
INFORMATICA, 2020, Vol. 31, No. 1, 143–160 143
© 2020 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR404

Comparison of Classification Algorithms
for Detection of Phishing Websites

Paulius VAITKEVICIUS∗ Virginijus MARCINKEVICIUS
Vilnius University, Institute of Data Science and Digital Technologies,
Akademijos str. 4, LT-08412 Vilnius, Lithuania
e-mail: paulius.vaitkevicius@mif.vu.lt

Received: September 2019; accepted: January 2020

Abstract. Phishing activities remain a persistent security threat, with global losses exceeding 2.7 bil-
lion USD in 2018, according to the FBI’s Internet Crime Complaint Center. In literature, different
generations of phishing websites detection methods have been observed. The oldest methods include
manual blacklisting of known phishing websites’ URLs in the centralized database, but they have
not been able to detect newly launched phishing websites. More recent studies have attempted to
solve phishing websites detection as a supervised machine learning problem on phishing datasets,
designed on features extracted from phishing websites’ URLs. These studies have shown some clas-
sification algorithms performing better than others on differently designed datasets but have not
distinguished the best classification algorithm for the phishing websites detection problem in gen-
eral. The purpose of this research is to compare classic supervised machine learning algorithms
on all publicly available phishing datasets with predefined features and to distinguish the best per-
forming algorithm for solving the problem of phishing websites detection, regardless of a specific
dataset design. Eight widely used classification algorithms were configured in Python using the
Scikit Learn library and tested for classification accuracy on all publicly available phishing datasets.
Later, classification algorithms were ranked by accuracy on different datasets using three different
ranking techniques while testing the results for a statistically significant difference using Welch’s
T-Test. The comparison results are presented in this paper, showing ensembles and neural networks
outperforming other classical algorithms.
Key words: phishing detection, classification algorithms, phishing datasets.

1. Introduction

Phishing is a form of cybercrime employing both social engineering and technical trickery
to steal sensitive information, such as digital identity data, credit card data, login creden-
tials, and other personal data, etc. from unsuspecting users by masking as a trustworthy
entity. For example, the victim receives an e-mail from an adversary with a threatening
message such as a possible bank or social media account termination or fake alert on
illegal transaction (Lin Tan et al., 2016), directing him to a fraudulent website that mim-
ics a legitimate one. The adversary can use any information that the victim enters in the
phishing website to steal identity or money (Whittaker et al., 2010).

*Corresponding author.

https://doi.org/10.15388/20-INFOR404

144 P. Vaitkevicius, V. Marcinkevicius

Although there are many existing anti-phishing solutions, phishers continue to lure
more and more victims. In 2018, the Anti-Phishing Working Group (APWG) reported as
many as 785,920 unique phishing websites detected, with a 69.5% increase during the
last five years of monitoring, from 463,750 unique phishing websites detected in 2014
(Anti-Phishing Working Group, 2018). Global losses from phishing activities exceeded
2.7 billion USD in 2018, according to the FBI’s Internet Crime Complaint Center (Internet
Crime Complaint Center, 2019).

Deceptive phishing attacks are still so successful nowadays because, in essence, they
are “human-to-human” assaults performed by professional adversaries who (i) have finan-
cial motivation for their actions, (ii) exploit lack of awareness and computer illiteracy of
ordinary Internet users (Adebowale et al., 2019), and (iii) manage to learn from their pre-
vious experience and improve their future attacks to lure new victims more successfully.
For this reason, ordinary Internet users cannot keep up with new trends of phishing attacks
and learn to differentiate a legitimate website’s URL from a malicious one, relying solely
on their efforts.

In order to protect Internet users from criminal assaults, automated detection tech-
niques for phishing websites recognition were started to develop. The oldest approach in-
cluded manual blacklisting of known phishing websites’ URLs in centralized databases,
later used by Internet browsers to alert users about possible threats. The negative aspect
of the blacklisting method is that these databases do not include newly launched phish-
ing websites and therefore do not protect from “the zero hour” attacks, as most of the
phishing URLs are inserted in centralized databases only 12 hours after the first phish-
ing attack (Jain and Gupta, 2018a). More recent studies have attempted to solve phishing
websites detection as a supervised machine learning problem. Many authors have con-
ducted experiments using various classification methods and different phishing datasets
with predefined features (Chiew et al., 2019; Marchal et al., 2016; Sahoo et al., 2017).

The following open questions motivate our research:

1. State-of-the-art methods of phishing website detection report classification accuracy
(the classification accuracy measure is described in Section 3.4.1) well above 99.50%
and use different classification algorithms: ensembles (Gradient Boosting) (Marchal
et al., 2017), statistical models (Logistic Regression) (Whittaker et al., 2010), proba-
bilistic algorithms (Bayesian Network) (Xiang et al., 2011), classification trees (C4.5)
(Cui et al., 2018). There is no common agreement about what classification algorithm
is the most accurate in phishing website prediction on datasets with predefined features
(Chiew et al., 2019).

2. State-of-the-art methods demonstrate such high classification accuracies on highly un-
balanced datasets with minority and majority classes. Classification accuracy measure
has low construct validity on datasets where class balance is not proportional and show
better results for the preferred class. Doubts remain, whether these results were demon-
strated due to dataset dependent method design (Chiew et al., 2019) or algorithms used
in state-of-the-art research are preeminent compared to others.

3. To the best of our knowledge, no studies comparing classic classification algorithms’
performance on all publicly available phishing datasets with predefined features were
conducted to answer the questions mentioned above.

Comparison of Classification Algorithms for Detection of Phishing Websites 145

Therefore, the objective of this experimental research is to answer the research ques-
tion: which classical classification algorithm is best for solving the phishing websites de-
tection problem, on all publicly available datasets with predefined features?

In this paper we compare eight classic supervised machine learning algorithms of dif-
ferent types (for more details see Section 3.2) on three publicly available phishing datasets
with predefined features being used by the scientific community in experiments with clas-
sification algorithms (for more details on datasets see Section 3.3).

