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Abstract. A p-rung orthopair fuzzy set (p-ROFS) describes a generalization of intuitionistic fuzzy
set and Pythagorean fuzzy set in the case where we face a larger representation space of acceptable
membership grades, and moreover, it gives a decision maker more flexibility in expressing his/her
real preferences. Under the p-rung orthopair fuzzy environment, we are going to propose a novel
and parametrized score function of p-ROFSs by incorporating the idea of weighted average of the
degree of membership and non-membership functions. In view of this fact, this study is further un-
dertaken to investigate and present different properties of the proposed score function for p-ROFSs.
Moreover, we indicate that this ranking technique reduces some of the drawbacks of the existing
ones. Eventually, we develop an approach based on the above-mentioned ranking technique to deal
with multiple criteria decision making problems with p-rung orthopair fuzzy information.
Key words: p-rung orthopair fuzzy set, multiple criteria decision making, score function.

1. Introduction

Fuzzy set (Zadeh, 1965) was first introduced for assigning each criterion to a vague or
an uncertain information with the help of membership degree which ranges between 0
and 1. Then, intuitionistic fuzzy set (IFS) (Atanassov, 1986) was proposed to take into
account both membership and non-membership degrees such that their sum is less than
or equal to 1. This property is used to describe an object which satisfies a criterion more
definitively and further precisely compared with that in fuzzy environment (Cong, 2014;
Si et al., 2019).

Since the sum of both satisfaction and dissatisfaction degrees of an IFS is not always
less than or equal to 1, it would be interesting to consider the sum of their square to be
less than or equal to 1. In this regard, the concept of IFS clearly fails to deal with such
a situation. In order to clarify this fact, we suppose that an expert would like to express
his/her preference in a decision making situation where the degree of an object satisfying
a criterion is

√
3

2 , and the degree of dissatisfying is 1
2 . In this case, we easily see that√

3
2 + 1

2 � 1, that is, the current case is not able to be properly described by the use of
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IFS concept. Instead, the satisfaction of
(√

3
2

)2 + ( 1
2

)2 � 1 shows the need of employing
another concept for describing the latter-mentioned case, and that concept is nothing else
except the concept of Pythagorean fuzzy set (PFS) (Yager, 2013).

Besides that, we may consider a more general situation in which an expert would like
to express his/her preference by the degree of an object satisfying a criterion as

3√7
2 ,

and the degree of dissatisfying is 1
2 . Then, it is easily seen that

3√7
2 + 1

2 � 1 and also( 3√7
2

)2 + ( 1
2

)2 � 1 which indicate that the current case cannot be described with the help
of concepts of IFS and PFS. This is while,

( 3√7
2

)3 + ( 1
2

)3 � 1. Thus, such an implication
makes clear the need of defining a more general concept than the IFS and the PFS con-
cepts. Indeed, this fact made a study of introducing a more general concept than that of
IFS and PFS which is called p-rung orthopair fuzzy set (p-ROFS) (Yager, 2017).

The p-ROFS concept describes the degree of an object satisfying a criterion together
with the degree of dissatisfying such that the sum of p-power of both satisfaction and
dissatisfaction degrees is less than or equal to 1. It can be easily deduced that the space
of p-ROFS membership grades is greater than those of Pythagorean and intuitionistic
membership grades. That is, any Pythagorean or intuitionistic membership grade is also
a p-ROFS membership grade, but in general, all p-ROFS membership grades are not in
the forms of Pythagorean or intuitionistic membership grades. This obviously implies that
we are able to implement the concept of p-ROFS in the cases where we do not allow to
implement the concepts of PFS or IFS.

Apart from the above-mentioned advantages, an immediate and very interesting benefit
of p-ROFS definition is that it provides the experts with greater freedom in modelling the
forms of imprecise information.

There exist a large number of researches that deal mainly with the concept of p-ROFS
which has been applied in many different contexts. Liu and Wang (2018) introduced and
investigated the p-rung orthopair fuzzy weighted averaging operator and the p-rung or-
thpair fuzzy weighted geometric operator. Moreover, the p-rung orthopair fuzzy Bonfer-
roni mean and the p-rung orthopair fuzzy Heronian mean were proposed respectively
by Liu and Liu (2018) and Wei et al. (2018). Subsequently, the p-rung orthopair fuzzy
Archimedean Bonferroni mean operators were developed by Liu and Wang (2019). Be-
sides the latter-mentioned application of p-ROFSs, there is an increasing demand and
a growing number of researches for other application fields, for instance, Du (2018) pro-
posed Minkowski-type distance measures for p-ROFS by emphasizing on their application
in decision making, and Zhang C. et al. (2019, in press) dealt with additive and multiplica-
tive consistency analysis for p-ROF preference relation.

One of the leading topics of the recent development of p-ROFSs has been the focus on
the ranking function which plays an essential role in the decision making problems. The
pioneer works in this regard are those proposed by Yager (2017) and Wei et al. (2018)
in which non-algorithmic ranking techniques for p-ROFSs are described. As it will be
demonstrated later, Yager’s (2017) and Wei et al.’s (2018) score functions cannot dif-
ferentiate many p-ROFNs in some situations. The other is that given by Liu and Wang
(2018) as an algorithmic ranking technique which uses both score and accuracy functions
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of p-ROFSs. By taking the impact of membership and non-membership degrees together
with the hesitation information into account, Peng et al. (2018) introduced another algo-
rithmic ranking technique for p-ROFSs. Anyway, both Liu and Wang’s (2018) and Peng
et al.’s (2018) techniques are in algorithmic form and they need definitely more com-
putations than the non-algorithmic techniques. Moreover, since Liu and Wang’s (2018)
technique does not consider the influence of abstention, the information of p-ROFS may
be lost. Furthermore, the curve function f (x) = exp(x)

exp(x)+1 which appears in Peng et al.’s
(2018) technique leads to more complexity in the evaluation of the score function.

Regarding the above-mentioned deficiencies of the existing p-ROFS ranking tech-
niques, we are motivated here to investigate an effective score function for p-ROFSs in
the form of non-algorithmic ranking technique which is constructed by considering the
impact of membership and non-membership degrees together with the hesitation infor-
mation.

The present contribution is organized as follows: Introduction of p-ROFS concept and
a brief review of some preliminaries are given in Section 2. Section 3 deals with reviewing
three kinds of p-ROFS ranking orders, and then this section continues with introducing an
innovative score function for p-ROFSs which possesses different properties. Section 4 is
devoted to the application of p-ROFS score function in multiple criteria decision making
(MCDM) problems by emphasizing the superiority of the proposed score function over
the other existing ones. Finally, this article concludes in Section 5.

2. The p-Rung Orthopair Fuzzy Set (p-ROFS)

Throughout this section, we are willing to firstly review the concepts of IFS and PFS, and
then we will focus mainly on the concept of p-rung orthopair fuzzy set (p-ROFS) and its
essential set and algebraical operations.

Definition 1 (See Atanassov, 1986). Let X be the universe of discourse. An intuitionistic
fuzzy set (IFS) on X is defined in terms of

AIFS = {〈
x, μAIFS (x), νAIFS (x)

〉 : x ∈ X
}
,

in which μAIFS and νAIFS denote the membership and non-membership functions of AIFS
such that for any x ∈ X it holds 0 � μAIFS (x) + νAIFS (x) � 1.

Definition 2 (See Zhang and Xu, 2014). Let X be the universe of discourse. A Pythagorean
fuzzy set (PFS) on X is defined in terms of

APFS = {〈
x, μAPFS (x), νAPFS (x)

〉 : x ∈ X
}
,

in which μAPFS and νAPFS denote the membership and non-membership functions of APFS
such that for any x ∈ X it holds 0 � μ2

APFS
(x) + ν2

APFS
(x) � 1.
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Fig. 1. Comparison of spaces of p-ROFSs for the parameters p = 1, 1.5, 2, 3, 5.

Now, if we are interested in describing a situation in which an expert would like to
express his/her preference by the degree of an object satisfying a criterion as

3√7
2 , and the

degree of dissatisfying as 1
2 , then we immediately find that none of the existing concepts

of IFS and PFS can explain such a situation because of
3√7
2 + 1

2 �� 1 and
( 3√7

2

)2+( 1
2

)2 �� 1.
This impulses Yager (2017) to define a more general concept than the IFS and the PFS
concepts which is not only able to improve such a shortcoming, but it is also well-obeyed
in this case.

