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'. J;\.bstract. An analytical equation for a generalization error of minimum 
empirical error classifier is derived for a case when true classes are spherically 
Gausslan. It is compared with the generalization error of a mean squared error 
classifier - a standard Fisher linear discriminant function. In a case of.spheri­
cally distributed classes the generalization error depends on a distance between 
the classes and a number of training samples. It depends on an intrinsic di­
mensionality of a data only via initialization of a weight vector. If initialization 
is sU,ccessful the dimensionality does not effect the generalization error. It is 
concluded advantageous conditions to use artificial neural nets are to classify 
patterns in a changing environment, when intrinsic dimensionality of the data is 
low or when the number of training sample vectors is really large. 

! Key words: feed forward neural nets, training sample size, generalization, 
intrinsic dimensionality, initialization, insufficient learning. 

1. Introduction. The application of multivariate statistical 
analysis methods to investigate artificial neural-network (ANN) 
models has provided tools to characterize a variety of aspects of 
training abilities of multilayer networks (see, for example, Raudys 
and Jain, 1991; Jain and Raudys, 1992). Here we use these methods 
to analyze an influence of target values and a shape of an -activation 
function on training of a feedforward ANN pattern classifier. 

The goal is to investigate the influence of target values on 
a pattern error function used to train neural networks and then 
to compare training speeds of two networks utilizing two limiting 
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values of targets. 
Consider a simple feedforward network in which the output is 

a following function of inputs Xl, X2, ... , Xp 

where 

net = l:f=l aiXi + ao, 
and 

0= !(net), (1) 

!(net) is a nonlinear differentiable monotonically increasing ac­
tivation function. 

To find unknown coefficients (weights) ao, a1, a2, ... , ap of the 
network usually a following pattern error (cost) function . 

mse =.!. E tj - !(Ea;Xij + ao) 
n ( p )2 

n j=l i+1 
(2) 

is minimized with respect to unknown parameters ao, ... , ap •. 

In equation (2) t1, t2, ... , tn are target (desired output) values 
of the network, determined for each training vector 

i=1,2, ... ,n, 

where n is a number of training vectors in a training set. In classifi­
cation problem the target values are usually fixed to be constant for 
all training vectors of one class. Rumelhart, Hinton and Williams 
(1986), for example, used the activation function 

1 
!(net) = t' 

1 + e-ne 
(3) 

and targets: t(l) = 0.1 (for one class) and t(2) = 0.9 (for another one). 
Another choice commonly used in ANN design is the hyperbolic 
tangent. 
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A specification of target values influences the pattern error 
function. In the literature only vague considerations are presented 
concerning best values of the targets. In following section we shall 
review main results concerning the generalization error of a mean 
squared error classifier which is obtained when the targets for both 
classes are close. In Section 3 we shall investigate analytically the 
minimum empirical error ANN classifier which is obtained when 
targets significantly differs and approaches their limit values, i.e., 
o or 1. In Section 4 we describe simulation studies and Section 5 
contains a discussion. 

2. Target values, a shape of error function and the gen­
eralization error. In this paper we shall analyze only one type of 
the activation function, i.e., the sigmoid function (3). Analysis of 
the other functions is analogous. Let targets t(1), t(2) are very close 
to 0.5 (0.5 is a value of the activation function !(net) for net = 0): 
t(1) = 0.5-e and t(2) = 0.5+e (e is a small positive constant). Then in 
a close neighborhood of the point net =0 a Taylor series expansion 
with three terms results that the function !(net) is nearly lil'),ear: 

!(net) = !(O) + !'(O) net = 0.5 + 0.25 net. 

Then the pattern error function (2) can be rewritten in a form 

mse = ~ t(tj - 0.5 - 0.25(t aiXij + ao)) 2 

J=1 ,=1 
1 n p 2 

= 16 L (4e(-ly+1- LaiXi; -aD) , 
n ;=1 ;=1 

(4) 

where s in an index of the class for training pattern vector (X1j, ... , 
Xpj)' • 

In the case when numbers of training vectors from each class 
are equal among themselves, i.e., N1 = N2 = N = n/2, a minimiza­
tion of the cost function (4) results a standard linear dis·criminant 
function (Koford and Groner, 1966) 

p 

g(x) = A'X + Wo = L aiXi + ao, 
i=1 

(5) 
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A = S-l (X<l) - X<2») = (aI, a2, ... , ap)', 

ao = _!(X<l) - X<2»)' A, 
2 
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,,(1) ,,(2) . 
X ,X are sample estimates of the mean vectors of the classes 
and S is a sample estimate of the covariance matrix. 