We have designed an experiment where we used such algorithms:

1. AdaBoost (Wang, 2012),
2. Classification and Regression Tree (CART) (Breiman et al., 1984),
3. Gradient Tree Boosting (Friedman, 2002),
4. k-Nearest Neighbours (Dudani, 1976),
5. Multilayer Perceptron (MLP) with backpropagation (Widrow and Lehr, 1990),
6. Naïve–Bayes (Lewis, 1998),
7. Random Forest (Breiman, 2001),
8. Support-Vector Machine (SVM) with linear kernel (Scholkopf and Smola, 2001),
9. Support-Vector Machine with 1st degree polynomial kernel (Scholkopf and Smola,

2001),
10. Support-Vector Machine with 2nd degree polynomial (Scholkopf and Smola, 2001).

We trained and tested all these algorithms upon all three datasets. Later we ranked these
algorithms by their classification accuracy measure on different datasets using three dif-
ferent ranking techniques while testing the results for a statistically significant difference
using Welch’s T-Test.

The rest of the paper is organized as follows: In Section 2 we give a review of related
work. In Section 3 we describe our research methodology. In Section 4 we report our
experiment results. We conclude the paper in Section 5.

2. Related Works

The scientific community has spent a lot of effort to tackle the problem of phishing web-
sites detection. In general, approaches to solving this problem can be grouped into three
different categories: (i) blacklisting and heuristic-based approaches (more in Section 2.1),
(ii) supervised machine learning approaches (more in Section 2.2), and deep learning ap-
proaches (more in Section 2.3) (Sahoo et al., 2017).

2.1. Review of Blacklisting and Heuristics-Based Research

Although there are initiatives to use centralized phishing websites’ URLs blacklisting so-
lutions (e.g., PhishTank,1 Google Safe Browsing API2), this method was proven unsuc-
cessful as it takes time to detect and report a malicious URL, because phishing websites

1https://www.phishtank.com/.
2https://developers.google.com/safe-browsing/.

https://www.phishtank.com/
https://developers.google.com/safe-browsing/

146 P. Vaitkevicius, V. Marcinkevicius

have a very short lifespan (from a few hours to a few days) (Verma and Das, 2017). There-
fore, new phishing websites’ URL detection methods were started to be implemented by
the scientific community.

Heuristic approaches are an improvement on blacklisting techniques where the sig-
natures of common attacks are identified and blacklisted for the future use of Intrusion
Detection Systems (Seifert et al., 2008). Heuristic methods supersede conventional black-
listing methods as they have better generalization capabilities and can detect threats in
new URLs, but they cannot generalize to all types of new threats (Verma and Das, 2017).

2.2. Review of Supervised Machine Learning Based Research

During the last decade, most of the machine learning approaches to solve phishing web-
sites detection problem were based on the supervised machine learning methods on phish-
ing datasets with predefined features. In Table 1, we present a detailed summary of other
authors’ results of this problem solving during the last ten years of study. Our review
consists of the publication year, authors, used classifier, dataset composition (numbers of
phishing and legitimate websites), and achieved classification accuracy. Results are sorted
by accuracy from highest to lowest.

From this review, we can make the following observations:

• Two best approaches scored as high as 99.9% by accuracy.
• 15 best approaches scored above 99.0% by accuracy.
• The most popular algorithms among researchers are Random Forest (8 papers), Naïve–

Bayes (7 papers), SVM (7 papers), C4.5 (7 papers3), Logistic Regression (6 papers).
• Best 5 approaches scored above 99.49% and were implemented using different types

of classifiers: neural networks, regression, decision trees, ensembles, and Bayesian. We
see no prevailing classification method or type of method among top results.

• Best 5 approaches use highly unbalanced datasets, therefore, evaluating classifier per-
formance by accuracy is inadequate and does not tell how this classifier would perform
on more balanced datasets.

2.3. Review of Deep Learning Based Research

During the past few years, novel approaches to solve phishing websites detection prob-
lem using deep learning techniques were introduced by the scientific community. Zhao et
al. have demonstrated that Gated Recurrent Neural Network (GRU) without the need for
manual feature creation is capable of classifying malicious URLs with 98.5% accuracy on
240,000 phishing and 150,000 legitimate websites URL samples (Zhao et al., 2019). Saxe
and Berlin have performed an experiment with Convolutional Neural Network (CNN), au-
tomating the process of feature design and extraction from generic raw character strings
(malicious URLs, file paths, etc.) and gaining 99.30% accuracy on 19,067,879 randomly

3Including J48, which is WEKA’s class for generating pruned or unpruned C4.5 decision tree
(http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html).

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

Comparison of Classification Algorithms for Detection of Phishing Websites 147

Table 1
Classification approaches to the solution of the phishing websites detection problem.

Reference Classifier Dataset
phish.

legit. Accuracy

(Marchal et al., 2017) Gradient Boosting 100,000 1000 99.90%
(Whittaker et al., 2010) Logistic Regression 16,967 1,499,109 99.90%
(Xiang et al., 2011) Bayesian Network 8,118 4,780 99.60%
(Cui et al., 2018) C4.54 24,520 138,925 99.78%
(Zhao and Hoi, 2013) Classic Perceptron 990,000 10,000 99.49%
(Patil and Patil, 2018) Random Forest 26,041 26,041 99.44%
(Zhao and Hoi, 2013) Label Efficient Perceptron 990,000 10,000 99.41%
(Chen et al., 2014) Logistic Regression 1,945 404 99.40%
(Cui et al., 2018) SVM 24,520 138,925 99.39%
(Patil and Patil, 2018) Fast Decision Tree