Definition 3 (See Yager, 2017). Let X be the universe of discourse. A p-rung orthopair
fuzzy set (p-ROFS) on X is defined in terms of

Ap-ROFS = {〈
x, μAp-ROFS(x), νAp-ROFS(x)

〉 : x ∈ X
}
,

in which μAp-ROFS and νAp-ROFS denote the membership and non-membership functions of
Ap-ROFS such that for any x ∈ X it holds 0 � μ

p
Ap-ROFS

(x) + ν
p
Ap-ROFS

(x) � 1 where
p ∈ [1,∞).

Moreover, for notational convenience, we name (μAp-ROFS(x), νAp-ROFS(x)) a p-rung
orthopair fuzzy number (p-ROFN), and it is simply indicated hereafter by (μAp-ROFN,

νAp-ROFN).
As can be seen from Fig. 1, the intuitionistic membership degrees are those points be-

ing located in the area of the graph x + y � 1, and the Pythagorean membership degrees
are those points being located in the area of the graph x2 + y2 � 1. This is while, the
p-rung orthopair membership degrees are those points being located in the area of the
graph xp + yp � 1 where p ∈ [1,∞). This implies that the p-rung orthopair member-
ship degrees provide us with a wider representation of non-standard membership degrees
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than the intuitionistic and the Pythagorean membership degrees. Indeed, any intuition-
istic fuzzy number (IFN) and Pythagorean fuzzy number (PFN) can be considered as a
p-ROFN, but the reverse is not held, that is, all p-ROFNs are not always IFNs or PFNs.

In what follows, we are interested in reviewing a number of set and algebraical opera-
tions on p-ROFNs.

Definition 4 (See Yager, 2017). For any p-ROFNs Ap-ROFN and Bp-ROFN, the following
operations are defined:

Ac
p-ROFN = (μAc

p-ROFN
, νAc

p-ROFN
) = (νAp-ROFN, μAp-ROFN), (1)

Ap-ROFN ∩ Bp-ROFN = (μAp-ROFN∩Bp-ROFN, νAp-ROFN∪Bp-ROFN)

= (
min{μAp-ROFN, μBp-ROFN}, max{νAp-ROFN, νBp-ROFN}), (2)

Ap-ROFN ∪ Bp-ROFN = (μAp-ROFN∪Bp-ROFN, νAp-ROFN∩Bp-ROFN)

= (
max{μAp-ROFN, μBp-ROFN}, min{νAp-ROFN, νBp-ROFN}). (3)

In an analogous manner similar to IFNs and PFNs, the subset relation of p-ROFNs is
defined as the following:

Definition 5 (See Yager, 2017). For any p-ROFNs Ap-ROFN and Bp-ROFN, we indicate that
Ap-ROFN ⊆ Bp-ROFN if and only if μAp-ROFN � μBp-ROFN together with νAp-ROFN � νBp-ROFN .

Definition 6 (See Yager, 2017). For any p-ROFNs Ap-ROFN and Bp-ROFN, the following
operations are defined:

Ap-ROFN ⊕ Bp-ROFN = (μAp-ROFN⊕Bp-ROFN, νAp-ROFN⊗Bp-ROFN)

= ([
1 − (

1 − μ
p
Ap-ROFN

)(
1 − μ

p
Bp-ROFN

)] 1
p ,

[
ν

p
Ap-ROFN

ν
p
Bp-ROFN

] 1
p
)
, (4)

Ap-ROFN ⊗ Bp-ROFN = (μAp-ROFN⊗Bp-ROFN, νAp-ROFN⊕Bp-ROFN)

= ([
μ

p
Ap-ROFN

μ
p
Bp-ROFN

] 1
p ,

[
1 − (

1 − ν
p
Ap-ROFN

)(
1 − ν

p
Bp-ROFN

)] 1
p
)
. (5)

An immediate consequence from the above definition is that

kAp-ROFN = (μkAp-ROFN, νkAp-ROFN)

= ([
1 − (

1 − μ
p
Ap-ROFN

)k] 1
p ,

[(
ν

p
Ap-ROFN

)k] 1
p
)
, (6)

Ak
p-ROFN = (μAk

p-ROFN
, νAk

p-ROFN
)

= ([(
μ

p
Ap-ROFN

)k] 1
p ,

[
1 − (

1 − ν
p
Ap-ROFN

)k] 1
p
)
, (7)

for any k > 0.
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3. Ranking Techniques of p-ROFNs

Throughout the present section, we first review the existing ranking techniques of
p-ROFN, and in the second stage, we propose a new parametrical score function for
p-ROFNs by taking both the membership and the hesitation degree of a p-ROFN into
account.

3.1. Non-Algorithmic Ranking Technique

Assume that Ap-ROFN = (μAp-ROFN, νAp-ROFN) denotes a p-ROFN where μAp-ROFN indicates
the proposal, and νAp-ROFN stands for the disagreement. It was Yager (2017) who first de-
fined the following ranking technique for p-ROFNs:

Definition 7 (See Yager, 2017). For any p-ROFN Ap-ROFN, Yager’s score function is
constructed as

ScY (Ap-ROFN) = μ
p
Ap-ROFN

− ν
p
Ap-ROFN

, (8)

where p ∈ [1,∞), and also −1 � ScY (Ap-ROFN) � 1.

With the help of this setting, we are able to present the comparison rule between the
two p-ROFNs Ap-ROFN = (μAp-ROFN, νAp-ROFN) and Bp-ROFN = (μBp-ROFN, νBp-ROFN) as the
following:

• if ScY (Ap-ROFN) < ScY (Bp-ROFN), then Ap-ROFN is considered smaller than Bp-ROFN
and denoted by Ap-ROFN ≺Y Bp-ROFN;

• if ScY (Ap-ROFN) = ScY (Bp-ROFN), then we get Ap-ROFN 
Y Bp-ROFN.

There exists another p-ROFN score function introduced by Wei et al. (2018) which
behaves much like the Yager’s (2017) score function.

Definition 8 (See Wei et al., 2018). For any p-ROFN Ap-ROFN, Wei et al.’s score function
is constructed as

ScW (Ap-ROFN) = 1

2

(
1 + μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
, (9)

where p ∈ [1,∞), and also 0 � ScW (Ap-ROFN) � 1.

With the help of this setting, we are able to present another comparison rule between
the two p-ROFNs Ap-ROFN = (μAp-ROFN, νAp-ROFN) and Bp-ROFN = (μBp-ROFN, νBp-ROFN) as
the following:

• if ScW (Ap-ROFN) < ScW (Bp-ROFN), then Ap-ROFN is considered smaller than Bp-ROFN
and denoted by Ap-ROFN ≺W Bp-ROFN;

• if ScW (Ap-ROFN) = ScW (Bp-ROFN), then we get Ap-ROFN 
W Bp-ROFN.
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3.2. Algorithmic Ranking Techniques

Following Yager’s (2017) non-algorithmic ranking technique for p-ROFNs, Liu and Wang
(2018) presented an algorithmic ranking technique by considering both score and accuracy
functions of p-ROFNs.

Definition 9 (See Liu and Wang, 2018). For any p-ROFN Ap-ROFN, the score and accu-
racy functions are respectively defined by

ScLW (Ap-ROFN) = μ
p
Ap-ROFN

− ν
p
Ap-ROFN

, (10)

AccLW (Ap-ROFN) = μ
p
Ap-ROFN

+ ν
p
Ap-ROFN

, (11)

where p ∈ [1,∞), and moreover, −1 � ScLW (Ap-ROFN) � 1 and 0 �
AccLW (Ap-ROFN) � 1.

Using this setting, the comparison rule between the two p-ROFNs Ap-ROFN =
(μAp-ROFN, νAp-ROFN) and Bp-ROFN = (μBp-ROFN, νBp-ROFN) is considered as the following:

• if ScLW (Ap-ROFN) < ScLW (Bp-ROFN), then Ap-ROFN is considered smaller than Bp-ROFN
and denoted by Ap-ROFN ≺LW Bp-ROFN;

• if ScLW (Ap-ROFN) = ScLW (Bp-ROFN), then
– if AccLW (Ap-ROFN) = AccLW (Bp-ROFN), hence we result that μAp-ROFN = μBp-ROFN

together with νAp-ROFN = νBp-ROFN , that is, Ap-ROFN 
LW Bp-ROFN;
– if AccLW (Ap-ROFN) < AccLW (Bp-ROFN), hence we get Ap-ROFN ≺LW Bp-ROFN.

As can be observed from equations (8) and (10), Yager’s (2017) and Liu and Wang’s
(2018) score functions have the same construction. To simplify the next considerations,
we will denote both of them with the notation ScYLW instead.