Small sample properties of this linear DF are well analyzed 
(see, e.g., reviews Raudys and Jain, 1991; Raudys and Pikelis, 1980; 
Raudys and Jain, 1991a). A variance of the conditional probability 
of misclassification (PMC) - (the generalization error in ANN ter­
minology) of this classifier asymptotically as the number of training 
vectors and dimensionality increase tends to zero and its expecta­
tion PMC tends to a constant (Deev, 1970; Raudys, 1972). 

(6) 

where 

Equation (6) is quite accurate (see, e.g., Pikelis, 1976; Wyman, 
Young and Turner, 1990) and indicates: 

- when the number of training vectors tends to infinity 
PN --+ Poo = ib(-6/2) - asymptotic PMC; 

- when Nl + N2 --+ P - PMC PN --+ 0.5; 
- smaller PMC are obtained if N2 = Nl • If N2 :f; Nl an ad-

ditional nonzero threshold should be added in order to 
reduce an effect of unequal nu~ber of training vectors 
(Raudys and Jain, 1991; Deev, 1970)'. 

Suppose now the targets t(l) and t(2) are very close to 0 or 1 
(limiting values of the activation function f(net) when net --+ ;-& 
or net --+ +00): t(l) = c and t(2) = 1 - c'. Then the rninimizatioit of 
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sum (2) will force to make all scalar products A'X)!) + ao as large 

as possible and all scalar products A'X}2) + ao as small as possible. 
If the classes are well separated and one can obtain a zero empirical 
classification error then the minimization of the sum (2) for c = 0 
will inlimitedely increase absolute values of the components of the 
weight vector A. The activation function then will act asa thresh­
old function and the minimization of the SUll). squared error (2) 
actually will become the minimization of an empirical probability 
of misclassification Pemp ' 

Very little can be said about small sample properties of the 
minimum empirical error classifier. Due to the nonlinear character 
of the activation function an analytical investigation of the problem 
becomes difficult. Only upper bounds for the classification error 
exist (Vapnik, 1979) 

p(In !!. + 1) - In 71 ( 
PN ~ Pemp + "2n 1 + 1 4nPemp (7) 

+ p(In ~ + 1) - In 71 ' 

where 1 - 71 is a probability of inequality (7). 
Bound (7) is obtained for a least favorable distribution of the 

training vectors and results estimates which hardly can be used in 
practice. Therefore "an important problem is to extend the learn­
ing theory to the regime of simple distributions" (Baum, 1990). 
For one of such models this will be done in the next section. 

3. Generalization error of minimum empirical error 
classifier. 

3.1. A model. We shall analyze a following hypothetical 
training algorithm. 

According to some chosen prior density I( a, A) ,of a vector 
(a, A) we generate a set of random weights aD, a1> az, ... a" and test 
a condition S 

S. for all training pattern vectors from 11'1 g(X I a, A) > O} () 
. for all training pattern vectors from 11'2 g(X I a, A) ~ 0 . 8 

If the condition S is satisfied the training will be called suc­
cessful. 
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We shall calculate an expected PMC EPN of successfully trained 
linear discriminant function. The expectation will be calculated 
both over all possible random training sets of the size n and over 
all possible sets of random weights generated accordingly the prior 

density Iprior(a, A): 

EPN = Prob(MC 1 s) 

= J J Prob(MC 1 a,A)/apost(a,A 1 S)da dA, (9) 

where P(MC 1 a, A) is a conditional probability of misclassification 
given the set of weights (a, A) and lapost(a, A) 1 S = true) is aposte­
riori density function of the weights if the training was successful, 
i.e., the conditions S were satisfied: 

( . ) p(s= true 1 a,A)/prior(a, A) 
lapost a, A 1 S = P(S = true) 

P(S = true 1 a, A) Iprior (a, A) 

= f f p(S = true 1 a,A)/prior(a, A)dadA' 
(10) 

In order to obtain an analytical expression for EPN suitable 
for numerical evaluation of the error rate we need to specify the 
prior density Iprior(a, A) and true probability density functions of 
the pattern classes lex 111"1)' I(X 111"2). 