Learner (REPTree)
26,041 26,041 99.19%

(Zhao and Hoi, 2013) Cost-sensitive Perceptron 990,000 10,000 99.18%
(Patil and Patil, 2018) CART5 26,041 26,041 99.15%
(Jain and Gupta, 2018b) Random Forest 2,141 1,918 99.09%
(Patil and Patil, 2018) J486 26,041 26,041 99.03%
(Verma and Dyer, 2015) J48 11,271 13,274 99.01%
(Verma and Dyer, 2015) PART7 11,271 13,274 98.98%
(Verma and Dyer, 2015) Random Forest 11,271 13,274 98.88%
(Shirazi et al., 2018) Gradient Boosting 1,000 1,000 98,78%
(Cui et al., 2018) Naïve–Bayes 24,520 138,925 98,72%
(Cui et al., 2018) C4.5 356,215 2,953,700 98.70%
(Patil and Patil, 2018) Alternating Decision Tree 26,041 26,041 98.48%
(Shirazi et al., 2018) SVM (Linear) 1,000 1,000 98,46%
(Shirazi et al., 2018) CART 1,000 1,000 98,42%
(Adebowale et al., 2019) Adaptive Neuro-Fuzzy

Inference System
6,843 6,157 98.30%

(Vanhoenshoven et al., 2016) Random Forest 1,541,000 759,000 98.26%
(Jain and Gupta, 2018b) Logistic Regression 2,141 1,918 98.25%
(Patil and Patil, 2018) Random Tree 26,041 26,041 98.18%
(Shirazi et al., 2018) k-Nearest Neighbuors 1,000 1,000 98,05%
(Vanhoenshoven et al., 2016) Multi Layer Perceptron 1,541,000 759,000 97.97%
(Verma and Dyer, 2015) Logistic Regression 11,271 13,274 97.70%
(Jain and Gupta, 2018b) Naïve–Bayes 2,141 1,918 97.59%
(Vanhoenshoven et al., 2016) k-Nearest Neighbours 1,541,000 759,000 97.54%
(Shirazi et al., 2018) SVM (Gaussian) 1,000 1,000 97,42%
(Vanhoenshoven et al., 2016) C5.08 1,541,000 759,000 97.40%
(Karabatak and Mustafa, 2018) Random Forest 6,157 4,898 97.34%
(Vanhoenshoven et al., 2016) C4.5 1,541,000 759,000 97.33%
(Vanhoenshoven et al., 2016) SVM 1,541,000 759,000 97.11%
(Karabatak and Mustafa, 2018) Multilayer Perceptron 6,157 4,898 96.90%
(Karabatak and Mustafa, 2018) Logistic Model Tree

(LMT)
6,157 4,898 96.87%

(Karabatak and Mustafa, 2018) PART 6,157 4,898 96.76%
(Karabatak and Mustafa, 2018) ID39 6,157 4,898 96.49%
(Zhao et al., 2019) Random Forest 40,000 150,000 96.40%
(Karabatak and Mustafa, 2018) Random Tree 6,157 4,898 96.37%
(Chiew et al., 2019) Random Forest 5,000 5,000 96.17%
(Jain and Gupta, 2018b) SVM 2,141 1,918 96.16%
(Vanhoenshoven et al., 2016) Naïve–Bayes 1,541,000 759,000 95.98%

(continued on next page)

148 P. Vaitkevicius, V. Marcinkevicius

Table 1
(continued)

Reference Classifier Dataset
phish.

legit. Accuracy

(Shirazi et al., 2018) Naïve-Bayes 1,000 1,000 95,97%
(Karabatak and Mustafa, 2018) J48 6,157 4,898 95.87%
(Ma et al., 2009) Logistic Regression 20,500 15,000 95.50%
(Karabatak and Mustafa, 2018) JRip10 6,157 4,898 95.01%
(Marchal et al., 2014) Random Forest 48,009 48,009 94.91%
(Verma and Dyer, 2015) SVM 11,271 13,274 94.79%
(Chiew et al., 2019) C4.5 5,000 5,000 94.37%
(Karabatak and Mustafa, 2018) Randomizable Filtered

Classifier
6,157 4,898 94.21%

(Chiew et al., 2019) JRip 5,000 5,000 94.17%
(Chiew et al., 2019) PART 5,000 5,000 94.13%
(Zhang et al., 2017) Extreme Learning

Machines (ELM)
2,784 3,121 94.04%

(Karabatak and Mustafa, 2018) Stochastic Gradient
Descent

6,157 4,898 93.95%

(Karabatak and Mustafa, 2018) Naïve–Bayes 6,157 4,898 93.39%
(Karabatak and Mustafa, 2018) Bayesian Network 6,157 4,898 92.98%
(Chiew et al., 2019) SVM 5,000 5,000 92.20%
(Thomas et al., 2011) Logistic Regression 500,000 500,000 90.78%
(Chiew et al., 2019) Naïve–Bayes 5,000 5,000 84.10%
(Verma and Dyer, 2015) Naïve–Bayes 11,271 13,274 83.88%

sampled websites URLs (Saxe and Berlin, 2017). Vazhayil et al. have performed a com-
parative study, demonstrating the 98.7% accuracy of CNN and 98.9% accuracy of CNN
Long Short-Term Memory (CNN-LSTM) deep learning networks on 116,101 URL sam-
ples (Vazhayil et al., 2018). Selvaganapathy et al. have implemented a method where fea-
ture selection is made using Greedy Multilayer Deep Belief Network (DBN) and binary
classification is done using Deep Neural Networks (DNN), capable of classifying mali-
cious URLs with 75.0% accuracy on 17.700 phishing and 10,000 legitimate websites URL
samples (Selvaganapathy et al., 2018).

3. Research Methodology

In this section, we describe our research methodology by defining:

• experimental design for our research (Section 3.1),

4C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan.
5Classification And Regression Tree.
6WEKA’s class for generating a pruned or unpruned C4.5 decision tree.
7Rule based learner which combines C4.5 trees and RIPPER learning.
8C5.0 is an algorithm used to generate a decision tree developed by Ross Quinlan.
9ID3 (Iterative Dichotomiser 3) is an algorithm used to generate a decision tree developed by Ross Quinlan.
10A propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which

was proposed by William W. Cohen.

