et al. (2016b) to present the

first lattice-based revocable certificateless signature scheme while improving the perfor-

mance of Tain and Huang’s scheme.

In the past, there is little work on the design of certificate-based signature (CBS)

scheme over lattices. Indeed, Tian and Huang (2015) also presented the first CBS scheme

from lattices. The proposed scheme was proved to be existential unforgeability against

adaptive chosen message attacks in the random oracle model. In addition, as Tain and

Huang’s lattice-based certificateless signature scheme, their CBS scheme from lattices

also employs the same method in Gentry et al. (2008) to generate private key. The form of

a user’s private key generated in Gentry et al. (2008) consists of two matrices M1 ∈ Z
n1×k
q

and M2 ∈ Z
n2×k
q , where n1, n2 > 5k logq and q is a prime number. Hence, in Tain and

Huang’s CBS scheme, the size of the resulting signature is also lengthy. In such a case,

their scheme is inefficient.

1.2. Contribution and Organization

In the paper, a new and efficient certificate-based signature (CBS) scheme from lattices

is proposed. In our scheme, a user’s certificate and private key are generated by using

Ducas et al.’s key extract algorithm over NTRU lattices in Ducas et al. (2014). Instead of

Gentry et al.’s key extract algorithm over GPV lattices Gentry et al., 2008, Ducas et al.’s

key extract algorithm employed a particular sampling algorithm to produce short trapdoor

(private key or certificate). Furthermore, we employ the rejection sampling technique to

sign a message. The size of the resulting signature is also shortened. Hence, our CBS

scheme from lattices has shorter private key and signature sizes than Tain and Huang’s

CBS scheme from lattices (Tian and Huang, 2015). Under the short integer solution (SIS)

assumption from lattices (Micciancio and Regev, 2007), the proposed CBS scheme is

shown to be existential unforgeability against adaptive chosen message attacks for two
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adversaries, namely, Type I (general attacker) and Type II (malicious CA). Performance

comparisons are made to demonstrate that the proposed CBS scheme from lattices is better

than the previous lattice-based CBS schemes.

The rest of the paper is organized as follows. In Section 2, we present several prelimi-

naries. The framework and security notions for CBS schemes are given in Section 3. A new

and efficient CBS scheme from lattices is presented in Section 4. In Section 5, the secu-

rity of the proposed CBS scheme is demonstrated. In Section 6, we present performance

comparisons. In Section 7, conclusions are given.

2. Preliminaries

Here, we present several preliminaries that include notations, concepts of lattices, Gaus-

sion distribution, Gaussion sampling algorithm, rejection sampling algorithm, and secu-

rity assumptions over lattices.

2.1. Notations

Several parameters throughout this article are defined as follows:

• N : a specific power-of-two integer.

• Z: the set of integers.

• R: the set of real values.

• Zq : the set of integers in the interval [−q/2, q/2), where q is a positive integer.

• Rq : Rq = Zq[X]/(XN + 1), which is a ring of polynomials with coefficients in Zq

modulo XN + 1.

• RN ,ZN ,ZN
q ,RN

q : a N -vector (or N elements) of R,Z,Zq and Rq , respectively.

• x: a vector.

• X: a matrix.

• ‖x‖: ‖x‖ =
√

∑

x2
i denotes the Euclidean norm of a vector x.

• ‖X‖∞: ‖X‖∞ = max[‖Xi‖] denotes the maximum norm of all columns of a ma-

trix X.

2.2. Anticirculant Matrices

Here, we introduce the definition (Definition 1) of an anticirculant matrix and its properties

(Lemma 1) as follows.

Definition 1. An N × N anticirculant matrix of f ∈ Rq is a Toeplitz matrix represented

by

CN (f ) =











(f )

(x · f )
...

(xN−1 · f )











=











f0 f1 f2 · · · fN−1

−fN−1 f0 f1 · · · fN−2

...
...

...
...

...

−f1 −f2 · · · · · · f0











,

where f =
∑N−1

i=0 fixi ∈ Rq . In the sequel, CN (f ) is abbreviated as C(f ).
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Lemma 1. (See Ducas et al., 2014.) Let CN (f ) and CN (g) be anticirculant matrices, we

have CN (f ) + CN (g) = CN (f + g) and CN (f ) · CN (g) = CN (f · g), where f,g ∈ Rq .

2.3. Lattice and NTRU Lattice

A lattice is a full-rank subgroup of Rn and an NTRU lattice is convolution modular lattices

with a particularly efficient class, which are defined as follows.

Definition 2. Let B = {v1,v2, . . . ,vn} be the basis of the n-dimensional lattice 3, where

v1,v2, . . . ,vn ∈ Rn and n are linearly independent vectors. The lattice 3 generated by the

basis B is defined as below:

3 = L(v1,v2, . . . ,vn) =
{

n
∑

i=1

xivi : xi ∈ Rn

}

.