To obtain easy to calculate equation for the expected PMC we 
shall analyze a case of very simple distributions: 

- two multivariate spherically Gaussian classes with densities 
N(X, C lo I), N(X, C 2 , I), equal prior probabilities q1 = q2 = 1/2; 
equal number of training vectors from each class: Nl = N2 = N = 
n/2. 

Also we shall aSljume the training vectors xi, X~, ... ,X~, X~, 
... ,X~ are statistically independent and identically distributed in 
their own classes. 

We shall analyze a limit case when N -+ 00. Then sample 
discriminant function is close to optimal one and all third order 
effects l/n3 and higher will be neglected. 
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3.2. Conditional PMC. For the chosen model of the true 
distribution of the classes the linear discriminant function (5) will 
have Gaussian distribution 

g(a;) = A'X + a'" N(A'C;, A! A) 

and the conditional probability of misclassification 

Prob(MC I a, A) 

= ~Prob(A'X+ a < 0 I X E 11'1) + -2Iprob(A'X+ a ~ 0 I X E 11'2) 2 . 

= ~~ (_ A'C I + a) + ~~ (A'C2 + a) (11) 
2 ..; A' A 2 ..; A' A ' 

where 
~(c) = <p(t)dt and <pet) = -e- t /2, I e I • 

-~ y'2;. 
The conditional PMC (11) depends on (p + I)-variate vector 

(aA'Y. For spherical case we can show this PMC depends only on 
two independent scalar variable~. Let us perform a transformation 

. . [01 
L = T(C, - C,) = :i. 

. . ., 
where T is p x p orthogonal matrix with a first row' vector tl = 
(C l -C2)/(Cl - C:l)' (GI - C 2)1/2 and 02 = (C l - cd (CI - C 2) is 
a squared Mahalanobis distance. Then 

A'C I +a . (TAY(T(C I -'C2) +T(CI +C2)) +2a 

";A'A = 2J(TA),(TA) 

VIO + Wo _ 8/2 
_ I 2 ~P 2 - U + w, 

2y VI + L.;=2 Vi 
(12A) 
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where 

Analogously 
A'C 2 +a RA = -u ·8/2+w. 

AA 
(12B) 

Therefore 

Prob(MC, a,A):::: Prob(MC, u,w) 

= 1/2~{ - u8/2 - w} + 1/2~{ - u8/2 + w}. (13) 

3.3. A probability of the successive training. For inde­
pendent identically distributed training pattern vectors the condi­
tional probability 

p(s = true, a,A) 
N N 

= II Prob{A'X)l) + a> o} II Prob{A'X)2) + a'~ o} 
j=1 j=l 

= [Prob{A'X+a > 0, X ElI'd]N['Prob{A'X+a ~ 0' X E 1I'2}]N 

= [1- Prob{A'X+a ~ 0' X E lI'd]N 
x [1- Prob{A'X +a > 0 I X E 1I'2}]N 

= [1-~( _ A~a~]N[t_~( _ A~a)]N. 

Taking into acc~unt (12A) and (12B) the above equation we 
can rewrite in a form 

p(s = true I a, A) = p(S = true, tt, w) 

= [1 - ~(-u6/2 - w)t [1-:- ~(-u8/2 + w)t· (14) 
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In further analysis we shall use an expansion 

w here ~ <t:: 1. 
Then 

P(s = true I a, A) 

= exp { - N[~(-U!5/2 - w) + ~~2(u8/2 - w) + .. . 

+ ~(-u8/2 + w) + ~4>2( -u8/2 + w) + ... ]}. (15) 

In the limit case for N - 00 the parameters of the discriminant 
function will approach to their ideal (true) values. Therefore u _ 1. 