Comparison of Classification Algorithms for Detection of Phishing Websites 149

• algorithms used in the experiment and grounds for algorithm selection (Section 3.2),
• datasets used in the experiment (Section 3.3),
• metrics (i.e. Classification Accuracy), methods (i.e. T-test, ranking techniques, etc.),

used in the experiment (Section 3.4).

We discuss the validity of our results in Section 3.5.

3.1. Experimental Design

In this subsection, we present our experimental design, employed to perform the exper-
iment, and answer the research question. The experiment was divided into three parts:
(i) training the classifiers for each dataset, (ii) ranking the classifiers, and (iii) creating
unified classifier ranking.

3.1.1. Part I: Training the Classifiers
The objective of this part is to train all the classifiers from Section 3.2 on all the datasets
from Section 3.3 for their best possible classification accuracy described in Section 3.4.1,
formula (2). For every dataset, for every classifier, we take the following steps:
1. Set up the classifier for a specific dataset in Python’s environment using the Scikit

Learn library (Pedregosa et al., 2011).
2. Manually select a set of hyper-parameters, referring to Scikit Learn’s user guide.
3. Train and test the classifier using Scikit Learn’s cross-validation (CV) function, with

30 stratified folds.
4. Plot learning curves.
5. Analyse learning curves and make a decision on tuning the hyper-parameters by an-

swering the following questions:
• Is the algorithm learning on training data or memorizing it? If the training curve is

flat at 100%, then the algorithm is not learning but memorizing the data. To solve
this issue, we take actions, e.g. reduce the number of weak learners in an ensemble,
reduce the depth of the tree, increase the regularization parameter, etc.

• Is the algorithm prone to overfitting (low bias, high variance) or underfitting (high
bias, low variance), or learns “just right”? If the gap between training and CV curves
is small, the algorithm is underfitting; if the gap is big, it is overfitting. To solve this
issue we take actions to reduce high bias or high variance, e.g. (i) add more train-
ing examples, use a smaller set of features, increase the regularization parameter,
etc. to reduce high variance, and (ii) use bigger set of features, add polynomial fea-
tures, increase the number of layers in the neural network, reduce the regularization
parameter, etc. to reduce high bias.

If the decision is made to tune the hyper-parameters to avoid high bias or high variance,
then we start over from Step 2; if not, we go to Step 6.

6. Perform a Wilk–Shapiro test, as described in Section 3.4, formula (4) to check if the ac-
curacies of classifier’s classification from 30-fold CV testing are normally distributed.
If not, take action to normalize the values.

7. Save the results for further actions.

150 P. Vaitkevicius, V. Marcinkevicius

We finish this part when all the classifiers are trained on all the datasets, and we have
normally distributed sets of classification accuracies for each classifier on each dataset.

3.1.2. Part II: Ranking the Classifiers
The objective of this part is to rank all the classifiers by their classification results within
each individual dataset.

For every dataset, we take the following steps:

1. Using Welch’s T-test, described in Section 3.4.2, formula (3), check every possible pair
of classifiers if their classification results produced in Part I have statistically significant
differences. The classification results are distributed by normal distribution.

2. Arrange all classifiers by their mean classification accuracy in descending order.
3. Assign each classifier three ranks using ranking techniques described in Section 3.4.4.

Important notice: classifiers whose results have no statistically significant differences
receive the same rank.

4. For each ranking technique, distribute points from the highest 10 to the lowest 1 for
each classifier, depending on the received rank. Points are calculated using formula (1).

Pointsi = Nmethods − Ranki + 1, (1)

where

• Nmethods – number of algorithms participating in ranking,
• Ranki – rank of ith algorithm.

5. Save the results for further actions.

We finish this part when all the classifiers receive ranks and ranking points by all
ranking techniques on all datasets.

3.1.3. Part III: Creating the Unified Classifier Ranking
The objective of this part is to summarize the performance of selected classifiers on all
datasets by creating a unified ranking. To do this, we combine rankings for each classi-
fier by adding all the points received upon all datasets. Our experiment is complete after
finishing this part.

3.2. Algorithms

In the review of supervised machine learning approaches in Section 2.2, we showed that
five best implementations employ different classifiers from separate types of supervised
machine learning algorithms: neural networks, decision trees, ensembles, regression, and
Bayesian. We also disclosed that the top 3 classifiers by popularity are Random Forest (8
papers), Naïve–Bayes (7 papers), SVM (7 papers).

For our research, we built the set of algorithms consisting of:

• three most popular algorithms from the review of related works (Section 2.2),

Comparison of Classification Algorithms for Detection of Phishing Websites 151

• five more algorithms from the Scikit Learn library, belonging to the best performing
types of classifiers in the review of related works (Section 2.2).

All possible classical classification algorithms were not used due to the limitation of re-
sources available for this research.

Therefore, in our experiment, we chose to use classic supervised machine learning al-
gorithms such as AdaBoost, Classification and Regression Tree, Gradient Tree Boosting,
k-Nearest Neighbours, Multilayer Perceptron with backpropagation, Naïve–Bayes, Ran-
dom Forest, and Support-Vector Machine.

3.3. Datasets

In our experiment, we used three publicly available phishing websites datasets with pre-
defined features. To our knowledge, these are the only phishing datasets with predefined
features made publicly available by other researchers.

3.3.1. UCI-2015
UCI-2015 dataset from UCI repository11 was donated in March 2015 by Mohammad,
McCluskey (University of Huddersfield), and Thabtah (Canadian University of Dubai).
This dataset contains 6,157 phishing and 4,898 legitimate website samples. A total of
30 different URLs, DNS, HTML, JavaScript, and External statistics based features were
extracted from these websites.

3.3.2. UCI-2016
UCI-2016 dataset from UCI repository,12 contributed by Abdelhamid (Auckland Institute
of Studies) in November 2016. This dataset contains 805 phishing and 548 legitimate
website samples. A total of 9 features were extracted from these websites.

3.3.3. MDP-2018
MDP-2018 dataset from Mendeley Data portal13 was published by Choon Lin Tan (Uni-
versiti Malaysia Sarawak) in March 2018. This balanced dataset contains 5,000 phishing
and 5,000 legitimate website samples. A total of 48 features were extracted from these
websites.