Definition 3. Let f, g ∈ Rq , h = g ∗ f −1 and q is a positive integer. The NTRU lattice

3h,q = {(u, v) ∈ R2
q |u + v ∗ h = 0} is a full-rank lattice of Z2N

q . Indeed, the lattice 3h,q

may be generated by these rows (vectors) of

Ah,q =
[

−CN (h) IN

qIN ON

]

,

where ON is the N × N null matrix and IN is the N × N unit matrix.

Indeed, the basis Ah,q is not well suitable to solve the general lattice problem when h

is a uniform distribution in Rq . Thus, Hoffstein et al. (2003) constructed the other appro-

priate basis of 3h,q as

Bf,g =
[

C(g) −C(f )

C(G) −C(F )

]

,

where F,G ∈ Rq such that f ∗ G − g ∗ F = q . Indeed, Bf,g is a short basis for 3h,q and

has the following properties.

Lemma 2. (See Ducas et al., 2014.) If f,g,F,G ∈ Rq such that f ∗ G − g ∗ F = q and

h = g ∗ f −1, the short basis, Bf,g may generate the same NTRU lattice 3h,q generated

by the basis , Ah,q while satisfying ‖Bf,g‖ 6 ‖Ah,q‖.

Lemma 3. (See Ducas et al., 2014.) Let N and q be a power-of-two integer and

a prime, respectively. There exists a probabilistic polynomial-time (PPT ) algorithm

TrapGen(q,N) that may generate two polynomials f and g while computing h =
g ∗ f −1, and output a short trapdoor basis Bf,g of 3h,q . It is worth mentioning that

h is statistically close to be uniform in Rq and publicly published.
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2.4. Gaussian Distribution and Sampling Technique

In this section, we define the Gaussian distributions and sampling technique, which are

useful tools for lattice-based cryptography.

Definition 4. The continuous Gaussian distribution over RN with the centre c ∈ RN and

the standard deviation s > 0, is defined as

ρN
c,s(x) =

(

1

s
√

2π

)Ne

−‖x−c‖2
2

2s2

, where x ∈ RN .

Definition 5. For any lattice 3 ∈ ZN , the discrete Gaussian distributionover ZN with the

standard deviation s > 0 and the centre c ∈ ZN , is defined as DN
c,s(x) = ρN

c,s(x)/ρN
c,s(3),

where x ∈ ZN and ρN
c,s(3) =

∑

x∈3 ρN
c,s(x). In the sequel, ρN

0,s and DN
0,s are abbreviated

as ρN
s and DN

s respectively.

For the discrete Gaussian distribution DN
c,σ (x), Lyubashevsky (2012) gave two prop-

erties as follows.

Lemma 4. (See Lyubashevsky, 2012.) Let c ∈ ZN .

(1) If σ = ω(‖c‖
√

logN), we have Pr[x ∈ DN
σ ;DN

σ (x)/DN
c,σ (x) = O(1)] = 1 −

2−ω(logN).

(2) If α > 0 and σ = α‖c‖, we have Pr[x ∈ DN
σ ;DN

σ (x)/DN
c,σ (x) < e12/α+1/(2σ 2)] =

1 − 2−100.

In the following, let us introduce the Gaussian sampling technique over general lattices.

Indeed, one takes a noise vector from a Gaussian distribution and adds this noise vector

to a lattice, she/he may obtain a distribution which is very close to uniform distribution

(Micciancio and Regev, 2007). Based on this fact, Gentry et al. (2008) proposed a trapdoor

(private key) generation algorithm by using the Gaussian sampling technique from lattices.

Furthermore, Ducas et al. (2014) improved Gentry et al.’s trapdoor generation algorithm

to propose a specific sampling algorithm over NTRU lattices to reduce the private key

size by using a short basis Bf,g generated in Lemma 2. Ducas et al.’s trapdoor generation

algorithm has the following property.

Lemma 5. (See Ducas et al., 2014.) Let Bf,g be a short basis of an N-dimensional lattice

3. Let B̃f,g be the Gram–Schmidt orthogonalization of Bf,g . If s > ‖B̃f,g‖ω(
√

logN)

and 0 < ε < 1, we have

Pr
[

‖x − c‖ > s
√

N
]

6
1 + ε

1 − ε
2−N for any c ∈ ZN and x ∈ DN

c,s .

And there exists an PPT algorithm GauSample(Bf,g, s, c) that produces a distribution

statistically close to DN
c,s .
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2.5. Rejection Sampling Technique

In our CBS scheme from lattices, we employ the rejection sampling technique to sign a

message. The rejection sampling technique was proposed by Lyubashevsky (2012). Its

idea is to make the distribution of a resulting signature be independent of the signing key.