Let us denote 
v=l-u 
4>( -8 /2) = 4>, 

!p( -6 /2) = !p, 

with v> 0, 

!p'(-8/2) = -(-8/2)!p(-.8/2) = 8!p/2. 

Then we can write 

4>( -u6 /2 ± w) = 4>(-8/2(1 - v) ± w) 

= ~(-6/2 + 6/2v ± w) 

and 

1 
= ~(-8/2) + (8/2v ± w)!p( -8/2) + 2(8/2v ± w)2!p'( -6/2) + ... 
= ~ + (8/2v ± w)!p + (8/2v ± w)28!p/4 + .... (16) 

Consequently taking into account (15) and (16) 

p(s = true I a,A) = p(S = true I u,w) 

= exp { - N (~+ !p(~v - w) + ~8 (~v - w f 
+ ~ [~+ !p(~v _ w) + ~8 (8; _ w)] 2, 

+ ~ + !p(~v + w) + ~8 e2v + w) 2 

+ ~ [~ + !p (~v + w) + ~6 (6; + w) ] 2) }, 
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and after some simple algebra we have 

where here and below in this paper coefficients k denote terms 
which do not depend either on v nor on w. 

3.4. The prior distribution of v, W. WE shall use a follow­
ing prior density 

f . ( ) - {N(V,mv,b~)N(w,O,b!), 
prior v, w - 0 , 

when v ~ 0, 
otherwise. 

(18) 

A particular case. Let components of the ved,~" A be chosen 
random from Gaussian distribution with zero mean a,.d ·''r; •. ,j'Hlce 

0-2 : ai '" N(O,0-2). Then the components of the vec.tl:'f V also will 
have Gaussian distribution Vi "" 'N(O, 0"2). It is easy to show that 
asymptotically when p --> 00, U = vdJV'V '" N(O, lip). Conse 
quently fprior(V) N(v, 1- e, lip) with e --> 0 as p -4 00. 

3.5. Aposteriori p.d.f. f (a, B I S= true ). A joint prob­
ability 

p(S = true I a,A)fprior(a,A) = p(S = true I u,W)fprior(U,W) 

= k . exp { - N [S<p(l + <))v + 6:<P (1 + 2: + II) v2 

6<p( 2<p ) 2)} {mv 1:1 1 2} + - 1 + - + <) w . exp '"Tv - 2, v :- -2 w 
2 6 Ov 2b" 2bw 

= k . exp - - - + -' - (1 + - + <)) I v { 1((1 N63 <p 2<p \ 2 

2 b~ 4 6 J 

+ 2 [N 6 <p( 1 + <)) -7; ] v) } 
x exp { - i(b~ + N6<p(1 + 2: +<)) )w2} 
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( N81'(1+~)·-mll/b~ 1 \ 
= k· N v, -lib; + N831'(1 + 21'/8 +~)/4' l/b; + N831'(1 + 21'/8 + ~)/41 

XN(tV,0'1/b;+N81'(:+21'/8+~))' when v~O. 
Then aposteriori p.d.f. 

fapost(v,w IS) = 

p(S = true I v,W)fprior(U,W) 
=----=-~~~--~~~~~~------00 Joo 0 Joo p(S = true I v, W)fprior(U, w)dvdw 

( mll/b; - N81'(1 +~) 
= k· N v, l/b; + N831'(1 + 21'/8 + ~)/4' 

l/b; + N831'(1
1
+ 21'/8 + <11)/4) 

( 1 \ 
xN w,0'1/b;+N8tp(1+21'/8+~)J' when v~O. (19) 

3.6. Expected PMC. A use of Taylor series expansion for 
(13) results 

Prob(MC I v, w) = ~ + v1'8/2 + v21'83/16 + w21'8/4, (20) 

Inserting (19), (20) into (9) we obtain 

Prob(MC I S = true) = ~ + v1'8j2 + v21'83/16 + w21'8/4 (21) 

where 

w2 =-00 /00 w2 N (w, 0, l/b~ + 'N81'(~ + 21'/8 + ~))dw 
1 

- l/b~ + N81'(1 + 21'/6 +~) 
1 1 

= N81'(1 + 21'/8 +~) N 2821'2(1 + 21'/6 + ~)2b!' (22) 