3.4. Measures and Methods

3.4.1. Classification Accuracy
Classification accuracy in our experiment is the rate of phishing and legitimate websites
which are identified correctly with respect to all the websites, defined as follows:

ACCURACY = TP + TN
TP + FP + TN + FN

, (2)

11https://archive.ics.uci.edu/ml/datasets/phishing+websites.
12https://archive.ics.uci.edu/ml/datasets/Website+Phishing.
13https://data.mendeley.com/datasets/h3cgnj8hft/1.

https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/Website+Phishing
https://data.mendeley.com/datasets/h3cgnj8hft/1

152 P. Vaitkevicius, V. Marcinkevicius

where

• TP – number of websites, correctly detected as phishing (True Positive),
• TN – number of websites, correctly detected as benign (True Negative),
• FP – number of legitimate websites, incorrectly detected as phishing (False Positive),
• FN – number of phishing websites, incorrectly detected as legitimate (False Negative).

We chose classification accuracy as our classification quality quantification metric
because: (i) most other researchers use classification accuracy to define results of their
experiments (see Section 2), therefore the comparability of research results is homoge-
neous throughout our work; (ii) in our experiment we used datasets with equal or close
to equal class distributions (there is no significant disparity between the number of posi-
tive and negative labels), therefore we do not have the majority and minority classes; (iii)
we used cross-validation function with stratification option which generates test sets such
that all contain the same distribution of classes, or as close as possible; (iv) we do not
directly compare classification results of different datasets by accuracy and do not draw
any conclusions from this information; to distinguish top classifiers we employ ranking
techniques (see Section 3.4.4). In these circumstances, classification accuracy is a useful
non-bias measure.

3.4.2. Welch’s T-Test
Welch’s T-test in our experiment is used to determine whether the means of classification
accuracy results produced by any two classifiers within the same dataset have a statisti-
cally significant difference. The two-sample T-test for unpaired data is defined as follows
(Snedecor and Cochran, 1989).

Let X1, . . . ,Xn and Y1, . . . , Ym be two independent samples from normal distribu-
tions, and μx , μy be the means of these distributions. Then, the hypothesis to be tested is
defined as

H0 : μx = μy vs. HA : μx �= μy.

The test statistic for testing the hypothesis is calculated as follows:

T = X̄ − Ȳ√
S2

x

n
+ S2

y

m

, (3)

where

• X̄ and Ȳ are the sample X1, . . . ,Xn and Y1, . . . , Ym means,
• n and m are the sample X1, . . . ,Xn and Y1, . . . , Ym sizes,
• S2

x and S2
y are the sample X1, . . . ,Xn and Y1, . . . , Ym variances.

We reject the null hypothesis H0 that the two means are equal if |T | > t1−α/2,v , where
t1−α/2,v is the critical value of the t distribution with v degrees of freedom with our chosen
α = 0.05. Welch’s T-test can only be performed on samples from normal distributions. We
used scipy.stats package for Python to perform a T-test.

Comparison of Classification Algorithms for Detection of Phishing Websites 153

3.4.3. Shapiro–Wilk Test
Shapiro–Wilk test is used to check whether samples came from a normally distributed
population (Shapiro and Wilk, 1965). This test is defined as follows:

W =
(∑n

i=1 aix(i)

)2∑n
i=1 (xi − x̄)2

, (4)

where

• x(i) are the ordered sample values, x(1) being the smallest,
• ai are constants generated from the means, variances and covariances of the order statis-

tics of a sample of size n from normal distributions,
• x̄ is the sample mean,
• n is the sample size.

We reject the null hypothesis H0 that the sample belongs to normal distribution if
W < Wα , where Wα is the critical threshold. We used scipy.stats package for Python to
perform a Shapiro–Wilk test.

3.4.4. Ranking Techniques
Ranking techniques used in our research are:

1. Standard Competition Ranking (SCR), where equal items get the same ranking number,
and then a gap is left in the ranking numbers, i.e. “1224” ranking.

2. Dense Ranking (DR), where equal get the same ranking number, and the next item gets
the immediately following ranking number, i.e. “1223” ranking.

3. Fractional Ranking (FR), where equal items get the same ranking number, which is the
mean of what they would have under ordinal rankings, i.e. “1 2.5 2.5 4” ranking.

3.5. Validity

In our experiment we used classification accuracy measure described in Section 3.4.1,
formula (2) and balanced datasets (see Section 3.3). Classification accuracy has a high
construct validity on balanced datasets.

We used the cross-validation procedure with 30 stratified folds to evaluate classifica-
tion accuracy, which provides an objective measure of how well the model fits and how
well it will generalize to new data.

Welch’s T-test was used to measure if the means of classification accuracy results pro-
duced by any two classifiers within the same dataset have a statistically significant differ-
ence. This test eliminated the possibility to miss-rank the classifiers, whose results had no
statistically significant differences.

Three different ranking techniques were introduced to overcome ranking bias, where
distinct ranking techniques give different outcomes.

We provide the source code of our experiment to other researchers at https://github.com/
PauliusVaitkevicius/Exp001.

https://github.com/PauliusVaitkevicius/Exp001
https://github.com/PauliusVaitkevicius/Exp001

154 P. Vaitkevicius, V. Marcinkevicius

4. Results

In this section we present our experiment results based on the research methodology de-
scribed in Section 3.

First, we configured selected classification algorithms (described in Section 3.2) for
each dataset (described in Section 3.3). We used implementations for all selected algo-
rithms from the Scikit Learn library (version 0.20.1) in Python (version 3.7.1), which
provides open-source tools for data mining and data analysis (Pedregosa et al., 2011).
Later, we chose the best fitting hyper-parameters for each algorithm on each dataset with
30-fold cross validation, following our experimental design, described in Section 3.1. Se-
lected best hyper-parameters for each classifier are described in Table 2. Selected best
hyper-parameters differ in algorithm configurations for different datasets due to applying
the hyper-parameter selection technique, described in Section 3.1 Part I, to datasets with
different designs and data quantities.

