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Abstract. Control laws' design strategies in order to stabilize integro-diffe­
rential systems with delays are developed by using an extended system and the 

delay measure. 
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1. Introduction and problem statement. Mathematical models with 
time-delay constitute a natural way to represent a wide class of physical 
systems such as transportation problems, popUlation growth laws and eco­
nomic systems. The presence of time-delay in dynamical discrete linear 
equations can be overcome, when necessary, by using extended systems 
(Franklin and Powell, 1981). The stabilizability conditions for systems 
with general delays in state were extended by Pandolfi (1975) and also 
by Bhat and Koivo (1976). In a work due to Olbrot (1978) open-loop 

stabilizability problems for systems with control and state delays were 
defined. A characterization of trajectory-stabilizable systems, and of the 

relations between state- and trajectory-stabilizability were given Tadmor 
(1988); trajectory stabilizability is an appropriate notion in the presence of 

delays. Conditions for the delay-independent stabilization of linear sys­

tems were given by Amemiya et al. (1986), being the upper bound or the 
lower bound of the decay rates assignable, and Akazawa et al. (1987), by 

using in the proof matrices with some of their elements being arbitrary. 
In addition, Fiagbedzi and Pearson (1986, 1990) introduced techniques 
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for the feedback and output feedback stabilization of delay systems by 

using a generalization of the transformation method. Furthermore, Mori 
et al. (1983) developed a way to stabilize linear systems with delayed 
state. 

The stability of a linear delay-differential system with a point delay in 
. its state has been studied in different works (Mori et al., 1982; Hmamed, 

1985, 1986 a-b; Mori, 1986; Bourles, 1987; Mori and Kokame, 1989). 

In this note, several criteria in order to design stabilizing control laws 
for integro-differential systems with a distributed delay in their state are 
introduced by using the delay measure and an associated extended system 
under the form of a linear-differential system with a point delay in its state. 

In particular, the problem of stability for a scalar differential system 
with two point delays in its state has been considered by several authors 
(see, for instance, Juri and Mansour, 1982). However, the exact delay­
dependent algebraic stability conditions of such a system were not known 
until a recent result (Schoen and Geering, 1993), which was obtained by 
using an instability criterion together with the D-decomposition method. 

The paper is organized as follows: Section 2 introduces the con­
cepts of matrix measure and delay measure, and points out some stability 
results that will be used in the sequel. Section 3 introduces the main sta­
bilizability results by using the delay measure notation and the associated 
extended system. Section 4 presents a result for stability of systems with 
two point delays. Section 5 points out the main stabilizability results for 
an integro-differential system with two distributed delays in its state. Sec­
tion 6 rewrites some stability results under the presence of two state-point 
delays by using the delay measure. Finally, conclusions end the paper. 

2. Matrix measure, delay measure and stability results. Matrix 
measure has been widely used in the literature when dealing with stability 

of delay-differential systems (see for instance Mori et al., 1982). The 

matrix measure /-L for matrix X is defined as follows: 

(X) = l' iiI + eX11 - 1 /-L - 1m . 
e---O e 

(1) 

The matrix measure defined in Eq. 1 can be subdefined in different 
ways according to the norm utilized in its definition. For example, if one, 
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considers I-norms, the matrix measure can be computed as follows: 

Consider the following class of linear delay-differential systems with 
two point delays in the state and in the control variables: 

x(t) = Ax(t) + Aox(t - h)+Bu(t) + Bou(t - q), 
h,q E R+, (3) 

where A, Ao, B, Bo EWe Rnxn, being W the set of n-matrices 

Q such that IIQII < 00. 

DEFINITION 2.1 (Alastruey and Gonzalez de Mendivil, 1993) the 
delay measure for system (3) is defined as follows: 

e(h ) = IIAolih + II Bollq 
, ,q - JL(A) + JL(B) . (4) 

REMARK 2.1. If there is no delay (i.e., h, q = 0, or Ao and Bo are 
null matrices), then the delay measure is zero. On the other hand, if the 
point delays hand q verify 0 < h < 00, 0 < q < 00, and there is not a 
delay-free term (i.e., A, B are matrices of zeros) then the delay measure 
is infinite. Therefore, the delay measure can be considered, intuitively, as 
a way to evaluate the effect of delay terms in a system compared with its 
delay free terms. 

