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Abstract. There exist various types of similarity measures for intuitionistic fuzzy sets in the litera-
ture. However, in many studies the interactions among the elements are ignored in the construction
of the similarity measure. This paper presents a cosine similarity measure for intuitionistic fuzzy
sets by using a Choquet integral model in which the interactions between elements are considered.
The proposed similarity measure is applied to some pattern recognition problems and the results are
compared with some existing results to demonstrate the effectiveness of this new similarity measure.
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1. Introduction

Zadeh (1965) introduced the concept of fuzzy set by using a membership function and
Atanassov (1986) expanded this concept to the concept of intuitionistic fuzzy set (IFS)
by using both a membership function and a non-membership function. The theory of in-
tuitionistic fuzzy sets has been extensively studied by many authors (see e.g. Szmidt and
Kacprzyk, 2000, 2003; Xu and Yager, 2006; Ye, 2009, 2010, 2018; Xu, 2010; Melo-Pinto
et al.2013; Balasubramaniam and Ananthi, 2014; Mani and Jerome, 2014; Lu and Ye,
2016; Das et al., 2016; Luo and Zhao, 2018). The concept of similarity measure is one
of these study areas. A similarity measure is an important tool for measuring the degree
of similarity between two IFSs and various versions of the concept of the similarity mea-
sure have been applied to various fields such as pattern recognition, medical diagnosis,
decision making, face recognition systems, clustering (see e.g. De et al., 2001; Hung and
Yang, 2004; Liu, 2005; Vlachos and Sergiadis, 2007; Li et al., 2007; Xu and Chen, 2008;
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Ye, 2012; Luo and Ren, 2016; Ngan, 2016; Hwang et al., 2018; Song et al., 2019). Many
similarity measures of IFSs have been investigated in the literature and the concept of co-
sine similarity measure is one of them. The concept of cosine similarity measure for fuzzy
sets is defined as the inner product of two vectors divided by the product of their lengths,
that is, the cosine of the angle between the vector representations of fuzzy sets and it has
been investigated by many researchers (Gerstenkorn and Manko, 1991; Ye, 2011, 2016;
Garg, 2018; Wei, 2018; Wei and Wei, 2018; Wei et al., 2019; Wang et al., 2019).

The concepts of fuzzy measure (or capacity or non-additive measure) and the Cho-
quet integral were introduced by Choquet (1953). Since that time, fuzzy measures and
integrals have been studied on a rather mathematical point of view, especially in multi cri-
teria decision making field. The purpose of the multi criteria decision making field is to
order alternatives based on multiple contradictory criteria and choose the best alternative
(see e.g. Grabisch, 1996; Ünver et al., 2018). Actually a fuzzy integral is a generaliza-
tion of weighted mean. Yang and Ha (2008) introduced a similarity measure for IFSs by
using a Choquet integral model where a generalized fuzzy measure was used to charac-
terize interactions among elements of IFSs. Also, the Choquet integral model instead of
a weighted average model was used to compute this similarity measure.

The purpose of a pattern recognition problem is to decide whether an object belongs to
a set or a class. Many studies have been made to solve such a problem and many similarity
measures have been proposed by several researchers (see e.g. Dengfeng and Chuntian,
2002; Liang and Shi, 2003; Mitchell, 2003; Liu, 2005; Wei and Ye, 2010; Hwang and
Yang, 2013; Zhu and Ye, 2013; Song et al., 2014; Boran and Akay, 2014; Chen and Chang,
2015; Jiang et al., 2019).

In this study, we provide a new cosine similarity measure for IFSs by considering the
Choquet integral, inspired by a weighted cosine similarity measure for IFSs which has
been given by Ye (2011). First of all, we give the basic definitions that are used through-
out the study, and then we recall the concepts of fuzzy measure and Choquet integral.
Then we propose a new cosine similarity measure based on the Choquet integral for IFSs.
To demonstrate the effectiveness of the new similarity measure, we apply it to a pattern
recognition and a medical diagnosis problem. We also compare the results of the proposed
cosine similarity measure with some previous results in the literature.

2. Preliminaries

In this section we recall some definitions of fuzzy set theory, correlation coefficient, some
cosine similarity measures and some weighted cosine similarity measures for IFSs.

Definition 1 (Zadeh, 1965). A fuzzy set A of a given set X is defined with a function
which is called the membership function of A and is denoted by

A = {〈
x, μA(x)

〉 ∣∣ x ∈ X
}
.

The value μA(x) is said to be the grade of membership of the element x to the set.
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In the following definition we recall the concept of IFS that was introduced by
Atanassov (1986).