-i roo i ( mll/b~-N81'(l+~) 
v = 10 v N V'I/b;+N831'(l+21'/6+~)/4' 

l/b; + N 631'(/+ 2<;,/8 + ~)/4) dv . i = 1,2(23) 
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are moments of a truncated Gaussian distribution. 
For a truncated Gaussian N (x, m:l>, 0';) it is known (G .Korn and 

T.Korn, 1961) 

and 
2 2 U:I><P(~) 2 

Ex =jJ:I>+ 4>(r;;:) jJ:I>+O'",. 

For the density determined in (19) 

mtJ = [mtJ/b~ - N8<p(1 + 4»] 
UtJ 

x [l/b~ + N 83 <p(1 + 2<p/8 + 4»/4r1/ 2 -+ -00 as N -+ 00. 

For large negative c = mtJ/O'tJ we shall use ~,r~xpc.nsion (Zor-­
itch, 1984) 

<p( c) ( 1 3 15. .) 4>(c)=-.l--+----t-·· .. 
-c c2 c4 c6 

Thus 

Use of (24) in (23) results 

1 83 <p(l + 2<p/6 + (fI) 
v = Ev = N(<p6(1 + 4» - mtJ/(Nb~)) - N22[<p8(1 + 4» _ mv/(Nb;)P 

1 mtJ 1 + 2\<-,/6 + cf> 
= N<p6(1 + 4» + N2<p2P(1 + cfI)2b2v - 2N~~2(f+ <))3' 

v2 = Ev2 = 2 1 . = ~ . (25) 
N2 [<p6(1 + 4» _ mtJ /(Nb~)] 2 N2<p28?( 1 + 1»2 

Inserting (25), (22) into (21) we obtai'n a final result - the 
expected probability of misclassification EPN 
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When classes are well separated ~ ~ 1, I{) ~ 1 and we can 
assume I + ~ ~ I and 1+ 21{)10 + ~ ~ 1. Then we obtain a following 
asymptotic equation 

3101 m" 1 1 
EPN = Poo + 4N - 8N2; + 2N2ol{) b~ - 4N2ol{) b~' (27) 

where we inserted Poo =.~ as the asymptotic PMC. 
We see in Eq. (27) a constant positive contribution term 4t, 

which means the minimum empirical error classifier depends only 
on the number of training samples when N is very large. In Eq. (27) 
we do not see an explicit influence of dimensionality. It influences 
the expected PMC only via a determination the prior distribution 
of a,A (or v, w). E.g., insertion the density iprior(V) = N(v, 1 - c, 
lip) with c -+ 0 discussed in subsection 3.4 results the following 
contribution term in Eq. (27) 

11m\! IIp 1 
N2 201{) b~ = 2N2ol{) lip = N2' 201{)' 

(28) 

The very last term in Eq. (27) explains an influence of a correct 
apriori selection of the threshold w. The optimal threshold for two 
spherical distribution discussed in this paper is w = o. If we would 
set Eprior w = 0. as was done in (18) and have small aprioti variance 
b~, then the large last negative term in Eq, (27) will indicate that 
an use of correct prior information concerning the value of .the 
threshold w can reduce the expected PMq. If, .however, we do not 
have information concerning the value of the threshold w and b~ is 
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large then with increase in the number of training samples N the 
influence of prior setting of w reduces and disappears at last. 

3,'7, Intrinsic dimensionality and generalization error. 
Small sample properties of parametric local statistical pattern clas­
sifiers mainly depend on an intrinsic dimensionality of the data in 
local areas of the multivariate feature space (Raudys, 1991). The 
ANN minimum empirical error classifier is in fact also nonpara­
metric local classifier designed without any assumptions on a gen­
eral structure of the data. Therefore one may hope small sample 
properties of this classifier could be deter~ined by the intrinsic 
dimensionality of the data (Duin, 1993). This statement can be 
easily confirmed for the spherical r-dimensional data lying in r­
dimensional subspace of p-variate feature space. 