Let's introduce some stability results by using delay-measure no­
tation. This representation will be useful in order to deduce the main 
stabilizability results that are to be presented in Section 3. 

Consider the free linear delay-differential system: 

x(t) = Ax(t) + Ao(t - h), with A, Ao E W, (5) 

where A, Ao EWe Rn x n, being W the set of n-matrices Q such 

that IIQII < 00. 
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Lemma 2.1 (Alastrueyand Gonzalez de Mendivil, 1993). Provided 
h ~ 1, a suflicient condition for system (5) to be stable is 

e(h) < -1. (6) 

REMARK 2.2. Observe that for system (6) the delay measure is 
reduced to 

(7) 

Alternatively, one of the simplest conditions for stability in system 
(5) is given in terms of the matrix measure as follows. 

Lemma 2.2 (Mori et a!., 1982). A suflicient condition for system 
(5) to be stable is given by 

p(A) < -IIAoll => p(A) + IIAoll < O. (8) 

The Lemmas introduced in this section will enable us to deduce the 
main stabilizability results in the sequel. 

Some properties of the delay measure are outlined. 

PROPERTY 2.1. Lower bounds for the first derivatives of the delay 
measure: 

= ae(h,q) = IIAol1 ~ IIAoll ( ) 
Ph - ah p(A) + p(B) 7 IIAII + IIBII ' 9 

= ae(h,q) _ IIBoll ~ IIBoll () 
pq - aq - p(A) + p(B) 7 IIAII + IIBII' 10 

PROPERTY 2.2. Absolute lower bound for the delay measure (sup­
posing h, q variables): 

t(h ) = II AD IIh + IIBollq ~ IIAolih + IIBoiliz 
~ ,q f.L(A) + p(B) 7 p(A) + p(B) , (11) 

with h = minh and q= minq. 
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REMARK 2.3. Observe that property 2.1 helps to estimate bounded­
ness conditions for the variations in value of the delay measure. Property 
2.2 gives absolute boundedness conditions for the delay measure, provided 
that n-matrices appearing in (7) belong to the class W. 

3. Stabilizability of integro-ditTerential systems with one distribu­

ted delay. In this section conditions for a control law to stabilize an 
integro-differential system with one distributed delay in its state will be 
discussed by using an associated extended system. Several results are to 
be introduced. 

Consider the following integro-differential system with one distribu­
ted delay in its state, and containing a control law with a point delay and 
a control law with a distributed delay. 

t 

x(t) =Ax(t) + J Aox(t' - h)dt' 

° 
+ ~ [Bllu (t) + Bllu (t - h) 2 1. 0 1 , 

+ j [B"u,(t') + B~2u2(t' - h)]dt} (12) 
o 

with x(t) = g(t) for all t < 0, where A, Ao, Bll, BJ\ B22, B52 E 
We Rnxn, Ul(t), U2(t) = 0 Vt < 0 and h E R+ 

Result3.1. Consider two control laws Ul(t),U2(t) defined by the 
delay-differential equations 

(13) 
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A sufficient condition for control laws (13) to stabilize system (12) is 
given by 

~~ «-. [ 14• +< [ D~' 
In Bll 

B;2] -1]) A 0 
0 Ell 

D22 0 E22 

[ 0 
0 Bll 

BJ2] 
0 

+ Ao 0 0 < 0, (14) 
DJl 0 Ell 

0 

D52 0 E52 

where 0 are blocks of n X n zeros. 
Proof. Consider the free part of system (12) 

t 

x(t) = Ax(t) + J Aox(t' - h)dt', (14) 
0 

with x(t) = g(t) for all t < O. By differentiating system (14) one gets 

x(t) = Ax(t) + Aox(t - h), (15) 

with x(t) = g(t) 'tit < O. Define the 2n-vector x(t) = [~~g] . From 

Eq. 14 and Eq. 15 one gets 

~(t) = [x(t)] = [Q In] [x(t)] 
X x(t) 0 A x(t) 

[ 0 0] [x(t - h)] 
+ Ao 0 x( t - h) . (16) 