In continuation of Liu and Wang’s (2018) technique, Peng et al. (2018) introduced
a ranking technique by taking the impact of membership and non-membership degrees
together with the hesitation information into consideration.

Definition 10 (See Peng et al., 2018). For any p-ROFN Ap-ROFN, the score function is
defined by

ScPDG(Ap-ROFN)

= μ
p
Ap-ROFN

− ν
p
Ap-ROFN

+
( exp(μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)

exp(μ
p
Ap-ROFN

− ν
p
Ap-ROFN

) + 1

)
πp(Ap-ROFN), (12)

where p ∈ [1,∞), and moreover, −1 � ScPDG(Ap-ROFN) � 1 and πp(Ap-ROFN) =
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

.

Based on the above score function ScPDG and the hesitation information π , Peng et al.
(2018) proposed an algorithmic ranking technique as the following:
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For any two p-ROFNs Ap-ROFN = (μAp-ROFN, νAp-ROFN) and Bp-ROFN = (μBp-ROFN, νBp-ROFN),
we deduce that

• if ScPDG(Ap-ROFN) < ScPDG(Bp-ROFN), then Ap-ROFN is considered smaller than
Bp-ROFN and denoted by Ap-ROFN ≺PDG Bp-ROFN;

• if ScPDG(Ap-ROFN) = ScPDG(Bp-ROFN), then
– if π(Ap-ROFN) = π(Bp-ROFN), hence it results that μAp-ROFN = μBp-ROFN together

with νAp-ROFN = νBp-ROFN , that is, Ap-ROFN 
PDG Bp-ROFN;
– if π(Ap-ROFN) < π(Bp-ROFN), hence we have Ap-ROFN �PDG Bp-ROFN.

In view of this setting, Peng et al. (2018) demonstrated that the above-defined ranking
technique ScPDG is monotonically increasing according to μAp-ROFN and monotonically
decreasing according to νAp-ROFN .

Furthermore, Peng et al. (2018) indicated that

• ScPDG(Ap-ROFN) = −1 if and only if Ap-ROFN = (μAp-ROFN = 0, νAp-ROFN = 1);
• ScPDG(Ap-ROFN) = 1 if and only if Ap-ROFN = (μAp-ROFN = 1, νAp-ROFN = 0).

Keeping the relation given in Definition 7 in the mind, Peng et al. (2018) showed that:

Theorem 1 (See Peng et al., 2018). For any two p-ROFNs Ap-ROFN and Bp-ROFN, Peng
et al.’s (2018) ranking order satisfies

ScPDG(Ap-ROFN) < ScPDG(Bp-ROFN) if and only if
Ap-ROFN ≺Y Bp-ROFN that is
μAp-ROFN < μBp-ROFN and νAp-ROFN > νBp-ROFN . (13)

We are now in a position to provide a brief summary of advantages and disadvantages
of the ranking techniques described above:

• Following from the non-algorithmic techniques of Yager (2017) and Wei et al. (2018)
given respectively by (8) and (9), we easily find that Yager’s (2017) and Wei et
al.’s (2018) score functions cannot differentiate many p-ROFNs in some situations.
For instance, in the case where q = 2 together with Ap-ROFN = (0.1, 0.3) and
Bp-ROFN = (0.2,

√
0.12), we obtain that ScY (Ap-ROFN) = ScY (Bp-ROFN) = −0.08

and ScW (Ap-ROFN) = ScW (Bp-ROFN) = −0.08 which are not reasonable.
• Both Liu and Wang’s (2018) and Peng et al.’s (2018) techniques are algorithmic in na-

ture and require more computations than a non-algorithmic technique. More precisely,
the information of p-ROFN may be lost when Liu and Wang’s (2018) technique is im-
plemented and this is due to the fact that it does not consider the influence of abstention.
Moreover, from the curve function f (x) = exp(x)

exp(x)+1 in Peng et al.’s (2018) technique,
we easily find that it causes more complexity in the evaluation of the score function.

On the basis of the above-mentioned deficiencies of the existing techniques, we still
believe that an effective score function in the form of non-algorithmic ranking technique
should be constructed by considering the impact of membership and non-membership
degrees together with the hesitation information.
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3.3. Innovative Non-Algorithmic Ranking Technique

Definition 11. For any p-ROFN Ap-ROFN, the innovative score function is defined by

ScF (Ap-ROFN) = μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
(14)

or equivalently

ScF (Ap-ROFN) = μ
p
Ap-ROFN

+ λπp(Ap-ROFN), (15)

where 0 < λ < 1.

It is interesting to note that the score function ScF might be re-formulated as

ScF (Ap-ROFN) = μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
= μ

p
Ap-ROFN

+ λ − λμ
p
Ap-ROFN

− λν
p
Ap-ROFN

= (1 − λ)μ
p
Ap-ROFN

+ λ
(
1 − ν

p
Ap-ROFN

)
, (16)

where 0 < λ < 1.

Remark 1. In view of relation (16), the parameter λ corresponding to μ
p
Ap-ROFN

and (1 −
ν

p
Ap-ROFN

) represents the attitudinal characters of ScF . That is, whenever λ turns out to be
larger from 0 to 1, then the term μ

p
Ap-ROFN

gets less attention, and conversely, the term
(1 − ν

p
Ap-ROFN

) gets more attention.

From another point of view, the score function ScF gives the average of hesitation de-
gree between membership degree μ

p
Ap-ROFN

and non-membership degree ν
p
Ap-ROFN

. In this
regard, the different values of λ indicate the integration of subjective and objective deci-
sion making information. These findings are quite straightforward by using the insights
gained from the next section.

However, such a consideration in defining a parametrized score function is quite com-
mon and reasonable, and it can be found in Zhang et al. (2018, 2019), Garg (2016) and so
on.

The formula (16) is nothing else, except for the certainty degree of Ap-ROFN which is
denoted by the interval [μp

Ap-ROFN
, 1 − ν

p
Ap-ROFN

]. Needless to say that this interval follows
from the fact that μ

p
Ap-ROFN

+ ν
p
Ap-ROFN

� 1 which results in μ
p
Ap-ROFN

� 1 − ν
p
Ap-ROFN

.
It is also of some interest to note that the above-introduced innovative score function

ScF inherits the terms of membership degree μAp-ROFN , non-membership degree νAp-ROFN

and hesitation information π(Ap-ROFN).
It is easily seen from Definition 11 that

• ScF (Ap-ROFN) = 0 if and only if Ap-ROFN = (μAp-ROFN = 0, νAp-ROFN = 1);
• ScF (Ap-ROFN) = 1 if and only if Ap-ROFN = (μAp-ROFN = 1, νAp-ROFN = 0).
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Let us now investigate a number of other properties of innovative score function ScF

which are given below.

Theorem 2. For any p-ROFN Ap-ROFN, the innovative score function ScF (Ap-ROFN)

given by (14) belongs to the interval [μp
Ap-ROFN

, 1 − ν
p
Ap-ROFN

).

Proof. For any p-ROFN Ap-ROFN, it holds that μ
p
Ap-ROFN

+ ν
p
Ap-ROFN

� 1 or 1 −μ
p
Ap-ROFN

−
ν

p
Ap-ROFN

� 0. If we consider 0 < λ < 1, then

λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
� 0,

μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
� μ

p
Ap-ROFN

,

which implies that ScF (Ap-ROFN) � μ
p
Ap-ROFN

.
On the other hand, from the fact that 0 < λ < 1, we get

ScF (Ap-ROFN) = μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
< μ

p
Ap-ROFN

+ (
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

) = 1 − ν
p
Ap-ROFN

.

Therefore, we result in μ
p
Ap-ROFN

� ScF (Ap-ROFN) < 1 − ν
p
Ap-ROFN

. �

Corollary 1. For any p-ROFN Ap-ROFN, the innovative score function ScF (Ap-ROFN)

given by (14) satisfies ScF (Ap-ROFN) ∈ [0, 1).