Subsequently, we trained and tested all the classifiers chosen for this experiment on
all the datasets. We measured classification performance by accuracy: the ratio of phish-
ing and legitimate URLs, which are classified correctly with respect to all the URLs in
the dataset as described in Section 3.4.1, formula (2). Classification results are given in
Table 3. Initial results showed that the Gradient Tree Boosting algorithm performed best
on MDP-2018 and UCI-2016 datasets, and Multilayer Perceptron with backpropagation
performed best on the UCI-2015 dataset.

Later, we evaluated all classification results against each other within an individual
dataset using Welch’s T-test, as described in Section 3.4.2, formula (3), to check if they
have statistically significant differences. Afterward, we ordered all the classifiers by their
performance upon each dataset using three different ranking techniques: SCR, FR, and
DR, as described in Section 3.1. Classifiers, whose results had no statistically significant
differences, were given equal ranks. Next, points from the highest 10 to the lowest 1 were
distributed to each classifier depending on the assigned rank.

Ranking results for the UCI-2015 dataset are presented in Table 4, with Multilayer
Perceptron ranking in the first place for all ranking techniques.

Results for the UCI-2016 dataset are presented in Table 5, showing Multilayer Percep-
tron, Gradient Tree Boosting, CART, and Random Forest all scoring maximum points, as
their classification accuracy had no statistically significant difference.

And last, ranking results for the MDP-2018 dataset are presented in Table 6, with
Gradient Tree Boosting, AdaBoost, and Random Forest all ranking in the first place for
all ranking techniques.

Finally, combined dataset rankings were calculated in Table 7, summing up all the
points each classifier has scored for each dataset, showing various sets of algorithms end-
ing up in the 1st place with different ranking techniques. If we rank results using the Stan-
dard Competition Ranking technique, we get Random Forest and Gradient Tree Boosting
ranked at the top. If we rank results using the Fractional Ranking technique, we get Multi-
layer Perceptron ranked at the top. If we rank results using the Dense Ranking technique,
we get Random Forest, Multilayer Perceptron, and Gradient Tree Boosting ranked at the
top. There is no single algorithm ranked at the top using all three ranking techniques.

Comparison of Classification Algorithms for Detection of Phishing Websites 155

Table 2
Hyper-parameters used in the experiment.

Algorithm UCI-2015 UCI-2016 MDP-2018

AdaBoost # of estimators: 200 # of estimators: 50
Algorithm: SAMME;

of estimators: 200

CART Max tree depth: 9; Split
evaluation criteria:
entropy; Min samples at
leaf node: 2;

Max tree depth: 9; Split
evaluation criteria: entropy;
Min samples at leaf node: 2;

Max tree depth: 5; Split
evaluation criteria:
entropy; Min samples at
leaf node: 2;

Gradient Tree
Boosting

Max estimator depth: 1;
Learning rate: 1;

Min samples at leaf node: 2;
Learning rate: 1; # of
estimators: 50;

Max estimator depth: 1;
Learning rate: 1;

k-Nearest
Neighbours

Number of neighbours: 5;
Weights: uniform weights
– all points in each
neighbourhood are
weighted equally;
Algorithm: auto;

Number of neighbours: 5;
Weights: uniform weights –
all points in each
neighbourhood are weighted
equally; Algorithm: auto;

Number of neighbours: 5;
Weights: uniform weights
– all points in each
neighbourhood are
weighted equally;
Algorithm: auto;

Naïve–Bayes Multivariate Bernoulli
models;

Multivariate Bernoulli
models;

Multivariate Bernoulli
models;

Multilayer
Perceptron

Hidden layers: 30;
Number of max iterations:
3000;

Hidden layers: 150; Number
of max iterations: 1000;

Hidden layers: 100;
Number of max iterations:
1000;

Random Forest # of estimators: 7; Max
tree depth: 11; Split
evaluation criteria:
entropy;

of estimators: 7; Max tree
depth: 8; Split evaluation
criteria: entropy;

of estimators: 7; Max
tree depth: 11; Split
evaluation criteria:
entropy;

SVM with linear
kernel

Penalty parameter C: 1.0;
Kernel: Linear;

Penalty parameter C: 1.0;
Kernel: Linear;

Penalty parameter C: 1.0;
Kernel: Linear;

SVM with 1st
deg. pol. kernel

Penalty parameter C: 1.0;
Kernel: Polynomial;
Degree of the polynomial
kernel function: 1;

Penalty parameter C: 1.0;
Kernel: Polynomial; Degree
of the polynomial kernel
function: 1;

Penalty parameter C: 1.0;
Kernel: Polynomial;
Degree of the polynomial
kernel function: 1;

SVM with 2nd
deg. pol. kernel

Penalty parameter C: 1.0;
Kernel: Polynomial;
Degree of the polynomial
kernel function: 2;

Penalty parameter C: 1.0;
Kernel: Polynomial; Degree
of the polynomial kernel
function: 2;

Penalty parameter C: 1.0;
Kernel: Polynomial;
Degree of the polynomial
kernel function: 2;

Table 3
Classification results by average classification accuracy.

Algorithm UCI-2015 UCI-2016 MDP-2018

AdaBoost 0.9352 0.8495 0.9728
CART 0.9363 0.8930 0.9574
Gradient Tree Boosting 0.9381 0.9034 0.9742
k-Nearest Neighbours 0.9481 0.8641 0.8564
Naïve–Bayes 0.9057 0.8225 0.9177
Multilayer Perceptron 0.9722 0.9028 0.9671
Random Forest 0.9525 0.8916 0.9715
SVM with linear kernel 0.9271 0.8365 0.9422
SVM with 1st deg. pol. kernel 0.9257 0.8328 0.9334
SVM with 2nd deg. pol. kernel 0.9388 0.7152 0.9549

156 P. Vaitkevicius, V. Marcinkevicius

Table 4
Classifier rankings on UCI-2015 dataset.