In addition, the rejection sampling technique requires just a few matrix-vector multipli-

cations and rejection samplings so that it is simple and efficient. The idea of the rejection

sampling technique works as follows. If a signer with the signing key S would like to gen-

erate a signature σ on a message m, the signer first chooses a random vector y from some

distribution (i.e. Gaussian distribution) and computes the candidate signature z. Namely,

the signer first uses the signing key S to multiply the resulting vector c of some function

with inputting message m and then adds the random vector y, denoted as z = Sc + y.

Without loss of generality, let the distribution DN
σ (x) be the target distribution and the

signature is the distribution vector DN

Sc,σ
(x). If DN

σ (x) 6M ·DN

Sc,σ
(x) for all x, then the

candidate signature z may be generated with probability DN
σ (z)/M · DN

Sc,σ
(z). If the re-

sulting signature does not satisfy the above condition, then the signature z will be rejected.

The expected number of times that the process generates a valid signature is M .

2.6. SIS Assumption from Lattices

Here, we present a mathematical assumption, called the short integer solution (SIS) as-

sumption from lattices. The difficulty of the SIS problem is equal to that of the worst-

case of short independent vector problem (SIVP) up to a polynomial approximation factor

(Ajtai, 1996). The SIS problem and assumption are defined as follows.

Definition 6. SISq,N,β problem: let q be a positive integer, β be a real number,

and f1, f2, . . . , fN be polynomials chosen uniformly and independently from Rq . The

SISq,N,β problem is to find non-zero integers r1, r2, . . . , rN such that
∑N

i=1 rifi = 0 mod

q and ‖(r1, r2, . . . , rN )‖6 β .

Definition 7. SISq,N,β assumption: for the SISq,N,β problem defined above, there exists

no probabilistic polynomial-time adversary A with non-negligible probability who can

find such non-zero integers r1, r2, . . . , rN .

By Ducas et al. (2014), the SIS problem on NTRU lattices is to find a pair (z1, z2) such

that z1 + h ∗ z2 = 0 and ‖(z1, z2)‖ 6 β . The statistical distance between the distribution

of h = g/f and the uniform distribution of Rq is negligible (Stehle and Steinfeld, 2013).

3. Framework and Adversary Model of CBS

In this section, the framework and adversary model of certificate-based signature (CBS)

schemes are defined here. They are identical to the framework and adversary model in Li

et al. (2007), Wu et al. (2009), Li et al. (2012), Hung et al. (2016a).
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In a CBS scheme, there are two kinds of roles, namely, users (signers/verifiers) and a

trusted certificate authority (CA). A user independently generates her/his private/public

key pair and sends the public key to the CA. And, the CA uses a system private key to

generate and send the associated certificate to the user. An CBS scheme consists of five

algorithms, namely, Setup, User key generation, Certificate extract, Sign and Verify algo-

rithms defined as follows.

Definition 8. A certificate-based signature (CBS) scheme consists of five algorithms:

– Setup algorithm is probabilistic, which is performed by the CA. It takes as input

a security parameter and returns the system private key SCA and public parameters

PP. The system private key SCA is kept secret by the CA itself.

– User key generation algorithm is probabilistic, which is performed by users. It takes

as input the identity ID of a user and returns the associated private key SID and public

key PID . In addition, it also publishes the public key PID in a public directory.

– Certificate extract algorithm is deterministic, which is performed by the CA. It takes

as input the system private key SCA, the public parameters PP and a user’s identity

ID with public key PID, and returns the associated certificate CID to the user.

– Sign algorithm is probabilistic, which is performed by users. It takes as input a mes-

sage m, her/his private key SID and certificate CID, and returns a signature ρ.

– Verify algorithm is deterministic, which is performedby users. It takes as input a sig-

nature ρ, a message m and a user’s identity ID with the public key PID, and outputs

either “accept” or “reject”.

In the following, we define the existential unforgeability of CBS schemes against adap-

tive chosen-message attacks (EUF-CBS-ACMA). The EUF-CBS-ACMA attacks consist

of two types of adversaries, namely, Type I and Type II adversaries.

• Type I adversary (uncertified entity): This adversary is a general attacker (uncertified

entity) who can obtain secret key of any entity. Meanwhile, it is allowed to acquire

certificate of any entity, except the certificate of an attacking target entity.

• Type II adversary (honest-but-curious CA): This adversary acts as the honest-but-

curious CA so that it holds the system private key SCA and can generate certificate

of any entity. Meanwhile, it is allowed to acquire secret key of any entity, except the

secret key of an attacking target entity.

In the following, an adversary model of CBS schemes against the EUF-CBS-ACMA

attacks is presented.

Definition 9. An CBS scheme provides existential unforgeability against adaptive

chosen-messageattacks (EUF-CBS-ACMA) if no probabilistic polynomial-time (PPT) ad-

versary A has a non-negligible advantage in the following game played between a chal-

lenger C and the adversary A.

– Setup. The challenger C runs the Setup algorithm to generate the system private key

SCA and public parameters PP. In addition, PP is sent to A. If A is of Type I adversary,
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SCA is kept secret by C. If A is of Type II adversary, C sends the system private key

SCA to A.