Proof. The proof comes from the fact that 0 � μ
p
Ap-ROFN

� ScF (Ap-ROFN) < 1 −
ν

p
Ap-ROFN

� 1. �

Theorem 3. For any two p-ROFNs Ap-ROFN and Bp-ROFN, we conclude that

Ap-ROFN �Y Bp-ROFN if and only if
ScF (Ap-ROFN) � ScF (Bp-ROFN). (17)

Proof. (Necessity) The relation Ap-ROFN �Y Bp-ROFN holds true if and only if

μAp-ROFN � μBp-ROFN, (18)

νAp-ROFN � νBp-ROFN . (19)

From the relation (18), we get that μ
p
Ap-ROFN

� μ
p
Bp-ROFN

for any p ∈ [1,∞), and conse-
quently, (1 − λ)μ

p
Ap-ROFN

� (1 − λ)μ
p
Bp-ROFN

for any 0 < λ < 1.
From the relation (19), it results that ν

p
Ap-ROFN

� ν
p
Bp-ROFN

for any p ∈ [1,∞), and
consequently, 1 − ν

p
Ap-ROFN

� 1 − ν
p
Bp-ROFN

or λ(1 − ν
p
Ap-ROFN

) � λ(1 − ν
p
Bp-ROFN

) for any
0 < λ < 1.
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Taking all the above relations into account, we get

(1 − λ)μ
p
Ap-ROFN

+ λ
(
1 − ν

p
Ap-ROFN

)
� (1 − λ)μ

p
Bp-ROFN

+ λ
(
1 − ν

p
Bp-ROFN

)
,

μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
� μ

p
Bp-ROFN

+ λ
(
1 − μ

p
Bp-ROFN

− ν
p
Bp-ROFN

)
,

which implies that

ScF (Ap-ROFN) � ScF (Bp-ROFN).

(Sufficiency) Let

ScF (Bp-ROFN) − ScF (Ap-ROFN)

= μ
p
Bp-ROFN

+ λ
(
1 − μ

p
Bp-ROFN

− ν
p
Bp-ROFN

) − μ
p
Ap-ROFN

− λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

)
= (

μ
p
Bp-ROFN

− μ
p
Ap-ROFN

) + λ
(
1 − μ

p
Bp-ROFN

− ν
p
Bp-ROFN

− 1 + μ
p
Ap-ROFN

+ ν
p
Ap-ROFN

)
= (1 − λ)

(
μ

p
Bp-ROFN

− μ
p
Ap-ROFN

) + λ
(
ν

p
Ap-ROFN

− ν
p
Bp-ROFN

)
.

Now, it is obvious that ScF (Bp-ROFN) − ScF (Ap-ROFN) � 0 if (1 − λ)(μ
p
Bp-ROFN

−
μ

p
Ap-ROFN

) + λ(ν
p
Ap-ROFN

− ν
p
Bp-ROFN

) � 0 for any 0 < λ < 1, that is,

μ
p
Bp-ROFN

− μ
p
Ap-ROFN

� 0,

ν
p
Ap-ROFN

− ν
p
Bp-ROFN

� 0,

for any p ∈ [1,∞). Consequently, we deduce that μAp-ROFN � μBp-ROFN and νAp-ROFN �
νBp-ROFN which implies that Ap-ROFN �Y Bp-ROFN. �

Theorem 4. For any p-ROFN Ap-ROFN = (μAp-ROFN, νAp-ROFN) and its corresponding
complement Ac

p-ROFN = (νAp-ROFN, μAp-ROFN), we deduce that

ScF (Ap-ROFN) + ScF

(
Ac

p-ROFN
)
� 1. (20)

Proof. From definition of the innovative score function ScF , we have

ScF (Ap-ROFN) + ScF

(
Ac

p-ROFN
)

= μ
p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

) + μ
p

Ac
p-ROFN

+ λ
(
1 − μ

p

Ac
p-ROFN

− ν
p

Ac
p-ROFN

)
= μ

p
Ap-ROFN

+ λ
(
1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

) + ν
p
Ap-ROFN
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+ λ
(
1 − ν

p
Ap-ROFN

− μ
p
Ap-ROFN

)
= (1 − 2λ)

(
μ

p
Ap-ROFN

+ ν
p
Ap-ROFN

) + 2λ.

Now, from the relation μ
p
Ap-ROFN

+ ν
p
Ap-ROFN

� 1, we get that

ScF (Ap-ROFN) + ScF

(
Ac

p-ROFN
)
� (1 − 2λ) + 2λ = 1. �

As a result, it is interesting to remark that in the case where λ = 1
2 , it holds that

ScF (Ap-ROFN) + ScF

(
Ac

p-ROFN
) = 1. (21)

Theorem 5. For any p-ROFN Ap-ROFN, the innovative score function ScF (Ap-ROFN)

given by (14) is a monotonically increasing function of μAp-ROFN and a monotonically
decreasing function of νAp-ROFN .

Proof. The proof is immediately apparent from calculating the first partial derivatives of
ScF (Ap-ROFN) = μ

p
Ap-ROFN

+λ(1−μ
p
Ap-ROFN

−ν
p
Ap-ROFN

) according to μAp-ROFN and νAp-ROFN

where

∂ScF (Ap-ROFN)

∂μAp-ROFN
= pμ

p−1
Ap-ROFN

+ λ
(−pμ

p−1
Ap-ROFN

) = pμ
p−1
Ap-ROFN

(1 − λ) � 0;
∂ScF (Ap-ROFN)

∂νAp-ROFN
= λ

(−pν
p−1
Ap-ROFN

) = −λ
(
pν

p−1
Ap-ROFN

)
� 0,

for any 0 < λ < 1. �

Theorem 6. For any p-ROFN Ap-ROFN, the innovative score function ScF (Ap-ROFN) =
μ

p
Ap-ROFN

+ λ(1 − μ
p
Ap-ROFN

− ν
p
Ap-ROFN

) is an increasing function of λ, where 0 < λ < 1.

Proof. The result now follows from the fact that

∂ScF (Ap-ROFN)

∂λ
= 1 − μ

p
Ap-ROFN

− ν
p
Ap-ROFN

= πp(Ap-ROFN) � 0. �

3.4. Comparison of the Proposed and Existing Score Functions

In this part of the contribution, we re-consider once again the comparison results given in
Peng et al. (2018) together with the corresponding results of the proposed score function
ScF . All the results are summarized in Tables 1–6.

Needless to say that what we expect from Remark 1 is that by increasing the value of
λ from 0 to 1, the precedence of that p-ROFN, which has the larger membership degree
μ

p∗p-ROFN , reduces, and further, the precedence of that p-ROFN, which has the smaller non-
membership degree ν

p∗p-ROFN (or has the larger degree (1 − ν
p∗p-ROFN)), enlarges. This is

exactly what we observe from Tables 2, 4, and 6. For instance, if we consider the p-ROFNs
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Table 1
The ranking results of the existing score functions.

p-ROFN p ScY (Yager, 2017) Ranking ScW (Wei et al., 2018) Ranking

A := Ap-ROFN
= (

√
0.22, 0.7)

p = 1 ScY (A) = −0.2310 ScW (A) = 0.3845

B := Bp-ROFN
= (0.3, 0.6)

ScY (B) = −0.3000 A > B ScW (B) = 0.3500 A > B

p = 2 ScY (A) = −0.2700 ScW (A) = 0.3650
ScY (B) = −0.2700 A = B ScW (B) = 0.3650 A = B

p = 3 ScY (A) = −0.2398 ScW (A) = 0.3801
ScY (B) = −0.1890 A < B ScW (B) = 0.4055 A < B

ScLW (Liu and Wang, 2018) Ranking ScPDG (Peng et al., 2018) Ranking

ScLW (A) = −0.2310 ScPDG(A) = −0.2212
ScLW (B) = −0.3000 A > B ScPDG(B) = −0.3074 A > B

ScLW (A) = −0.2700 (Using AccLW ) ScPDG(A) = −0.2895
ScLW (B) = −0.2700 A > B ScPDG(B) = −0.2247 A < B

ScLW (B) = −0.2398 ScPDG(A) = −0.2729
ScLW (B) = −0.1890 A < B ScPDG(B) = −0.3069 A > B

in Tables 1 and 2 in the form of A := Ap-ROFN = (
√

0.22, 0.7) and B := Bp-ROFN =
(0.3, 0.6), we clearly see that μ

p
Ap-ROFN

> μ
p
Bp-ROFN

and (1 − ν
p
Ap-ROFN

) < (1 − ν
p
Bp-ROFN

).
Therefore, we expect that by increasing the value of λ from 0 to 1, the precedence of
Ap-ROFN decreases, and moreover, the precedence of Bp-ROFN increases. Indeed, this is
what we see in Table 2. The other results in Tables 3–6 are consistent with the above-
mentioned fact.