X::: (i~) - N ((~i:,) (~ I.~2))' if X E ?Ti, (29) 

and we'll use a discriminant function 

where Cil, Al and Xi are r-variate vectors, Ir is r x r identity 
matrix and ,x2 « l. 

The conditional classification error Prob(MCla, A) and the con­
ditional probc_bility P(S ::: truela, A) for this model will be 

Prob(MCla, A) :::!~ ( __ A~ C11 + A;C12 + a) 
2 J A~Al + A;A2.~2 

+ !~ (A~ C21 + A;C22 + a) , 
2 . vi A~Al + A;A2)..2 . 

peS ::: truela, A) ::: [1 _ <fo (_ A~ Cll + A;C12 + a ) 1 N 

JA~Al + A~A2>'2 

. x [1- ell (A;C21 + A;C22 +.) 1 N 

vi A~Al + A~A2~2 
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When A2 -+ 0, then all the data will lie in a linear r-dimensional 

subspace, all t.erms A;, C 12 , A;C 22 , A;A2,X2 will tend to zero and 
the .analysis of the small sample behavior of the minimum error 

classifier can be carried out only in r-dimensional space. Then the 
generalization error will be determined by Eq. (27) with a new 

"reduced" contribution term 

r 1 
N2 28cp' 

(30) 

4. Simulation studies. Eq. (6) and (2'7) are derived for the 
certain statistical classifiers, which are simila,r to but at the same 
time slightly different from adaptive linear classifiers obtained by 
minimizing squared error function (2). Thus the statistica.l clas­
sifier (6) requires a matrix inversion, and the zero empirical error 

classifier discussed in Section 3 requires a multiple genera,tion of 
random weighs and subsequent selection of the proper classifier. 

Therefore in order to make sure that above theoretical results 
are valid for an analysis of small sample properties of the adaptive 

ANN classifiers some simulation studies were performed. 
Two p-variate Gaussian populations were generated by means 

of pseudo random numbers generator. The populations differ in 
mean of the first variable 8 = 3.76. The one layer linear ANN clas­
sifier was trained by means of a standard Back propagation training 

algorithm until zero empirical error was obtained or until a number 
of training sweeps exceeded m. Learning speed constant 1} = 0.1, 
momentum term a = 0;3. A maximal number of training sweeps 
m =100. A number of different training sets (Nl = N2 = 100) Ilsed to 
obtain estimates of the generalization error for different conditions 

t = 50. N umber of vectors used to estimate generalization error 

Pgen , Nt = 500 + 500. Two series of simulation studies with spheri­
cal Gaussian data were performed. In first of them weights of the 
ANN were initialized randomly in an interval (-1, + 1). 'In second 

series of experiments in subsequent 49 training experiments with 

new traiuing data sets the old weights of the trained ANN classifier 
were retained and used for initialization. Since the training data. 
was new and different from previous one a.fter a new initialization 
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the empirical error usually increased until 0.05-;-0.15 and then while 
the training progressed it diminished again. This type of experi­
ments corresponds to the case of a good initialization with very 
small f and b; in (18). 

Each type of the experiments was performed with different 
number of features: p = 2,4,6,8,10,20,40,60 and three different tar­
get values: t = 0.0001, 0.1 and 0.495. The results are presented 
in Fig. 1 and Fig. 2. Simulation results with the spherical data 
confirm theoretical conclusion obtained from Eq. (27): 

,------.---~----,__r_-------. 
'to GO P 

~'ig. 1. Generalization error EPN versus dimensionality p (ran­
dom initialization). 

1) for random initialization generalization error of minimum 
error classifier increases linearly with the increase in cli· 
mensionali tYi 
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. , 
Ie 

2 

2.0 40 
Fig. 2. Generalization error EPN versus dimensionality p (non­

random initialization). 

2) a good initializa.tion of minimum error ANN classifier (old 
weights in our simulation experiment and small target val­
ues) depreciate the effect of dimensionality; 

3) small sample properties of the ANN classifier essentially 
depend on the type of pattern error function used to train 
classifier (in our case on the value of the target). 

We pay readers attention that "initialization term" -I, 2~CP in 
E!!.. (27) for essentially large N can be very small. 