– Queries. The adversary A may adaptively issue the following queries to the chal-

lenger C. It is worth mentioning that if A is of Type II adversary, it does not need to

issue the certificate extract query since Type II adversary knows the system private

key SCA and may compute the certificates of all the users.

• User key generation query(ID). C performs the User key generation algorithm to

return the associated private key SID and public key PID of the user with identity

ID to A.

• Certificate extract query(ID, PID). C performs the Certificate extract algorithm to

return the associated certificate CID of the user with identity ID to A.

• Corruption query(ID). C returns the associated private key SID of the user with

identity ID to A.

• Public key replacement query(ID, P ′
ID). The adversary A chooses a new public

key P ′
ID for the user with identity ID. C records this public key replacement in a

public directory. Meanwhile, it denotes that A knows the associated private key

SID of the user with identity ID.

• Sign query(m, ID). Given a message m and identity ID with the public key PID ,

C generates a valid signature ρ and returns it to A.

– Forgery. Finally, the adversary A produces a signature tuple (ρ∗, m∗, ID∗, PID∗).

The advantage of A is defined as the probability that A wins the game. We say that

A wins the game if the following conditions hold.

(1) The response of the Verify algorithm on (ρ∗, m∗, ID∗, PID∗) is “accept”.

(2) (m∗, ID∗) has never been issued in the sign query.

(3) If A is of Type I adversary, ID∗ has never been issued in the Certificate extract

query.

(4) If A is of Type II adversary, it does not know the private key of the attacking

target entity ID∗, namely, ID∗ has never been issued in the User key generation,

Public key replacement and Corruption queries.

4. An Efficient CBS Scheme from Lattices

Here, we propose a new and efficient CBS scheme from lattices. By the framework defined

in Section 3, the proposed CBS scheme consists of five algorithms as below.

– Setup algorithm: Assume that N , q and λ are, respectively, a security parameter,

a large prime and a positive integer while setting two standard deviations s > 0 and

σ > 0. The CA runs TrapGen(q,N ) in Lemma 3 to produce two polynomials f

and g and compute h = g ∗ f 1, where f,g ∈ Rq and ‖f ‖, ‖g‖ < s
√

N while h is

statistically close to be uniform in Rq . In the meantime, the CA also produces is a

short trapdoor basis Bf,g of the lattice 3h,q , which is viewed as the system private

key SCA. The CA chooses two values p1, p2 ∈ ZN
q and sets the system public key as

(h, p1, p2). In addition, the CA selects two hash functions H1:{0,1}∗ × ZN
q → ZN

q
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and H2:{0,1}∗ ×ZN
q ×ZN

q → {v : v ∈ {−1,0,1}N,‖v‖1 6 λ}, where ‖v‖1 denotes

the amount of non-zero elements of v. Finally, the CA sets the public parameters

PP=〈N,λ, s, σ, q,h,p1,p2,H1,H2〉.
– User key generation algorithm: The user with identity ID sets her/his private key

SID = (s1, s2), which is randomly and uniformly chosen from {−d, . . . ,0, . . . , d}N ,

where 1 6 d 6 31. Meanwhile, the user computes the associated public key PID =

p1 ∗ s1 + p2 ∗ s2.

– Certificate extract algorithm: Upon receiving the identity ID and public key PID

of a user, the CA computes TID = H1(ID,PID) ∈ zN
q and generates the user’s

certificate CID = (s3, s4) such that s3 + h ∗ s4 = TID and ‖(s3, s4)‖ < s
√

2N by

running GauSample(B, s, (TID,0)) in Lemma 5. The CA returns the certificate

CID = (s3, s4) to the user via a secure channel.

– Sign algorithm: Given a message m ∈ {0,1}∗, the user with the private key SID =
(s1, s2) and certificate CID = (s3, s4) randomly selects y1,y2,y3 and y4 from the

distribution DN
σ , and computes the following values:

c = H2(m,p1 ∗ y1,p2 ∗ y2,y3 + h ∗ y4);
z1 = y1 + s1 ∗ c;
z2 = y2 + s2 ∗ c;
z3 = y3 + s3 ∗ c;
z4 = y4 + s4 ∗ c,

where ‖(z1, z2, z3, z4)‖ 6 2σ
√

4N . If ‖(z1, z2, z3, z4)‖ 6 2σ
√

4N does not hold,

the user reruns this algorithm. By (Lyubashevsky, 2012), there exists a constant M =
O(1) such that the user can produce such a signature ρ = (z1, z2, z3, z4, c) with

probability min(D4N
σ (z)/MD4N

v,σ (z),1), where

z =
[

zT
1 ‖zT

2 ‖zT
3 ‖zT

4

]T

and

v =
[

(s1 ∗ c)T
∥

∥(s2 ∗ c)T
∥

∥(s3 ∗ c)T
∥

∥(s4 ∗ c)T
]T

.