The findings from Tables 1–6 are summarized below:

• The first collection of p-ROFNs demonstrates that Ap-ROFN = (
√

0.22, 0.7) is not a
p(= 1)-ROFN (because

√
0.22+0.7 �� 1 which means that Ap-ROFN = (

√
0.22, 0.7) is

not an IFN), and clearly, no score function should return value in this case. This is while,
all the existing score-based comparison techniques of ScY (Yager, 2017), ScW (Wei et
al., 2018), ScLW (Liu and Wang, 2018) and ScPDG (Peng et al., 2018) return some values
which are not obviously reasonable. Actually, such a case verifies the superiority of the
proposed score function over the existing ones, and the proposed score function can
effectively solve the deficiencies of all the above-mentioned score-based comparison
techniques.

• In spite of the existing score-based comparison techniques ScY (Yager, 2017), ScW

(Wei et al., 2018), ScLW (Liu and Wang, 2018) and ScPDG (Peng et al., 2018), the
proposed score function ScF enables the decision maker to achieve greater insight and
perform fine tuning of the selection process by choosing an appropriate value for the
attitudinal character λ ∈ [0, 1].

In summary, the proposed score function ScF is more reliable and preferable than the
other existing score functions where they are unable to discriminate reasonably between
the pairs of p-ROFNs in some situations.
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Table 2
The ranking results of the proposed score function ScF corresponding to the values of λ from 0 to 1.

p-ROFN p λ ScF Ranking

A := Ap-ROFN
= (

√
0.22, 0.7)

p = 1 λ = 0 ScF (A) = ∗

B := Bp-ROFN
= (0.3, 0.6)

ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.2200
ScF (B) = 0.0900 A > B

p = 3 ScF (A) = 0.1032
ScF (B) = 0.0270 A > B

p = 1 λ = 0.1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.2490
ScF (B) = 0.1450 A > B

p = 3 ScF (A) = 0.1586
ScF (B) = 0.1027 A > B

p = 1 λ = 0.2 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.2780
ScF (B) = 0.2000 A > B

p = 3 ScF (A) = 0.2140
ScF (B) = 0.1784 A > B

p = 1 λ = 0.3 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3070
ScF (B) = 0.2550 A > B

p = 3 ScF (A) = 0.2693
ScF (B) = 0.2541 A > B

p = 1 λ = 0.4 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3360
ScF (B) = 0.3100 A > B

p = 3 ScF (A) = 0.3247
ScF (B) = 0.3298 A < B

p = 1 λ = 0.5 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3651
ScF (B) = 0.3650 A > B

p = 3 ScF (A) = 0.3801
ScF (B) = 0.4055 A < B

p = 1 λ = 0.6 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3940
ScF (B) = 0.4200 A < B

p = 3 ScF (A) = 0.4355
ScF (B) = 0.4812 A < B

p = 1 λ = 0.7 ScF (A) = ∗
ScF (B) = ∗ ∗

(continued on next page)
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Table 2
(continued)

p-ROFN p λ ScF Ranking

p = 2 ScF (A) = 0.4230
ScF (B) = 0.4750 A < B

p = 3 ScF (A) = 0.4909
ScF (B) = 0.5569 A < B

p = 1 λ = 0.8 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4520
ScF (B) = 0.5300 A < B

p = 3 ScF (A) = 0.5462
ScF (B) = 0.6326 A < B

p = 1 λ = 0.9 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4810
ScF (B) = 0.5850 A < B

p = 3 ScF (A) = 0.6016
ScF (B) = 0.7083 A < B

p = 1 λ = 1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.5100
ScF (B) = 0.6400 A < B

p = 3 ScF (A) = 0.6570
ScF (B) = 0.7840 A < B

Table 3
The ranking results of the existing score functions.

p-ROFN p ScY (Yager, 2017) Ranking ScW (Wei et al., 2018) Ranking

A := Ap-ROFN
= (0.6, 0.3)

p = 1 ScY (A) = 0.3000 ScW (A) = 0.6500

B := Bp-ROFN
= (0.5, 0.2)

ScY (B) = 0.3000 A = B ScW (B) = 0.6500 (Using AccLW )

A = B

p = 2 ScY (A) = 0.2700 ScW (A) = 0.6350
ScY (B) = 0.2100 A > B ScW (B) = 0.6050 A > B

p = 3 ScY (A) = 0.1890 ScW (A) = 0.5945
ScY (B) = 0.1170 A > B ScW (B) = 0.5585 A > B

ScLW (Liu and Wang, 2018) Ranking ScPDG (Peng et al., 2018) Ranking

ScLW (A) = 0.3000 ScPDG(A) = 0.3074
ScLW (B) = 0.3000 A > B ScPDG(B) = 0.3233 A < B

ScLW (A) = 0.2700 (Using AccLW ) ScPDG(A) = 0.3069
ScLW (B) = 0.2100 A > B ScPDG(B) = 0.2471 A > B

ScLW (B) = 0.1890 ScPDG(A) = 0.2247
ScLW (B) = 0.1170 A > B ScPDG(B) = 0.1423 A > B
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Table 4
The ranking results of the proposed score function ScF corresponding to the values of λ from 0 to 1.

p-ROFN p λ ScF Ranking

A := Ap-ROFN
= (0.6, 0.3)

p = 1 λ = 0 ScF (A) = ∗

B := Bp-ROFN
= (0.5, 0.2)

ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3600
ScF (B) = 0.2500 A > B

p = 3 ScF (A) = 0.2160
ScF (B) = 0.1250 A > B

p = 1 λ = 0.1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4150
ScF (B) = 0.3210 A > B

p = 3 ScF (A) = 0.2917
ScF (B) = 0.2117 A > B

p = 1 λ = 0.2 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4700
ScF (B) = 0.3920 A > B

p = 3 ScF (A) = 0.3674
ScF (B) = 0.2984 A > B

p = 1 λ = 0.3 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.5250
ScF (B) = 0.4630 A > B

p = 3 ScF (A) = 0.4431
ScF (B) = 0.3851 A > B

p = 1 λ = 0.4 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.5800
ScF (B) = 0.5340 A > B

p = 3 ScF (A) = 0.5188
ScF (B) = 0.4718 A > B

p = 1 λ = 0.5 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.6350
ScF (B) = 0.6050 A > B

p = 3 ScF (A) = 0.5945
ScF (B) = 0.5585 A > B

p = 1 λ = 0.6 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.6900
ScF (B) = 0.6760 A > B

p = 3 ScF (A) = 0.6702
ScF (B) = 0.6452 A > B

p = 1 λ = 0.7 ScF (A) = ∗
ScF (B) = ∗ ∗

(continued on next page)
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Table 4
(continued)

p-ROFN p λ ScF Ranking

p = 2 ScF (A) = 0.7450
ScF (B) = 0.7470 A < B

p = 3 ScF (A) = 0.7459
ScF (B) = 0.7319 A > B

p = 1 λ = 0.8 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.8000
ScF (B) = 0.8180 A < B

p = 3 ScF (A) = 0.8216
ScF (B) = 0.8186 A > B

p = 1 λ = 0.9 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.8550
ScF (B) = 0.8890 A < B

p = 3 ScF (A) = 0.8973
ScF (B) = 0.9053 A > B

p = 1 λ = 1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.9100
ScF (B) = 0.9600 A < B

p = 3 ScF (A) = 0.9730
ScF (B) = 0.9920 A < B

Table 5
The ranking results of the existing score functions.

p-ROFN p ScY (Yager, 2017) Ranking ScW (Wei et al., 2018) Ranking

A := Ap-ROFN
= (0.4, 0.1)

p = 1 ScY (A) = 0.3000 ScW (A) = 0.6500

B := Bp-ROFN
= (

√
0.1501, 0.01)

ScY (A) = 0.3774 A < B ScW (A) = 0.6887 A < B

p = 2 ScY (A) = 0.1500 ScW (A) = 0.5750
ScY (B) = 0.1500 A = B ScW (B) = 0.5750 A = B

p = 3 ScY (A) = 0.0630 ScW (A) = 0.5315
ScY (B) = 0.0582 A > B ScW (B) = 0.5291 A > B

ScLW (Liu and Wang, 2018) Ranking ScPDG (Peng et al., 2018) Ranking

ScLW (A) = 0.3000 ScPDG(A) = 0.3372
ScLW (B) = 0.3774 A < B ScPDG(B) = 0.4336 A < B

ScLW (A) = 0.1500 (Using AccLW ) ScPDG(A) = 0.1811
ScLW (B) = 0.1500 A > B ScPDG(B) = 0.1818 A < B