The last two conclusions offer an important perspective to use 
the ANN classifier to classify patterns ill'changing environment. In 
slightly changed conditions the weights of the ANN classifier could 
be accurate enough to serve as t.he good initialization. However it. 
is not obvious does this conclusion is v3Jid for multilayer ANN. 

To check this guess we performed an experiment with non­
spherical multivariate Gaussian data and the muttilayer ANN clas­
sifier with 4 neurons in the hidden layer. Two 8-variate Gaussian 
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populations were generated with standard deviations: 

1 2 1 2 1 2 1 2 (first population), 
2 1 1 2 2 1 1 2 (second population). 

In the first population means of all featmes were zero, in second 
one - 1.5. Asymptotical PMC of 4 hidden neurons ANN classifier 
was less than 2% . The number of training vectors Nl = N2 = 20, 
the number of test set vectors 500+500. Ten different randomly se­
lected training sets were used to obtain average estimates of gener­
alization errOl". The standard Back propagation training algorithm 
(7] = 0.1, a = 0.1, m = 800) was used to train the classifier. For 
random initia.lization of the weights of the ANN classifier in the 
interval (-0.1, +0.1) in all 10 experiments during the training the 

, empirical classification error diminished from 50% until zeto. The 
average generalization error Pgen == 16.1% of misdassifications. ' 

In following simulation studies with nonrandom initializations 
we selected 4 different weights vectors. Two of them corresponded 
to a successful initializations (with the generalization errors 10.4% 
and 11.7%) and two of them - to fairly successfull initializations 
(with the generalization errors - 29.1% and 19.6%). In each of 
4 subsequent series of the experiments the ANN classifiers were 
trained 10 times with 10 different training sets. The results are 
presented in Table 1. 

Table 1. Dependence of the generalization error on the type of 
weights initialization 

.-
Initialization Average PamN- A vel'age Pgen 

begin of training en 0 trainin~ 

Random 0.50 0.0 0.161 
nonrandom 
with Pgen == 0.291 0.230 0.0 0.209 
nonrandom 
with Pgen = 0.196 0.128 0.01 0.174 
nonrandom 
with Pgen = 0.117 0.088 0.002 . 0.145 . 
nonrandom 
with Pgen == 0.104 0.088 0.005 0.123 
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Results obtained for the multilayer ANN classifier do not COll­

tradict to previolls conclusion: the results of the training highly de·· 
pend on the initialization .- for successive initializations we obtain 
smaller generalization error. In next experiments the multilayer 
ANN classifiers were initialized by weights obtained in previous ex .. 

periment with the previous training set. The generalization error 
averaged over 40 training experiments was 14.0%. 

Thus one may hope that the multilayer ANN classifier could 
be sucessfully used to classify patterns in slowly changing environ­
ment, when the set of previous weights is good enough for sub­
sequent initialization but bad enough for classification of changed 
patterns. Term (28) is proportional to N-s' Thus Eq. (27) indicates 
conditions when the good initialization could be useful: for larger 
N the "initialization term" 

p 1 
N2' 28<p (28) 

can become too small to feel the influence of initialization. Really 
in our experiments with Nl = N2 = 40 we did not feel the positive 
effect of sucessive initialization. 

In order to study the effect of intrinsic dimensionality several 
ANN training experiments were performed with "singular" data de­
termined by the model (29) with r = 2. In simulation experimz~lts 
addition of p - 2 new" singular" features with the standard devia· 
tion ,\ = 0.001 (or even 0.1) practical~y did not effect the empirical 
and the generalization errors if the targets were small (t = 0.00001) 

- the generalization errors were the same for 2 and for 60 features 
(Graph 1 in Fig. 3). However for t = 0.495 and r = 2 it was dif­
ficult to train the network. Too small variances (11'2 = 1O~6) of 
p - r features practically prevented the training of p - r weights of 
the network. Then the training process depends on initializations 
essentially. Graph 2A for the generalization error and graph 2B 
for the empirical err:or were obtained for a. case when weights were 

initialized from interval (-1, +1). 
For comparision ill Fig. 3. we present graph 3 - the general­

ization error for target t = 0.495 and a "full" dimensionality (when 
r = p). Theoretically the graphs 2A and 3 must coincide. 
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Fig. 3. Generalization and empirical errors versus dimension­
ality p (random initialization, intrinsic dimensionality 
r = 2 or r = p (for curves 3 only)). 