SCR
rank

FR
rank

DR
rank

Algorithm SCR points FR
points

DR
points

1 1 1 Multilayer Perceptron 10 10 10
2 4.5 2 Random Forest 9 6.5 9
2 4.5 2 k-Nearest Neighbours 9 6.5 9
2 4.5 2 SVM with 2nd deg. pol. kernel 9 6.5 9
2 4.5 2 Gradient Tree Boosting 9 6.5 9
2 4.5 2 CART 9 6.5 9
2 4.5 2 AdaBoost 9 6.5 9
8 8.5 3 SVM with linear kernel 3 2.5 8
8 8.5 3 SVM with 1st deg. pol. kernel 3 2.5 8
10 10 4 Naïve–Bayes 1 1 7

Table 5
Classifier rankings on UCI-2016 dataset.

SCR
rank

FR
rank

DR
rank

Algorithm SCR
points

FR
points

DR
points

1 2.5 1 Gradient Tree Boosting 10 8.5 10
1 2.5 1 Multilayer Perceptron 10 8.5 10
1 2.5 1 CART 10 8.5 10
1 2.5 1 Random Forest 10 8.5 10
5 7 2 k-Nearest Neighbours 6 4 9
5 7 2 AdaBoost 6 4 9
5 7 2 SVM with linear kernel 6 4 9
5 7 2 SVM with 1st deg. pol. kernel 6 4 9
5 7 2 Naïve–Bayes 6 4 9
10 10 3 SVM with 2nd deg. pol. kernel 1 1 8

Table 6
Classifier rankings on MDP-2018 dataset

.
SCR
rank

FR
rank

DR
rank

Algorithm SCR
points

FR
points

DR
points

1 2 1 Gradient Tree Boosting 10 9 10
1 2 1 AdaBoost 10 9 10
1 2 1 Random Forest 10 9 10
4 4 2 Multilayer Perceptron 7 7 9
5 5.5 3 CART 6 5.5 8
5 5.5 3 SVM with 2nd deg. pol. kernel 6 5.5 8
7 7.5 4 SVM with linear kernel 4 3.5 7
7 7.5 4 SVM with 1st deg. pol. kernel 4 3.5 7
9 9 5 Naïve–Bayes 2 2 6
10 10 6 k-Nearest Neighbours 1 1 5

Comparison of Classification Algorithms for Detection of Phishing Websites 157

Table 7
Combined classifier rankings

Algorithm SCR points FR
points

DR
points

Multilayer Perceptron 27 25.5 29
Gradient Tree Boosting 29 24 29
Random Forest 29 24 29
AdaBoost 25 19.5 28
CART 25 20.5 27
SVM with 2nd deg. pol. kernel 16 13 25
k-Nearest Neighbours 16 11.5 23
SVM with linear kernel 13 10 24
SVM with 1st deg. pol. kernel 13 10 24
Naïve–Bayes 9 7 22

5. Conclusions

In this paper, we provide an answer to our research question: which classical classifica-
tion algorithm is best for solving the phishing websites detection problem, on all publicly
available datasets with predefined features? From our research, we make the following
conclusions:

1. Neural Networks, in our case Multilayer Perceptron and ensemble type algorithms
(Random Forest, Gradient Tree Boosting, and AdaBoost) perform best for solving the
phishing websites detection problem, on datasets used in the experiment.

2. Instance similarity-based and Bayesian classifiers, i.e. SVM, k-Nearest Neighbours,
and Naïve–Bayes performance is the poorest for solving the phishing websites detection
problem, regardless of a specific dataset design.

3. Results discussed in conclusions #1 and #2 coincide with general trends in related
works review (Section 2.2): best classification results are achieved with neural net-
works, decision trees, and ensemble types of classification algorithms.

4. Classifiers showing above a 99.0% classification accuracy on highly unbalanced
datasets in related works review (Section 2.2), i.e. Random Forest, SVM, Perceptron,
and CART did not score such high accuracy on any balanced dataset in our experiment.

In future work, hyper-parameter tuning can be automated using the Grid Search algo-
rithm instead of manual expert hyper-parameter evaluation.

References

Adebowale, M., Lwin, K., Sánchez, E., Hossain, M. (2019). Intelligent web-phishing detection and protection
scheme using integrated features of images, frames and text. Expert Systems with Applications, 115, 300–313.

Anti-Phishing Working Group, I. (2018). Phishing Activity Trends Reports.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classification and regression trees. Wadsworth

International Group, Belmont, CA, p. 432.
Chen, T.C., Stepan, T., Dick, S., Miller, J. (2014). An anti-phishing system employing diffused information.

ACM Transactions on Information and System Security, 16(4), 1–31.

158 P. Vaitkevicius, V. Marcinkevicius

Chiew, K.L., Tan, C.L., Wong, K., Yong, K.S., Tiong, W.K. (2019). A new hybrid ensemble feature selection
framework for machine learning-based phishing detection system. Information Sciences, 484, 153–166.

Cui, B., He, S., Yao, X., Shi, P., Yao, X., He, S., Cui, B. (2018). Malicious URL detection with feature extraction
based on machine learning. International Journal of High Performance Computing and Networking, 12(2),
166.

Dudani, S.A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-6(4), 325–327.

Friedman, J.H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4), 367–
378.

Internet Crime Complaint Center (2019). 2018 Internet Crime Report. Tech. Rep., Internet Crime Complaint
Center at the Federal Bureau of Investigation of United States of America.

Jain, A.K., Gupta, B.B. (2018a). A machine learning based approach for phishing detection using hyperlinks
information. Journal of Ambient Intelligence and Humanized Computing, 1–14.

Jain, A.K., Gupta, B.B. (2018b). Towards detection of phishing websites on client-side using machine learning
based approach. Telecommunication Systems, 68(4), 687–700.

Karabatak, M., Mustafa, T. (2018). Performance comparison of classifiers on reduced phishing website dataset.
In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS). IEEE, pp. 1–5.