ScLW (A) = 0.0630 (Using AccLW ) ScPDG(A) = 0.0777
ScLW (B) = 0.0582 A > B ScPDG(B) = 0.0718 A > B
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Table 6
The ranking results of the proposed score function ScF corresponding to the values of λ from 0 to 1.

p-ROFN p λ ScF Ranking

A := Ap-ROFN
= (0.4, 0.1)

p = 1 λ = 0 ScF (A) = ∗

B := Bp-ROFN
= (

√
0.1501, 0.01)

ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.1600
ScF (B) = 0.1501 A > B

p = 3 ScF (A) = 0.0640
ScF (B) = 0.0582 A > B

p = 1 λ = 0.1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.2430
ScF (B) = 0.2351 A > B

p = 3 ScF (A) = 0.1575
ScF (B) = 0.1523 A > B

p = 1 λ = 0.2 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.3260
ScF (B) = 0.3201 A > B

p = 3 ScF (A) = 0.2510
ScF (B) = 0.2465 A > B

p = 1 λ = 0.3 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4090
ScF (B) = 0.4050 A > B

p = 3 ScF (A) = 0.3445
ScF (B) = 0.3407 A > B

p = 1 λ = 0.4 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.4920
ScF (B) = 0.4900 A > B

p = 3 ScF (A) = 0.4380
ScF (B) = 0.4349 A < B

p = 1 λ = 0.5 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.5751
ScF (B) = 0.5750 A > B

p = 3 ScF (A) = 0.5315
ScF (B) = 0.5291 A > B

p = 1 λ = 0.6 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.6580
ScF (B) = 0.6600 A < B

p = 3 ScF (A) = 0.6250
ScF (B) = 0.6233 A > B

p = 1 λ = 0.7 ScF (A) = ∗
ScF (B) = ∗ ∗

(continued on next page)
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Table 6
(continued)

p-ROFN p λ ScF Ranking

p = 2 ScF (A) = 0.7410
ScF (B) = 0.7450 A < B

p = 3 ScF (A) = 0.7185
ScF (B) = 0.7174 A > B

p = 1 λ = 0.8 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.8240
ScF (B) = 0.8299 A < B

p = 3 ScF (A) = 0.8120
ScF (B) = 0.8116 A > B

p = 1 λ = 0.9 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.9070
ScF (B) = 0.9149 A < B

p = 3 ScF (A) = 0.9055
ScF (B) = 0.9058 A < B

p = 1 λ = 1 ScF (A) = ∗
ScF (B) = ∗ ∗

p = 2 ScF (A) = 0.9900
ScF (B) = 0.9999 A < B

p = 3 ScF (A) = 0.9990
ScF (B) = 1.0000 A < B

4. MCDM Method Based on the Score Function of p-ROFNs

Multiple criteria decision making (MCDM) is an active research area, and there exist
a large number of researches (Farhadinia, 2014, 2016a, 2016b; Farhadinia and Herrera-
Viedma, 2018; Farhadinia and Xu, 2017) in which the decision maker is going to provide
a list of alternatives ranking in accordance with a given set of criteria.

In this part of the manuscript, we are facing a MCDM problem in which decision
making is made by the use of a ranking procedure of p-ROFNs.
Suppose that X = {x1, x2, . . . , xm} describes a set of alternatives, and the set of criteria is
in the form of C = {c1, c2, . . . , cn}. Furthermore, we denote the associated weight vector
of criteria by w = (w1, w2, . . . , wn) such that 0 � wj � 1 (j = 1, 2, . . . , n) with the
property

∑n
j=1 wj = 1. Assume that a decision maker group is organized to evaluate the

characteristics of each alternative with respect to each criterion with the help of p-ROFN
concept. In this regard, the p-rung orthopair fuzzy decision matrix will be

D = [
D

(ij)

p-ROFN
]
m×n

= [
(μ

D
(ij)
p-ROFN

, ν
D

(ij)
p-ROFN

)
]
m×n

, (22)

where 0 � μ
p

D
(ij)
p-ROFN

+ ν
p

D
(ij)
p-ROFN

� 1 for any p ∈ [1,∞).

Now, with the help of Vlsekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) technique (Liou et al., 2011) and Technique for Order of Preference by Sim-
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ilarity to the Ideal Solution (TOPSIS) (Lai et al., 1994) together with implementing the
innovative score function of p-ROFNs, we will be able to describe a MCDM algorithm as
the following:

Step 1. Determine the best and the worst values with respect to all criteria which are
denoted respectively by the p-ROFNs f +

j and f −
j :

(For the benefit criteria)

f +
j =

(
max

1�i�m
{μ

D
(ij)
p-ROFN

}, min
1�i�m

{ν
D

(ij)
p-ROFN

}
)
, (23)

f −
j =

(
min

1�i�m
{μ

D
(ij)
p-ROFN

}, max
1�i�m

{ν
D

(ij)
p-ROFN

}
)
. (24)

(For the cost criteria)

f +
j =

(
min

1�i�m
{μ

D
(ij)
p-ROFN

}, max
1�i�m

{ν
D

(ij)
p-ROFN

}
)
, (25)

f −
j =

(
max

1�i�m
{μ

D
(ij)
p-ROFN

}, min
1�i�m

{ν
D

(ij)
p-ROFN

}
)
. (26)

Step 2. Construct the score matrix SD = [Sc(D
(ij)

p-ROFN)]m×n, and define the n-array vec-
tors:

S+
D =

[
max

1�i�m

{
Sc

(
D

(ij)

p-ROFN
)}]n

j=1
, (27)

S−
D =

[
min

1�i�m

{
Sc

(
D

(ij)

p-ROFN
)}]n

j=1
. (28)

Step 3. Construct the following normalized nearest-best and farthest-worst solution ma-
trices:

Snear
D := [

Snear
D (ij)

]
m×n

=
[

MIN

(
S+

D(j) − Sc(D
(ij)

p-ROFN)

S+
D(j) − S−

D(j)

)]
m×n

, (29)

S
far
D := [

S
far
D (ij)

]
m×n

=
[

MIN

(
Sc(D

(ij)

p-ROFN) − S−
D(j)

S+
D(j) − S−

D(j)

)]
m×n

, (30)

where Snear
D (ij), S

far
D (ij) ∈ [0, 1], and moreover, MIN(x) = min{x, 1

x
}.

Step 4. Keeping the above normalized nearest-best and farthest-worst solution matrices
together with the weighting vector w = (w1, w2, . . . , wn) in mind, we are able
to calculate the group utility and the individual regret for each alternative xi (i =
1, 2, . . . , m) in both best and worst cases:
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(Best case)

Sbest
i :=

n∑
j=1

wj × Snear
D (ij), (31)

Rbest
i := max

1�j�n

{
wj × Snear

D (ij)
}
. (32)

(Worst case)

Sworst
i :=

n∑
j=1

wj × S
far
D (ij), (33)

Rworst
i := min

1�j�n

{
wj × S

far
D (ij)

}
. (34)

Step 5. Construct the normalized nearest-best group utility and nearest-best individual
regret values, respectively, of alternative xi (i = 1, 2, . . . , m):

Si = MIN

(
Sbest

i − Sbest

S
best − Sbest

)
, (35)

Ri = MIN

(
Rbest

i − Rbest

R
best − Rbest

)
, (36)

where

S
best := max

1�i�m

{
Sbest

i

}
,

Sbest := min
1�i�m

{
Sbest

i

}
,

R
best := max

1�i�m

{
Rbest

i

}
,

Rbest := min
1�i�m

{
Rbest

i

}
,

and construct the normalized farthest-worst group utility and farthest-worst individ-
ual regret values, respectively, of alternative xi (i = 1, 2, . . . , m):

S
i
= MIN

(
Sworst

i − Sworst

S
worst − Sworst

)
, (37)

R
i
= MIN

(
Rworst

i − Rworst

R
worst − Rworst

)
, (38)
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where

S
worst := max

1�i�m

{
Sworst

i

}
,

Sworst := min
1�i�m

{
Sworst

i

}
,

R
worst := max

1�i�m

{
Rworst

i

}
,

Rworst := min
1�i�m

{
Rworst

i

}
,

in which MIN(x) = min{x, 1
x
}.

Step 6. Construct the nearest-best and farthest-worst score values of alternative xi (i =
1, 2, . . . , m), respectively, as follows:

Ci = αSi + (1 − α)Ri, (39)
C

i
= αS

i
+ (1 − α)R

i
, (40)

where Ci, C
i
∈ [0, 1] for any 1 � i � m, and α indicates the strategy of maximum

group utility while (1−α) indicates the strategy of minimum individual regret. Here,
we suppose that α = 0.5.