– Verify algorithm: Given a signature ρ = (z1, z2, z3, z4, c), a message m and a user’s

identity ID with public key PID, a verifier validates the signature by the equality

c = H2(m,p1 ∗ z1 + p2 ∗ z2 − PID ∗ c, z3 + h ∗ z4 − TID ∗ c).

If the equality holds, the algorithm returns “accept”. Otherwise, the algorithm re-

turns “reject”. The correctness of the equality follows by

H2(m,p1 ∗ z1 + p2 ∗ z2 − PID ∗ c, z3 + h ∗ z4 − TID ∗ c)

= H2(m,p1 ∗ (y1 + s1 ∗ c) + p2 ∗ (y2 + s2 ∗ c) − (p1 ∗ s1 + p2 ∗ s2) ∗ c,
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y3 + s3 ∗ c + h ∗ (y4 + s4 ∗ c) − (s3 + h ∗ s4) ∗ c)

= H2(m,p1 ∗ y1 + p2 ∗ y2,y3 + h ∗ y4).

5. Security Analysis

According to the framework and adversary model of CBS schemes, the signing key of a

user with identity ID include two components, namely, the private key SID and the associ-

ated certificate CID. By the EUF-CBS-ACMA game aforementioned in Definition 9, there

are two kinds of adversaries, namely, Type I adversary (uncertified entity) and Type II ad-

versary (honest-but-curious CA). Type I adversary is a general attacker without knowing

the system private key SCA so that it did not compute the certificate of an attacking tar-

get entity. Type II adversary acts as the honest-but-curious CA so that it holds the system

private key SCA, but does not know the private key of the attacking target entity.

The security analysis of the proposed CBS scheme is formally proved as follows. In

Theorem 1, we prove that our CBS scheme from lattices is secure against Type I adversary

(uncertified entity). Theorem 2 shows that the proposed CBS scheme is secure against

Type II adversary (honest-but-curious CA).

Theorem 1. Let two hash functions H1 and H2 be random oracles controlled by a chal-

lenger in the EUF-CBS-ACMA game. If there exists a probabilistic polynomial-time (PPT)

adversary A (Type I adversary, general attacker) with non-negligible probability who can

break our CBS scheme over lattices, an algorithm C can be constructed to solve the SIS

problem from lattices with non-negligible probability (1 − 2−ω(logN))ε, where N is the

security parameter.

Proof. Assume that N , q and λ are, respectively, a security parameter, a large prime and

a positive integer while setting two standard deviations s > 0 and σ > 0. Assume that

the algorithm C be a challenger in the EUF-CBS-ACMA game while receiving a random

instance (q,2N,2λs
√

2N + 4σ
√

2N) of the SIS problem. In the following, we demon-

strate that the challenger C may obtain a non-zero vector solution (u1,u2) ∈ R2
q of the

SIS problem if the adversary A with non-negligible probability ε who can break our CBS

scheme.

– Setup. As the Setup algorithm in the proposed CBS scheme, C randomly chooses

p1,p2 ∈ ZN
q and h ∈ Rq while controlling the random oracles H1 and H2. C sets

the public parameters PP=〈N,λ, s, σ, q,h,p1,p2,H1,H2〉 and sends them to A.

Initially, C constructs three empty lists L1, L2 and LS .

– Queries. A may issue several queries to C adaptively as below:

• H1 query: Let L1 consist of tuples of the form 〈IDi ,PIDi
,CIDi

, TIDi
〉. For the

query along with (IDi ,PIDi
), C returns a response to this query by the following

procedures.

1. Search (IDi ,PIDi ) in L1. If the tuple is found, it means that this query has been

already issued and the same answer TIDi
is sent to A.
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2. Otherwise, randomly select si3, si4 ∈ DN
s such that ‖(si3, si4)‖ < s

√
2N , and

compute TIDi
= si3 +h∗si4. Finally, C adds 〈IDi,PIDi

,CIDi
= (si3, si4), TIDi

〉
in L1 and sends TIDi to A.

• H2 query: Let L2 consist of tuples of the form 〈mj , vj ,wj , cj 〉. For the query

along with (mj , vj ,wj ), C returns a response to this query by the following pro-

cedures.

1. Search (mj , vj ,wj ) in L2. If the tuple is found, it means that this query has

been already issued and the same answer cj is sent to A.

2. Otherwise, randomly select cj ∈ ZN
q . Finally, C adds 〈mj , vj ,wj , cj 〉 in L2

and sends cj to A.

• User key generation query: Let LS consist of tuples of the form 〈IDi, SIDi
,PIDi

〉.
For the query along with IDi , C returns a response to this query by the following

procedures.

1. Search IDi in LS . If the tuple is found, it means that this query has been already

issued and the same answer SIDi
= (si1, si2) is sent to A.