By defining 

~ [0 I ] 
A= 0 A ' 2n X 2n-matrix, 

- [0 0] 
Ao = Ao 0 ' 2n X 2n-matrix, 



Carlos F. Alastruey et aL 267 

one gets finally 

i'(t) = Ax(t) + Aox(t - h). (17) 

System (17) is called "associated extended system " of the free sys­

tem (14). Firstly let-us investigate stabilizability for system (14) by using 

control laws (15). The controlled associated extended system becomes 

i'(t) = Ax(t) + Aox(t - h) + Eu(t) + Eou(t - h), (18) 

where 

E = [B;l B~2]' Eo = [BJI B~2]' u(t) = [~~~~n . 
Observe that Eq. 15 and Eq. 17 can be rewritten as one single delay­

differential equation as follows 

Define 

.- _ A B .- _ Ao Bo [ ~ ~] [~~ ] 
A = DE' Ao = Do Eo ' 

where z( t) is a 4n-vector and A, Ao are 4n X 4n matrices. Then, Eq. 19 
can be rewritten as 

i(t) = Az(t) + Aoz(t - h). (20) 

Observe that " 

[ ij 
In Bll 

B~' ] .- 0 A 0 
A= D;l 0 Ell o ' 

D22 0 E22 

[ ij 
0 Bijl 

Bi' ] .- Ao 0 0 
Ao = 

DJI 0 Ell o . 
0 

D22 0 E22 
0 0 

(21) 
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If, by hypothesis, condition (14) holds, then 

lim (11I4n + cAli - 1) + IIAo II < O. (22) 
~-o c 

And therefore 

p(A) + IIAo II < O. (23) 

Then by Lemma 2.2, system (20) is stable. i.e., system (14) is sta­
bilizable by control law (13). Observe that the controlled associated 
extended systen;t (18) becomes 

t 

x(t) =Ax(t) + J Aox(t' - h)dt' 
, 0 

+ Bllul(t) + B~lul(t - h), (24) 
x(t) =Ax(t) + Aox(t - h) + B 22 U2(t) 

+ B~2u2(t - h). '(25) 

Integrating Eq. 25 yields 

t 

x(t) =Ax(t) + J Aox(t' - h)dt' 
o 

t t 

+ J B 22u2(t')dt' + J B~2u2(t' - h)dt'. (26) 
o 0 

Finally, by adding Eqns. (24) and (26) one gets 

t 

x(t) =Ax(t) + J Aox(t' - h)dt' 
o 

+ ~ [Bll u1(t) + B~lUl(t - h) 
't t 

+ J B22U2(t')dt' + J B~2U2(t' - h )dt'] , (27) 
o 0 
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and the controlled system (27) - which coincides with (12) - is stable. 
Result 3.1 can be rewritten in terms of the delay measure as follows. 

Result 3.2. Consider two control laws u 1 (t), u 2 ( t) defined by the 
delay-differential equations 

(28) 

and consider also the auxiliary system 

w(t) = Aw(t) + Aow(t - h), (29) 

where 

[ 0 
In Bll 

B;'] '" 0 A 0 
A= D;l 0 Ell 

D22 0 E22 

[ 0 
0 Bll 

BJ'] 
0 

'" Ao 0 0 
Ao = 

DJI 0 Ell 
0 D22 0 E22 

0 0 

(21) 

A sufficient condition for control laws (28) to stabilize system (12) is 

given by 

e(h) < -1, (31) 

where ~ ( h) is the delay measure referred to the auxiliary system (29). 
Proof (outline). The proof follows immediately by considering Lem­

ma 2.1 and taking into account that condition (31) for the auxiliary system 
(29) is equivalent to condition (22) of Result 3.1. 
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4. Stability with two point delays. The following theorems will be 
useful in the next section in order to deduce stabilizability conditions for 
an integro-differential system with two distributed delays in its state given 
in terms of algebraic relations. 