Step 7. Compute the relative closeness degree of each alternative xi (i = 1, 2, . . . , m) in
the form of

CCi =
C

i

Ci + C
i

, (41)

where the smaller value of the relative closeness degree indicates the better prefer-
ence order of alternative xi .

Before going more into detail, we summarize again the superiorities of the above-
mentioned MCDM algorithm compared to the existing approaches being based indepen-
dently on VIKOR or TOPSIS techniques:

* The proposed MCDM algorithm implements the innovative score function ScF of
p-ROFNs whose results are more reasonable than that of existing ones;

* By employing the new transformation function MIN, we are able to prevent violence
of division by zero which occurs in the traditional version of VIKOR techniques;

* The proposed MCDM algorithm ranks the alternatives based on the combination of
VIKOR and TOPSIS outputs.

Example 1 (Adopted from Chen et al., 2016). We are going to investigate here a MCDM
problem that deals with the supplier selection in supply chain management with p-ROFN
information, in which five alternatives of suppliers xi (i = 1, 2, . . . , 5) are assessed by
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the use of four benefit criteria c1: Quality, c2: Service, c3: Delivery and c4: Price. Suppose
that the weight vector of criteria is w = (w1 = 0.25, w2 = 0.40, w3 = 20, w4 = 0.15).

We assume that the decision values are described by p-ROFNs in the form of the de-
cision matrix:

D = [
D

(ij)

p-ROFN
]

5×4 = [
(μ

D
(ij)
p-ROFN

, ν
D

(ij)
p-ROFN

)
]

5×4

=

∣∣∣∣∣∣∣∣∣∣

〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.2, 0.5〉 〈0.1, 0.6〉
〈0.8, 0.3〉 〈0.8, 0.1〉 〈0.6, 0.1〉 〈0.3, 0.4〉
〈0.6, 0.3〉 〈0.4, 0.3〉 〈0.4, 0.2〉 〈0.5, 0.2〉
〈0.9, 0.2〉 〈0.5, 0.2〉 〈0.2, 0.3〉 〈0.1, 0.5〉
〈0.7, 0.1〉 〈0.3, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.2〉

∣∣∣∣∣∣∣∣∣∣
.

Needless to say that the above decision matrix is not in the form of an intuitionistic fuzzy
matrix as considered in Chen et al. (2016) because the entries (μ

D
(21)
p-ROFN

, ν
D

(21)
p-ROFN

) and
(μ

D
(41)
p-ROFN

, ν
D

(41)
p-ROFN

) are not IFNs.

Step 1. We determine the best and the worst values in correspondence with all benefit
criteria as the following:

{
f +

1 , f +
2 , f +

3 , f +
4

} = {
(0.9, 0.1), (0.8, 0.1), (0.6, 0.1), (0.5, 0.2)

}
,{

f −
1 , f −

2 , f −
3 , f −

4

} = {
(0.6, 0.3), (0.3, 0.3), (0.2, 0.5), (0.1, 0.6)

}
.

Step 2. By keeping the score functions ScYLW , ScPDG and ScF given respectively by (10),
(12) and (14) into account, we are able to construct the score matrices

SD-YLW = [
ScYLW

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.2700 0.2100 −0.2100 −0.3500
0.5500 0.6300 0.3500 −0.0700
0.2700 0.0700 0.1200 0.2100
0.7700 0.2100 −0.0500 −0.2400
0.4800 0.0500 0.3200 0.1200

∣∣∣∣∣∣∣∣∣∣

for p = 2;

SD-YLW = [
ScYLW

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.1890 0.1170 −0.1170 −0.2150
0.4850 0.5110 0.2150 −0.0370
0.1890 0.0370 0.0560 0.1170
0.7210 0.1170 −0.0190 −0.1240
0.3420 0.0190 0.2080 0.0560

∣∣∣∣∣∣∣∣∣∣

for p = 3;
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SD-PDG = [
ScPDG

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.5819 0.6021 0.1079 −0.0896
0.7212 0.8584 0.7196 0.2919
0.5819 0.4581 0.5440 0.6021
0.8725 0.6021 0.3741 0.0858
0.7889 0.4959 0.6676 0.5440

∣∣∣∣∣∣∣∣∣∣

for p = 2;

SD-PDG = [
ScPDG

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.6032 0.5758 0.2912 0.1346
0.7703 0.8154 0.6484 0.4091
0.6032 0.4999 0.5330 0.5758
0.8980 0.5758 0.4589 0.2859
0.7255 0.5061 0.6362 0.5330

∣∣∣∣∣∣∣∣∣∣

for p = 3;

SD−F = [
ScF

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.6350 0.6050 0.3950 0.3250
0.7750 0.8150 0.6750 0.4650
0.6350 0.5350 0.5600 0.6050
0.8850 0.6050 0.4750 0.3800
0.7400 0.5250 0.6600 0.5600

∣∣∣∣∣∣∣∣∣∣

for p = 2 (λ = 0.5);

SD−F = [
ScF

(
D

(ij)

p-ROFN
)]

5×4 =

∣∣∣∣∣∣∣∣∣∣

0.5945 0.5585 0.4415 0.3925
0.7425 0.7555 0.6075 0.4815
0.5945 0.5185 0.5280 0.5585
0.8605 0.5585 0.4905 0.4380
0.6710 0.5095 0.6040 0.5280

∣∣∣∣∣∣∣∣∣∣

for p = 3 (λ = 0.5).
In order to save more space for convenient storage, we do not state here the calculation

of SD−F = [ScF (D
(ij)

p-ROFN)]5×4 for λ = 0, 1 (as samples of values λ ∈ [0, 1]), and only
the corresponding results will be reported in Step 5.

By the way, we obtain here:
(For p = 2)

S+
D-YLW =

[
max

1�i�5

{
ScYLW

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.7700, 0.6300, 0.3500, 0.2100];

S−
D-YLW =

[
min

1�i�5

{
ScYLW

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.2700, 0.0500,−0.2100,−0.3500];
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(For p = 3)

S+
D-YLW =

[
max

1�i�5

{
ScYLW

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.7210, 0.5110, 0.2150, 0.1170];

S−
D-YLW =

[
min

1�i�5

{
ScYLW

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.1890, 0.0190,−0.1170,−0.2150];

(For p = 2)

S+
D-PDG =

[
max

1�i�5

{
ScPDG

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.8725, 0.8584, 0.7196, 0.6021];

S−
D-PDG =

[
min

1�i�5

{
ScPDG

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.5819, 0.4581, 0.1079,−0.0896];

(For p = 3)

S+
D-PDG =

[
max

1�i�5

{
ScPDG

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.8980, 0.8154, 0.6484, 0.5758];

S−
D-PDG =

[
min

1�i�5

{
ScPDG

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.6032, 0.4999, 0.2912, 0.1346];

(For p = 2 (λ = 0.5))

S+
D−F =

[
max

1�i�5

{
ScF

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.8850, 0.8150, 0.6750, 0.6050];

S−
D−F =

[
min

1�i�5

{
ScF

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.6350, 0.5250, 0.3950, 0.3250];

(For p = 3 (λ = 0.5))

S+
D−F =

[
max

1�i�5

{
ScF

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.8605, 0.7555, 0.6075, 0.5585];

S−
D−F =

[
min

1�i�5

{
ScF

(
D

(ij)

p-ROFN
)}]4

j=1
= [0.5945, 0.5095, 0.4415, 0.3925].

Hereafter, we do not give the details of computation of p-ROFNs for p = 3, and only
the corresponding results for p = 2 are returned.