An "early stopping" of the training algorithm limits the clas­
sifiers capacity (Kraaijveld, 199,3; Schmidt, 1993): the empirical 
error increases. We present the grapbs 2A and 2B of 'unsucessfull' 
training in order to illustrate that in small training sample size the 
limitation of the classifiers capacity caused by insufficient training 
can reduce the generalization error. 
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The simulation results with singular low intinsic dimension­
ality data confirm theoretical conclusions and indicates that low 
intrinsic dimensionality has double effect on sample size consider­
ations of the ANN classifier. For small target values the minimum 
empirical error classifier is a local classification rule and its gen­
eralization abilities are determined by the intrinsic dimensionality. 
From another hand low intrinsic dimensionality in case of nonideal 
initialization can cause an early stopping of the training algorithm, 
reduce the actual capacity of the ANN and as a consequence im­
prove small sample properties. More theoretical and simulation 
studies are needful. 

5. Discussion. Two types of pattern errol' functions frequen­
tely used in ANN pattern classifie~ design were discussed. Both of 
them can be derived from the standard mean squared error function 
(2) by using different values of the targets. 

If the target values of both classes are close to each other we 
work in a linear part ofthe activation function f(net) and the classi­
fier obtained coincides with the standard Fisher linear discriminant 
function. If the targets are different and close to limiting values 
of the activation function !(net) then essentially we minimize the 
empirical classification error. In first case all training set pattern 
vectors have their contribution to patern error function. MOrl'ver 
an assumption that pattern vectors are Gaussian with equal covari­
ance matrices for both classes are used in an implisit way. If this 
addi tional information is correct (the classes are Gaussian and the 
covariance matrices are equal) then it can improve small sample 
properties of the classification rule obtained. In highdimensional 
case however the assumption mentioned can cause problems. One 
of them is that estimation of the covariance matrix requires a large 
number of training vectors. Another one is that in highdimensional 
case even if the number of training vectors is large some eigenvalues 
of the sample covariance matrix are extremely small and numeri­
cal difficulties with matrix inversion and/or a stability of the ANN 
training algorithm arise. 

IIt'spite of the fact tllat the minimum empirical error classifier 
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utilizes less information concerning a shape of the distribution den­
sities of the pattern classes under a certain conditions this classifier 
can have good small sample properties. The analytical investiga­
tion (Eq. (27)) as well as simulation experiments with the linear 
and nonlinear multilayer ANN classifier indicate that such condi­
tions arise when the weights of the ANN are correctly initialized, 
Then the training procedure only shifts a discriminating boundary 
to its right direction and the increase in the generalization error 
due the finite number of training samples can be small. The ini­
tialization term 

p 1 
N2' 201{) 

in Eq. (27) indicates also that if the number of training samples is 
sufficiantely large the influence of dimensionality can be also small. 

The application of the adaptive ANN classifier may be advan­
tagues when we can get a "good" initialization" or when the data 
lie in a subspace of low dimensionality. The conditions for the good 
initialization arise when one applies the ANN to classify patterns 
in changing environment when the old ANN weights can be used 
as the starting weight vectors in new changed environment. The 
conditions for low intrinsic 'dimension ali ties arise when features are 
highly correlated. 

Other advantegeous conditions to use the ANN classifier are 
when the problem is complex and we have to use the complex 
multilayer ANN with the great number of inputs and the number 
of training vectors is large. 

Above analysis indicates new partialy unexpected and coun­
terintuitive properties of the ANN classifiers. In future research it 
would be interest~ng to obtain analytical formulae for more general, 
distribution of the pattern vectors and nonzero empirical·error. Jtt 

. ~ 

simulation stU,dies it is worth to investigate cases when the intrin-
sic dimensionality of the data is low and when the ANN is really 
complex and the number of training vectors is large. 
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