Consider the following scalar system with two point delays in its 
state 

x(t) = aox(t) + aIx(t - h) + a2x(t - 2h), (32) 

where ao, al and a2 are constant coefficients and h > o. 
Theorem 4.1 (Schoen and Geering, 1993). The time-delay system 

(32) with la21 < 7r /2h is asymptotically stable if and only if the 
following three conditions hold for some Y E [0, 7r / h) 

(i) ao + al + a2 < 0, (33) 

.. y. cos(yh) 
(11) ao = . (h) + a2, sm y 

(34) 

(iii) al > - . f h) - 2a2 cos(yh). 
sm y 

(35) 

Now we provided an extension of Theorem 4.1 for the linear multivariable 
case with diagonal matrices. 

Theorem 4.2. Consider the following linear MIMO system with 
two point delays in its vector-state 

x(t) = Aox(t) + AIX(t - h) + A2X(t - 2h), (36) 

where Ao, Al and A2 are real constant diagonal n X n-matrices 
and h > O. Consider the following n X n-matrices 

D = [- (Ia;jl- 27rh)] , (37) 

E = -(Ao + Al + A2), (38) 

F = [Yi j COS(Yi jh )] , (39) 
sin(Yij h) 

G = [sinf;~j h) + 2a;j COS(Yij h)] , (40) 
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where aIj are the elements of matrix A2 and Yij E [0, X] i, j = 
1, ... , n are real numbers. Then the time-delay system (36) with 
D positive is asymptotically stable if the following three conditions 
hold for some set of values Yij E [0, X] i,j = 1, ... ,n: 

(i) E is positive (Golub and Van Loen, 1986), (41) 

(ii) Ao = F + A2 , (42) 
(iii) Al + G is positive. (43) 

Proof. Let's rewrite system (36) as follows 

Xk =a~l Xl (t) + ... + a~kXk(t) + ... + a~nXn(t) 
+ a~IXI(t - h) + ... + ahXk(t - h) 

+ ... + alnxn(t - h) 
+ ai1xI(t - 2h) + ... + aikXk(t - 2h) 

+ ... + a~nXn(t - 2h), (44) 

where k = 1, ... , n. Therefore. Eq. 44 contains the scalar differential 
equations representing the time-evolution of all the state variables of sys­
tem (36). If asymptotic stability is demonstrated for Eq. 44, the proof 
will be done, because of the diagonal hypothesis on the system matrices. 

Again, it is possible to rewrite (44) as follows 

. . .. . 
Xk(t) = XI(t)+ ... +Xk-l (t)+Xk(t)+Xk+1 (t)+ . . . +xn(t), (45) 

where 

~ 0 I Xk-l(t) =ak(k_l)Xk-l(t) + ak(k_l)Xk-l(t - h) 

+ a~(k_l)Xk-l(t - 2h), 
• 0 1 2 
Xk(t) =akkxk(t) + akkxk(t - h) + akkxk(t - 2h), 

~ 0 I 
Xk+l(t) =ak(k+l)Xk+l(t) + ak(k+l)Xk+l(t - h) 

+ ai(k+l)Xk+l(t - 2h), 
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but, by using (41), subsystems (46) satisfy the following coefficient rela-
tions 

Furthermore, by using (42) one gets 

o 2 Ykl COS(Ykl h) 2 
akl = Jkl + akl = . ( h) + akl , sm Ykl 

o 2 Ykn COS(Ykn h) 2 
akn = Jkn + akn = . ( h) + akn' 

sm Ykn 

Finally, by using (43) 

1 1 Ykl 2 ( ) 
akl + 9kl = akl + . ( h) + 2akl cos Ykl > 0, 

sm Ykl 

1 1 Ykk 2 ( ) 
akk + 9kk = akk + . ( h) + 2akk cos Ykk > 0, 

sm Ykk 

1 1 Ykn 2 ( ) 
akn + 9kn = akn + . ( h) + 2akn cos Ykn > 0. 

sm Ykn 

(47) 

(49) 
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Therefore, scalar subsystems (46) satisfy the three conditions of Theo­
rem 1, and then they are asymptotically stable. As system (44) is a linear 
combination of systems (46) because of diagonal hypothesis on system 
matrices, asymptotic stability for system (36) is deduced. 

s. Main stabilizability results for a system with two distributed 
delays. In this section conditions for a control law to stabilize an integro­

differential system with two distributed delays in its state will be discussed 
by using an associated extended system. A main result is introduced. 