Step 3. We construct the normalized nearest-best and farthest-worst solution matrices as
follows:

Snear
D-YLW := [

Snear
D-YLW (ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

1.0000 0.7241 1.0000 1.0000
0.4400 0 0 0.5000
1.0000 0.9655 0.4107 0

0 0.7241 0.7143 0.8036
0.5800 1.0000 0.0536 0.1607

∣∣∣∣∣∣∣∣∣∣
,

for p = 2,
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Snear
D-PDG := [

Snear
D-PDG(ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

1.0000 0.6402 1.0000 1.0000
0.5206 0 0 0.4485
1.0000 1.0000 0.2871 0

0 0.6402 0.5647 0.7465
0.2878 0.9057 0.0850 0.0841

∣∣∣∣∣∣∣∣∣∣
,

for p = 2,

Snear
D−F := [

Snear
D−F (ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

1.0000 0.7241 1.0000 1.0000
0.4400 0 0 0.5000
1.0000 0.9655 0.4107 0

0 0.7241 0.7143 0.8036
0.5800 1.0000 0.0536 0.1607

∣∣∣∣∣∣∣∣∣∣
,

for p = 2 (λ = 0.5), and

S
far
D-YLW := [

S
far
D-YLW (ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

0 0.2759 0 0
0.5600 1.0000 1.0000 0.5000

0 0.0345 0.5893 1.0000
1.0000 0.2759 0.2857 0.1964
0.4200 0 0.9464 0.8393

∣∣∣∣∣∣∣∣∣∣
,

for p = 2,

S
far
D-PDG := [

S
far
D-PDG(ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

0 0.3598 0 0
0.4794 1.0000 1.0000 0.5515

0 0 0.7129 1.0000
1.0000 0.3598 0.4353 0.2535
0.7122 0.0943 0.9150 0.9159

∣∣∣∣∣∣∣∣∣∣
,

for p = 2,

S
far
D−F := [

S
far
D−F (ij)

]
5×4 =

∣∣∣∣∣∣∣∣∣∣

0 0.2759 0 0
0.5600 1.0000 1.0000 0.5000

0 0.0345 0.5893 1.0000
1.0000 0.2759 0.2857 0.1964
0.4200 0 0.9464 0.8393

∣∣∣∣∣∣∣∣∣∣
,

for p = 2 (λ = 0.5).

Step 4. If we keep the above normalized nearest-best and farthest-worst solution matrices
together with the weighting vector w = (w1 = 0.25, w2 = 0.40, w3 = 20, w4 = 0.15)

in mind, then we will be able to calculate the group utility and the individual regret for
each alternative xi in both best and worst cases:
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(Best case: for p = 2)

Sbest
i :=

4∑
j=1

wj × Snear
D-YLW (ij) = [0.8897, 0.1850, 0.7183, 0.5530, 0.5798]T ,

Rbest
i := max

1�j�4

{
wj × Snear

D-YLW (ij)
} = [0.2897, 0.1100, 0.3862, 0.2897, 0.4000]T ,

Sbest
i :=

n∑
j=1

wj × Snear
D-PDG(ij) = [0.8561, 0.1974, 0.7074, 0.4810, 0.4638]T ,

Rbest
i := max

1�j�n

{
wj × Snear

D-PDG(ij)
} = [0.2561, 0.1302, 0.4000, 0.2561, 0.3623]T ,

Sbest
i :=

n∑
j=1

wj × Snear
D−F (ij) = [0.8897, 0.1850, 0.7183, 0.5530, 0.5798]T ,

(λ = 0.5)

Rbest
i := max

1�j�n

{
wj × Snear

D−F (ij)
} = [0.2897, 0.1100, 0.3862, 0.2897, 0.4000]T ,

(λ = 0.5).

(Worst case: for p = 2)
In this case, we omit the calculations of Sworst

i and Rworst
i because they are similar to

those given above.

Step 5. We construct the normalized nearest-best group utility and nearest-best individual
regret values, respectively, of alternative xi as the following: (for p = 2)

Si(YLW) = [1.0000, 0, 0.7569, 0.5223, 0.5603]T ,

Ri(YLW) = [0.6195, 0, 0.9524, 0.6195, 1.0000]T ,

Si(PDG) = [1.0000, 0, 0.7743, 0.4305, 0.4045]T ,

Ri(PDG) = [0.4666, 0, 1.0000, 0.4666, 0.8602]T ,

Si(F ) = [1.0000, 0, 0.7569, 0.5223, 0.5603]T , (λ = 0.5),

Ri(F ) = [0.6195, 0, 0.9524, 0.6195, 1.0000]T , (λ = 0.5).

The calculations of the normalized farthest-worst group utility values S
i

and farthest-
worst individual regret values R

i
are omitted due to lack of space.

On the basis of Step 6 and Step 7, we can determine the relative closeness degree of
each alternative xi for both cases p = 2, 3:
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Table 7
Rankings of alternatives for different score-based MCDM techniques under p-ROFN environment.

Score function p The final ranking

ScYLW (given by Yager, 2017; Wei et al., 2018; Liu and
Wang, 2018)

p = 2 x2 > x4 > x5 > x3 > x1
p = 3 x2 > x4 > x5 > x3 > x1

ScPDG (given by Peng et al.’s, 2018) p = 2 x2 > x4 > x5 > x3 > x1
p = 3 x2 > x4 > x5 > x3 > x1

Proposed ScF for λ = 0 p = 2 x2 > x4 > x5 > x3 > x1
p = 3 x2 > x4 > x5 > x3 > x1

Proposed ScF for λ = 0.5 p = 2 x2 > x4 > x5 > x3 > x1
p = 3 x2 > x4 > x5 > x3 > x1

Proposed ScF for λ = 1 p = 2 x2 > x5 > x3 > x4 > x1
p = 3 x2 > x5 > x3 > x4 > x1

(For p = 2)

CCYLW = [1.0000, 0, 0.8755, 0.5674, 0.7802],
CCPDG = [1.0000, 0, 0.8871, 0.4657, 0.5460],
CCF = [1.0000, 0, 0.8735, 0.7750, 0.8189], (λ = 0),

CCF = [1.0000, 0, 0.8755, 0.5674, 0.7802], (λ = 0.5),

CCF = [1.0000, 0, 0.9155, 0.9731, 0.1313], (λ = 1),

(For p = 3)

CCYLW = [1.0000, 0, 0.8688, 0.5596, 0.7902],
CCPDG = [1.0000, 0, 0.8720, 0.5109, 0.7329],
CCF = [1.0000, 0, 0.8832, 0.7900, 0.8149], (λ = 0),

CCF = [1.0000, 0, 0.8688, 0.5596, 0.7902], (λ = 0.5),

CCF = [1.0000, 0, 0.9444, 0.9601, 0.1027], (λ = 1),

where the smaller value of the relative closeness degree indicates the better preference
order of alternative xi . In this regard, the preference orders of the alternatives are given in
Table 7.

From Table 7, we can observe that the results of ranking orders for suppliers based on
the existing score functions of Yager (2017), Wei et al. (2018), Liu and Wang (2018), and
Peng et al. (2018) compared to the proposed score function ScF remain unchanged for the
values λ = 0, 0.5, and more or less different for λ = 1. However, a decision maker may
select the diverse values of parameter λ in accordance with his/her diverse preferences
and attitudes in real and actual decision making cases. Therefore, the application range of
proposed non-algorithmic ranking technique of p-ROFNs is wider than the existing ones,
and it can flexibly handle more general decision information compared to the algorith-
mic ranking techniques. Moreover, by taking the new transformation function MIN into



Score-Based Multiple Criteria Decision Making Process 737

account, we can prevent violence of division by zero which may occur in the traditional
version of VIKOR techniques. These superiorities of the proposed score-based MCDM
algorithm compared to the existing approaches indicate that it is more suitable for the
actual situations.

5. Conclusions and Further Research Perspectives

The purpose of this paper was to present an innovative and non-algorithmic ranking score
function for p-ROFSs. The comparison of innovative score function for p-ROFSs with the
existing non-algorithmic ranking ones showed some inherent advantages of the former
one over the latter ones. Eventually, the performance of innovative score function for p-
ROFSs compared to that of other score functions was demonstrated in a MCDM problem.
Although, it usually seems that an algorithmic ranking technique should be more reli-
able than the proposed non-algorithmic ranking technique, but the existing algorithmic
technique of Liu and Wang (2018) does not work logically for the present problem.

By the way, there exist a lot of fruitful research perspectives that can be productively
pursued through the application of p-ROFS concept in conjunction with decision making
situations. Indeed, the future works can be further extended by applying the proposed
MCDM technique to the other fields which may be classified as

• The scholars which may be considered for defining a class of reasonable comparative
techniques, not only based on the score and the accuracy functions, but also based on
more comparable rules of p-ROFSs;

• The contributions which are based on the integration theory of p-ROFSs, specifically,
those that are focusing on the aggregation operators of p-ROFSs;

• The studies which deal with the information measures for p-ROFSs such as distance,
similarity and entropy measures, and those studies that suggest a variety of systematic
transformations of information measures;

• Those working on the preference relations of p-ROFSs, and subsequently on the group
consensus measures which are mainly divided into iterative and interactive categories;

• The scholars which propose fruitful classes of decision making techniques under p-rung
orthopair fuzzy environment.
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