Lewis, D.D. (1998). Naive (Bayes) at forty: the independence assumption in information retrieval. In: ECML
1998: Machine Learning: ECML-98. Springer, Berlin, Heidelberg, pp. 4–15.

Lin Tan, C., Leng Chiew, K., Wong, K.S., Nah Sze, S., Tan, C.L., Chiew, K.L., Wong, K.S., Sze, S.N. (2016).
PhishWHO: phishing webpage detection via identity keywords extraction and target domain name finder.
Decision Support Systems, 88, 18–27.

Ma, J., Saul, L.K., Savage, S., Voelker, G.M. (2009). Beyond blacklists. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD ’09. ACM Press, New
York, USA, p. 1245.

Marchal, S., Armano, G., Grondahl, T., Saari, K., Singh, N., Asokan, N. (2017). Off-the-hook: an efficient and
usable client-side phishing prevention application. IEEE Transactions on Computers, 66(10), 1717–1733.

Marchal, S., Francois, J., State, R., Engel, T. (2014). Phish storm: detecting phishing with streaming analytics.
IEEE Transactions on Network and Service Management, 11(4), 458–471.

Marchal, S., Saari, K., Singh, N., Asokan, N. (2016). Know your phish: novel techniques for detecting phish-
ing sites and their targets. In: 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). IEEE, pp. 323–333.

Patil, D.R., Patil, J.B. (2018). Malicious URLs detection using decision tree classifiers and majority voting
technique. Cybernetics and Information Technologies, 18(1), 11–29.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.
(2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Sahoo, D., Liu, C., Hoi, S.C.H. (2017). Malicious URL Detection using Machine Learning: A Survey.
Saxe, J., Berlin, K. (2017). eXpose: a character-level convolutional neural network with embeddings for detecting

malicious URLs, file paths and registry keys. arXiv preprint arXiv:1702.08568.
Scholkopf, B., Smola, A.J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimiza-

tion, and Beyond. MIT Press.
Seifert, C., Welch, I., Komisarczuk, P. (2008). Identification of malicious web pages with static heuristics. In:

2008 Australasian Telecommunication Networks and Applications Conference. IEEE, pp. 91–96.
Selvaganapathy, S., Nivaashini, M., Natarajan, H. (2018). Deep belief network based detection and categoriza-

tion of malicious URLs. Information Security Journal: A Global Perspective, 27(3), 145–161.
Shapiro, S.S., Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika,

52(3–4), 591–611.
Shirazi, H., Bezawada, B., Ray, I. (2018). “Kn0w Thy Doma1n Name”. In: Proceedings of the 23nd ACM on

Symposium on Access Control Models and Technologies – SACMAT ’18 Vol. 18. ACM Press, New York,
USA, pp. 69–75.

Snedecor, G.W., Cochran, W.G. (1989). Statistical Methods, eight ed. Iowa State University Press, Ames, Iowa.
Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D. (2011). Design and evaluation of a real-time URL spam

filtering service. In: 2011 IEEE Symposium on Security and Privacy. IEEE, pp. 447–462.

http://arxiv.org/abs/arXiv:1702.08568

Comparison of Classification Algorithms for Detection of Phishing Websites 159

Vanhoenshoven, F., Napoles, G., Falcon, R., Vanhoof, K., Koppen, M. (2016). Detecting malicious URLs using
machine learning techniques. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
pp. 1–8.

Vazhayil, A., Vinayakumar, R., Soman, K. (2018). Comparative study of the detection of malicious URLs us-
ing shallow and deep networks. In: 2018 9th International Conference on Computing, Communication and
Networking Technologies (ICCCNT). IEEE, pp. 1–6.

Verma, R., Das, A. (2017). What’s in a URL. In: Proceedings of the 3rd ACM on International Workshop on
Security And PrivacyAnalytics – IWSPA ’17. ACM Press, New York, USA, pp. 55–63.

Verma, R., Dyer, K. (2015). On the character of phishing URLs. In: Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy – CODASPY ’15. ACM Press, New York, USA, pp. 111–122.

Wang, R. (2012). AdaBoost for feature selection, classification and its relation with SVM, a review. Physics
Procedia, 25, 800–807.

Whittaker, C., Ryner, B., Nazif, M. (2010). Large-scale automatic classification of phishing pages. In: The 17th
Annual Network and Distributed System Security Symposium (NDSS ’10).

Widrow, B., Lehr, M.A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropaga-
tion. Proceedings of the IEEE, 78(9), 1415–1442.

Xiang, G., Hong, J., Rose, C.P., Cranor, L. (2011). CANTINA+: a feature-rich machine learning framework for
detecting phishing web sites. ACM Transactions on Information and System Security, 14(2), 1–28.

Zhang, W., Jiang, Q., Chen, L., Li, C. (2017). Two-stage ELM for phishing Web pages detection using hybrid
features. World Wide Web, 20(4), 797–813.

Zhao, J., Wang, N., Ma, Q., Cheng, Z. (2019). Classifying malicious urls using gated recurrent neural networks.
In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. Springer,
pp. 385–394.

Zhao, P., Hoi, S.C. (2013). Cost-sensitive online active learning with application to malicious URL detection.
In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining – KDD ’13. ACM Press, New York, USA, p. 919.

160 P. Vaitkevicius, V. Marcinkevicius

P. Vaitkevicius is a doctoral student at Vilnius University, Institute of Data Science and
Digital Technologies. His research interests include machine learning, artificial intelli-
gence, cybersecurity, and natural language processing.

V. Marcinkevicius in 2010 received a doctoral degree in computer science (PhD) from
Vytautas Magnus University. Since 2001 he is an employee of Vilnius University, Institute
of Data Science and Digital Technologies. His present employment is senior researcher
and the head or intelligent technologies research group of the Vilnius University, Institute
of Data Science and Digital Technologies. His research interests include machine learning,
artificial intelligence, cybersecurity, and natural language processing. He is the author of
more than 70 scientific publications. He is a member of the Lithuanian Computer Society
and Lithuanian Mathematical Society.