Consider the following integro-differential system with two distribu­
ted delays in its state, and containing a control law with two point delays 
and a control law with two distributed delays. 

t t 

x(t) =Ax(t) + J AIX(t' - h)dt' + J A2x(t' - 2h)dt' 
o 0 

+ ~ [Bllul(t) + B~IUI(t - h) + B~lu2(t)(t - 2h)] 

t 

+ ~ J [B22u2(t') + Bi2u2(t' - h) 
o 

+ B~2U2(t' - 2h)] dt', (50) 

with x(t) = g(t) for all t < 0, where A, AI, A2, Bll, BP, Bil, 
B22,Bi2,B22 EWe Rnxn, UI(t),U2(t) = 0 Vt < 0 and h E 
R+, where W is the class of diagonal real matrices. 

Theorem 5.1 (Asymptotic stabilizability). Consider two control laws 

Ul(t), U2(t) defined by the delay-differential equations 

[
Dll 

+ .J o 
o ] [x(t - h)] [EP 0 1 [u1(t - h)] Di2 x(t - h) + 0 El2 U2(t - h) 



274 Modelling, simulation and control for integro-differential systems 

o ] [x( t - 2h)] 
D~2 x(t - 2h) 

o ] [U1 (t - 2h) ] 
E~2 U2(t - 2h) . (51) 

Define the following 2n x 2n-matrices 

A = [g ~ 1, Al = [11 g], A2 = [12 g] ;(52a) 

B = [B~l. B~2]' Bl = [BJI B~2]' 
B2 = [BJI 
15 = [D~l 

Define the following 4n x 4n-matrices 

(52b) 

(53) 

(54) 
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where Yij E [0, xl i, j = 1, ... , n are real numbers. 
Control laws (51) provide asymptotic stability for system (50) if the 

following four conditions hold for some set of values Yij E [0, xl, i, j = 
1, ... ,n: 

~ 

(i) D positive, 
~ 

(ii) EJ.. pos~ive, ~ 
(iii) A = F + A2 , 

~ ~ 

(iv) Al + G positive. 
Proof. Consider the free part of system (50) 

t t 

(60) 

(61) 

(62) 

(63) 

i(t) = Ax(t) + J AIX(t' - h)dt' + J A2x(t' - 2h)dt', (64) 
o 0 

with x ( t) = 9 ( t) for all t < O. By differentiating system (64) one gets 

x(t) = Ai(t) + A1X(t - h) + A2X(t - 2h), (65) 

with i( t) = g( t) Vt < O. Define the 2n-vector X'( t) = [~~ ~ ~] . From 

Eq. 64 and Eq. 65 one gets 

i(t) = [~~:n = [g ~ 1 I ~~!n 
+ [11 g] [~~:=~n 
+[12 gl[~~:=~~n· (66) 

By using definitions in Eq. 65, Eq. 66 can be rewritten as follows 
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System (67) is called "associated extended system" of the free system 

(64). By applying the proposed control laws system (67) one gets 

~(t) =Ax(t) + AlX(t - h) + A2x(t - 2h) 

+ Bu(t) + Blu(t - h) + B2U(t - 2h), (68) 

where 

(69) 

Observe that Eq. 51 and Eq. 68 can be rewritten as one single delay­

differential equation as follows 

Define 

(71) 

where z( t) is a 4n-vector and A, AI, A2, are 4n X 4n matrices defined 
in (65). Then, Eq. 70 can be rewritten as 

i(t) = Az(t) + AlZ(t - h) + A2Z(t - 2h). (72) 

If, by hypothesis, conditions (50)-(53) hold, then by Theorem 5.1 

system (72) is asymptotically stable, i.e., system (57) is asymptotically 
stabilizable by control law (59). 