2. Otherwise, randomly select si1, si2 ∈ {−d, . . . ,0, . . . , d}N , where 1 6 d 6 31,

and compute the public key PIDi
= (p1 ∗ si1 + p2 ∗ si2) Finally, C adds

〈IDi , SIDi
,PIDi

〉 in LS and sends SIDi
= (si1, si2) to A.

• Certificate extract query: For the query along with (IDi,PIDi ), C returns a re-

sponse to this query by the following procedures.

1. Search (IDi ,PIDi ) in L1. If the tuple is found, it means that this query has been

already issued and the same answer CIDi
is sent to A.

2. Otherwise, issue the H1 query to obtain the tuple 〈IDi,PIDi ,CIDi , TIDi 〉 and

return CIDi
to A.

• Corruption query: For the query along with IDi , C returns a response to this query

by the following procedures.

1. Search IDi in LS . If the tuple is found, it means that this query has been already

issued and the same answer SIDi is sent to A.

2. Otherwise, issue the User key generation query to obtain the tuple 〈IDi , SIDi
,

PIDi 〉 and return SIDi to A.

• Public key replacement query: A issues this query along with a new public

key P ′
IDi

of IDi to replace the old public key PIDi , C replaces the PIDi of

〈IDi, SIDi
,PIDi

〉 in LS with P ′
IDi

.

• Sign query: For the query along with a message mj and (IDi ,PIDi
), the challenger

C performs the following procedures to generate a valid signature.

1. Respectively search IDi in L1 and LS to get the tuples 〈IDi ,PIDi
,CIDi

, TIDi
〉

and 〈IDi, SIDi ,PIDi 〉
2. Randomly choose cj ∈ {v : v ∈ {−1,0,1}N ,‖v‖1 6 λ} and z1, z2, z3, z4 ∈ DN

σ

such that ‖( z1, z2, z3, z4)‖ 6 2σ
√

4N , and compute vj = p1 ∗ z1 + p2 ∗ z2 -

PIDi
∗ cj and wj = z3 + h ∗ z4 - TIDi

∗ cj .

3. Send the signature ρ = (z1, z2, z3, z4, cj ) to A while adding 〈mj , vj ,wj , cj 〉
in L2. Note that the signature ρ is valid because the following equality holds:
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cj = H2(mj ,p1 ∗ z1 + p2 ∗ z2 − PIDi
∗ cj , z3 + h ∗ z4 − TIDi

∗ cj )

= H2(mj , vj ,wj )

– Forgery. Finally, the adversary A generates a signature tuple (z∗
1, z∗

2, z∗
3 , z∗

4, c∗) on

some message m∗ for some ID∗.

Assume that A may generate a valid signature ρ∗ = (z∗
1, z∗

2, z∗
3 , z∗

4, c∗). By the Forking

lemma (Pointcheval and Stern, 2000), the challenger C can generate the other valid signa-

ture (z′
1, z′

2, z′
3, z′

4, c′) such that c∗ 6= c′ by the same random tape with different hash value

of H2 query . Because (z∗
1, z∗

2, z∗
3 , z∗

4, c∗) and (z′
1, z′

2, z′
3, z′

4, c′) are two valid signatures

on the message m∗ for (ID∗, PID∗ ), we can obtain the equality

H2

(

m∗,p1 ∗ z∗
1 + p2 ∗ z∗

2 − PID∗ ∗ c∗, z∗
3 + h ∗ z∗

4 − TID∗ ∗ c∗)

= H2

(

m∗,p1 ∗ z′
1 + p2 ∗ z′

2 − PID∗ ∗ c′, z′
3 + h ∗ z′

4 − TID∗ ∗ c′),

which reduces to

z∗
3 + h ∗ z∗

4 − TID∗ ∗ c∗ = z′
3 + h ∗ z′

4 − TID∗ ∗ c′.

Since TID∗ = s3 + h ∗ s4, we have

z∗
3 + h ∗ z∗

4 − (s3 + h ∗ s4) ∗ c∗ = z′
3 + h ∗ z′

4 − (s3 + h ∗ s4) ∗ c′;

z∗
3 − z′

3 − s3

(

c∗ − c′) + h ∗
(

z∗
4 − z′

4 − s4

(

c∗ − c′)) = 0;

(1, h) ∗
(

z∗
3 − z′

3 − s3

(

c∗ − c′), z∗
4 − z′

4 − s4

(

c∗ − c′)) = 0.