Observe that the controlled associated extended system (68) becomes 

t 

x(t) =Ax(t) + J AlX(t' - h)dt' 
o 

+ Bllul(t) + B~lul(t - h) + BPUl(t - 2h), (73) 
x(t) =Ax(t) + AIX(t - h) 

+ B22 u2(t) + Bi2u2(t - h) + B~2u2(t - 2h). (74) 
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Integrating Eq. 74 yields 

t t 

x(t) =Ax(t) + J A1x(t' - h)dt' + J A2x(t' - 2h)dt' 
o 0 

t t 

+ J B22U2(t')dt' + J Bi2u2(t' - h)dt' (75) 
o 0 

t 

+ J B~2u2(t' - 2h)dt'. 
o 

Finally, by adding Eq. 73 and Eq. 75 one gets 

t t 

x(t) =Ax(t) + J A1x(t' - h)dt' + J A2x(t' - 2h)dt' 
o 0 

+ ~ [Bllul(t) + BPUl(t - h) + B~lU2(t)(t - 2h)] 

t 

+ ~ J [B22u2(t') + Bi2u2(t' - h) 
o 

+ B~2U2(t' - 2h)] dt', (76) 

and the controlled system (76) - which coincides with (50) - is asymp­

totically stable. 
Theorem 5.1 provides a way to evaluate asymptotic stabilizability of 

a delay-differential system with two distributed delays in its state. The 
evaluation is made on the context of a set of algebraic relations, which 
are very suitable for computer applications. 

6. Stability by using delay-measure approach. In this section, some 
stability results for a class of free linear differential systems with two point 
delays in the state vector are introduced under delay-measure notation. 
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Consider the free linear delay-differential system: 

where ao, al and a2 are constant coefficients and h > O. It is possible 
to extend the definition of delay measure for system (77) as follows: 

DEFINITION 6.1. The delay measure for system (77) is defined as 

follows: 

(78) 

The stability criteria introduced in Theorem 4.2 can be rewritten by 
using the delay measure as follows. 

Theorem 6.1. Suppose that do E R-, aI, a2 E R+. System 
(77) is asymptotically stable if the following condition holds for 
some y E [O,7r/h): 

e(h) + y. cos(yh) = _ al :..- 2 
h sin(yh) ao ' 

(79) 

where the delay measure function is that defined in (78). 

Proof. Condition (79) implies that 

e(h) + y. cos(yh) = lall _ 2, 
h sin(yh) laol (80) 

therefore 
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But expression (81) coincides with condition (ii) in Theorem 4.2. 
The main utility of Theorem 6.1 is that it substitutes one of the 

system's parameters appearing in condition (ii), Theorem 4.2, (i.e., a2) 

by another one (i.e., al)' Thus, Theorem 6.1 can be useful for evaluating 
asymptotic stability of the system when a2 is not available, or the use of 
al is more suitable for some design reason. 

Theorem 6.2. Suppose that ao E R-, al; a2 E R+. System 
(77) is asymptotically stable if the following condition holds for 

some y E [O,rrjh): 

e(h) 21a21 . y 
-h- > [cos(yh) -1] ~ - laol sin(yh)' (82) 

Proof. Condition (82) implies 

yh la21 
e(h) > -I I' ( h) + [cos(yh)-l]-1 12h ao sm y ao 

. lallh + la212h la212h [ ( h)] yh => + 1 - cos y > - -:---:--'-.----:---:-:-laol laol laolsm(yh) 

=> lall > - . (y h) - 21a21 cos(yh). (83) 
sm y 

But expression (83) coincide with condition (iii) in Theorem 4.2. 
Similarly to Theorem 6.1, the main utility of Theorem 6.2 is that 

it substitutes one of the system's parameters appearing in condition (iii), 
Theorem 4.2, (i.e., al) by another one (i.e., ao). 

7. Conclusions. This note has introduced two important results for 
stabilizability of a class of integro-differential systems with one distributed 
delay, by using the delay-measure notation and an associated extended 
system. The concept of delay-measure allows to express stabilizability 
results in a very simple way. The delay-measure function can be imple­
mented for computational purposes and permits to establish a study about 
in what measure the stability depends on the delay terms. 

It also provides sufficient conditions for testing asymptotic stabiliz­
ability of a class of delay-differential systems with two point delays in 
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their state. The conditions are given in terms of algebraic relations, useful 

for computer applications. 
The control is given in terms of two independent control laws defined 

by using dynamic differential equations which contain point delays. The 
control laws are independent in the sense that each one of them are applied 

independently to the state equation (i.e., they are not interconnected). 

Finally the note provides also two results for asymptotic stability of 
a class of linear delay-differential systems, with two point delays by using 
a delay-measure approach. 
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