Afterward, C sets (u1,u2) = (z∗
3 − z′

3 − s3(c
∗ − c′), z∗

4 − z′
4 − s4(c

∗ − c′)).
If we have ‖(z∗

3 −z′
3, z∗

4 −z′
4)‖6 4σ

√
2N and ‖(s3, s4)‖ 6 s

√
2N with overwhelming

probability, we can obtain ‖(u1,u2)‖ 6 2λs
√

2N + 4σ
√

2N . As stated in Lemma 3, the

distribution of h = g/f is statistically close to the uniform distribution of Rq (Stehle and

Steinfeld, 2013). The SIS problem on NTRU lattice is to find a pair (u1,u2) ∈ R2
q such that

u1 + h ∗ u2 = 0 and ‖(u1,u2)‖ 6 β , where β is 2λs
√

2N + 4σ
√

2N . According to the

same probability analysis in Lyubashevsky (2012), since A can break our CBS scheme

with non-negligible probability ε, we may construct the challenger C to solve the SIS

problem with non-negligible probability(1 − 2−ω(logN))ε. �

Theorem 2. Let two hash functions H1 and H2 are random oracles controlled by a chal-

lenger in the EUF-CBS-ACMA game. If there exists an PPT adversary A (Type II adver-

sary, honest-but-curious CA) with non-negligible probability ε who can break our CBS

scheme from lattices, an algorithm C can be constructed to resolve the SIS problem from

lattices with non-negligible probability (1 − 2−ω(logN))ε, where N is the security param-

eter.
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Proof. Assume that N , q and λ are, respectively, a security parameter, a large prime and

a positive integer while setting 1 6 d 6 31 and two standard deviations s > 0 and σ >

0. Assume that the algorithm C be a challenger in the EUF-CBS-ACMA game while

receiving a random instance (q,2N,2λd
√

2N + 4σ
√

2N) of the SIS problem. In the

following, we demonstrate that the challenger C may obtain a non-zero vector solution

(u1,u2) ∈ R2
q of the SIS problem if the adversary A with non-negligible probability ε

who can break our CBS scheme.

– Setup. As the Setup algorithm in the proposed CBS scheme, C sets the public param-

eters PP = 〈N,λ, s, σ, q,h,p1,p2,H1,H2〉, where H1 and H2 are random oracles.

C also produces a short trapdoor basis B of the lattice 3h,q , which is viewed as the

system private key SCA. In the meantime, the system private key SCA and the public

parameters PP = 〈N,λ, s, σ, q,h,p1,p2,H1,H2〉 are sent to A. Initially, C con-

structs three empty lists L1, L2 and LS .

– Queries. A may issue several queries to C adaptively as below:

• H1 query: Let L1 consist of tuples of the form 〈IDi ,PIDi
,CIDi

, TIDi
〉. For the

query along with (IDi ,PIDi ), C returns a response to this query by the following

procedures.

1. Search (IDi,PIDi ) in L1. If the tuple is found, it means that this query has been

already issued and the same answer TIDi
is sent to A.

2. Otherwise, randomly select TIDi
∈ ZN

q and perform GauSample(B, s, (TID,0))

to get si3, si4 ∈ DN
s such that ‖(si3, si4)‖ < s

√
2N . Finally, the challenger C

adds 〈IDi,PIDi ,CIDi = (si3, si4), TIDi 〉 in L1 and sends TIDi to A.

• H2 query: As the response of H2 query in Theorem 1.

• User key generation query: Let LS consist of tuples of the form 〈IDi, SIDi
,PIDi

〉.
For the query along with IDi , C returns a response to this query by the following

procedures.

1. Search IDi in LS . If the tuple is found, it means that this query has been already

issued and the same answer SIDi
= (si1, si2) is sent to A.

2. Otherwise, randomly select si1, si2 ∈ {−d, . . . ,0, . . . , d}N , where 1 6 d 6 31,

and compute the public key PIDi
= (p1 ∗ si1 + p2 ∗ si2) Finally, C adds

〈IDi , SIDi
,PIDi

〉 in LS and sends SIDi
= (si1, si2) to A.

• Certificate extract query: As the response of User key generation query in Theo-

rem 1.

• Corruption query: As the response of User key generation query in Theorem 1.

• Public key replacement query: A issues this query along with a new public

key P ′
IDi

of IDi to replace the old public key PIDi , C replaces the PIDi of

〈IDi, SIDi
,PIDi

〉 in LS with P ′
IDi

.

• Sign query: As the response of User key generation query in Theorem 1.

– Forgery. Finally, the adversary A generates a signature tuple (z∗
1, z∗

2, z∗
3 , z∗

4, c∗) on

some message m∗ for some ID∗.

Assume that A may generate a valid signature ρ∗ = (z∗
1, z∗

2, z∗
3 , z∗

4, c∗). By the Forking

lemma (Pointcheval and Stern, 2000), the challenger C can generate the other valid signa-

ture (z′
1, z′

2, z′
3, z′

4, c′) such that c∗ 6= c′ by the same random tape with different hash value
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of H2 query. Because (z∗
1, z∗

2, z∗
3, z∗

4, c∗) and (z′
1, z′

2, z′
3, z′

4, c′) are two valid signatures on

the message m∗ for (ID∗, PID∗ ), we can obtain the equality

H2

(

m∗,p1 ∗ z∗
1 + p2 ∗ z∗

2 − PID∗ ∗ c∗, z∗
3 + h ∗ z∗

4 − TID∗ ∗ c∗)

= H2

(

m∗,p1 ∗ z′
1 + p2 ∗ z′

2 − PID∗ ∗ c′, z′
3 + h ∗ z′

4 − TID∗ ∗ c′),

which reduces to

p1 ∗ z∗
1 + p2 ∗ z∗

2 − PID∗ ∗ c∗ = p1 ∗ z′
1 + p2 ∗ z′

2 − PID∗ ∗ c′.

Since PIDi
= p1 ∗ si1 + p2 ∗ si2, we have

p1 ∗ z∗
1 + p2 ∗ z∗

2 − (p1 ∗ si1 + p2 ∗ si2) ∗ c∗

= p1 ∗ z′
1 + p2 ∗ z′

2 − (p1 ∗ si1 + p2 ∗ si2) ∗ c′;

p1 ∗
(

z∗
1 − z′

1

)

+ p2 ∗
(

z∗
2 − z′

2

)

− p1 ∗ si1
(

c∗ − c′) − p2 ∗ si2
(

c∗ − c′) = 0;

p1 ∗
(

z∗
1 − z′

1 − si1
(

c∗ − c′)) + p2 ∗
(

z∗
2 − z′

2 − si2
(

c∗ − c′)) = 0;

(p1,p2) ∗
(

z∗
1 − z′

1 − si1
(

c∗ − c′), z∗
2 − z′

2 − si2

(

c∗ − c′)) = 0.

Afterward, C sets (u1,u2) = (z∗
1 − z′

1 − si1(c
∗ − c′), z∗

2 − z′
2 − si2(c

∗ − c′)).
If we have ‖(z∗

1 −z′
1, z∗

2 −z′
2)‖6 4σ

√
2N and ‖(s1, s2)‖ 6 2dλ

√
2N with overwhelm-

ing probability, we can obtain ‖(u1,u2)‖6 2dλ
√

2N + 4σ
√

2N . As stated in Lemma 3,

the distribution of h = g/f is statistically close to the uniform distribution of Rq (Stehle

and Steinfeld, 2013). The SIS problem on NTRU lattice is to find a pair (u1,u2) ∈ R2
q

such that u1 + h ∗ u2 = 0 and ‖(u1,u2)‖ 6 beta, where β is 2dλ
√

2N + 4σ
√

2N . Ac-

cording to the same probability analysis in Lyubashevsky (2012), since A can break our

CBS scheme with non-negligible probability ε, we may construct the challenger C to solve

the SIS problem with non-negligible probability (1 − 2−ω(logN))ε. �

6. Comparisons

Table 1 lists the comparisons between Tian and Huang’s CBS scheme (Tian and Huang,

2015) and our CBS scheme in terms of lattice type, private key size/bit-length and signa-

ture size/bit- length. For the generation of a user’s private key, Tian and Huang’s CBS

scheme adopted the GPV lattice in Gentry et al. (2008), instead, our proposed CBS

scheme employed Ducas et al.’s sampling algorithm over NTRU lattices (Ducas et al.,

2014). For both the private key size and signature size under the same security param-

eters N=512, q ≈ 226, k = 512, λ = 14 and d = 31, our scheme is better than those of

Tian and Huang’s CBS scheme. By Lyubashevsky (2012), we have n1 > 2N logq , n2 >

64 + N logq , s1 = √
n1ω(

√
logN), s2 = √

n2ω(
√

logN), σ1 = 12s1λn1, σ2 = 12s2λn2 ,

s = N5/2
√

2qω(
√

logN), σ = 12sλN while choosing n1 = 38400 and n2 = 25600. Ac-

cording to Table 1, our scheme is much better than Tian and Huang’s CBS scheme in

terms of private key and signature sizes.
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Table 1

Comparisons between Tian and Huang’s CBS scheme and ours.

Tian and Huang’s CBS scheme Our CBS

(Tian and Huang, 2015) scheme

Lattice type GPV lattice NTRU lattice

Private key size 2n1k log(s1
√

n1) + 2n2k log(s2
√

n2) 4N log(s
√

N)

Private key bit-length 595222811 85166

Signature size n1 log(12σ1) + n2 log(12σ2) + λ(log k + 1) 4N log(12σ) + λ(log N + 1)

Signature bit-length 675496 87161

7. Conclusions

Lattice-based cryptography is an important candidate for post-quantum cryptography. In

the paper, a new and efficient CBS scheme from lattices was proposed,which possesses the

merits of both CBS scheme and lattice-based cryptography. Based on the SIS assumption

from lattices and in the random oracle model, we formally demonstrated the security of

our lattice-based CBS scheme against Type I adversary (general attackers) and Type II ad-

versary (the honest-but-curious CA), namely, achieving existential unforgeability against

adaptive chosen message attacks for both adversaries. Comparisons with the previous CBS

schemes from lattices were given to demonstrate the merits of our proposed CBS scheme

in terms of private key size and signature size.
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