Definition 2 (Atanassov, 1986). An IFS A in X is given by

A = {〈
x, μA(x), νA(x)

〉 ∣∣ x ∈ X
}
,

where μA : X → [0, 1] is a function which is called the membership function and νA :
X → [0, 1] is a function which is called the non-membership function with μA(x) +
νA(x) � 1, for any x ∈ X. The values μA(x) and νA(x) are the grade of membership and
the grade of non-membership of the element x to the set A, respectively.

It is clear that each fuzzy set is an intuitionistic fuzzy set, but the converse is not true
in general. Now, we recall a correlation coefficient between IFSs which is actually the
motivation of the cosine similarity measure between two IFSs.

Definition 3 (Gerstenkorn and Manko, 1991). Let X = {x1, . . . , xn} be a finite set and
A and B be two IFSs of X. A correlation coefficient between A and B is defined by

k(A,B) := C(A,B)√
T (A) · T (B)

,

where the correlation of A and B is given by

C(A,B) =
n∑

i=1

(
μA(xi)μB(xi) + νA(xi)νB(xi)

)

and the informational intuitionistic energies of A and B are

T (A) =
n∑

i=1

(
μ2

A(xi) + ν2
A(xi)

)

and

T (B) =
n∑

i=1

(
μ2

B(xi) + ν2
B(xi)

)
,

respectively.

The correlation coefficient k satisfies the following properties (Gerstenkorn and
Manko, 1991):

(P1) 0 � k(A,B) � 1;
(P2) k(A,B) = k(B,A);
(P3) If A = B then k(A,B) = 1.
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Various similarity measures were defined to quantify the degree of similarity between
IFSs. Chen (1995) proposed a similarity measures between vague sets. Hong and Kim
(1999) and Fan and Zhangyan (2001) pointed out limitations of the similarity measure
of Chen (1995) and proposed a new similarity measure for IFSs. Later, Li et al. (2007)
proposed a new similarity measure and Dengfeng and Chuntian (2002) generalized their
similarity measure of IFSs by using Minkowski distance and applied this measure to the
pattern recognition. Then, Mitchell (2003) modified this similarity measure. Later, Hung
and Yang (2004) proposed simple and well suited similarity measures for IFSs by using
Hausdorff distance and applied it to the pattern recognition. Now, we recall some cosine
similarity measures from the literature.

Definition 4 (Salton and McGill, 1983). Let X = {x1, . . . , xn} be a finite set and let

A = (〈
x1, μA(x1)

〉
,
〈
x2, μA(x2)

〉
, . . . ,

〈
xn, μA(xn)

〉)

and

B = (〈
x1, μB(x1)

〉
,
〈
x2, μB(x2)

〉
, . . . ,

〈
xn, μB(xn)

〉)

be two fuzzy sets of a set X. A cosine similarity measure based on Bhattacharya’s distance
(Bhattacharya, 1946) between A and B is defined by

CF (A,B) :=
∑n

i=1 μA(xi)μB(xi)√∑n
i=1 μ2

A(xi)

√∑n
i=1 μ2

B(xi)

.

It is clear that 0 � CF (A,B) � 1.

Definition 5 (Ye, 2011). Let X = {x1, . . . , xn} be a finite set and let

A = (〈
x1, μA(x1), νA(x1)

〉
, . . . ,

〈
xn, μA(xn), νA(xn)

〉)

and

B = (〈
x1, μB(x1), νB(x1)

〉
, . . . ,

〈
xn, μB(xn), νB(xn)

〉)

be two IFSs of X. A cosine similarity measure between IFSs A and B is defined by

CIFS(A,B) := 1

n

n∑
i=1

μA(xi)μB(xi) + νA(xi)νB(xi)√
μ2

A(xi) + ν2
A(xi)

√
μ2

B(xi) + ν2
B(xi)

.

For n = 1 the cosine similarity measure CIFS is equivalent to the correlation coefficient k,
that is CIFS(A,B) = k(A,B). The cosine similarity measure also satisfies P1,2,3.
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Definition 6 (Ye, 2011). Let X = {x1, . . . , xn} be a finite set and let A and B be two
IFSs of X. A weighted cosine similarity measure between IFSs A and B is defined by

WIFS(A,B) :=
n∑

i=1

wi

μA(xi)μB(xi) + νA(xi)νB(xi)√
μ2

A(xi) + ν2
A(xi)

√
μ2

B(xi) + ν2
B(xi)

,

where w = (w1, . . . , wn) is the weight vector with wi ∈ [0, 1] for all i = 1, . . . , n

and
∑n

i=1 wi = 1. In particular, if w = (1/n, 1/n, . . . , 1/n), then the weighted cosine
similarity measure is reduced to the cosine similarity measure between IFSs A and B,
i.e. WIFS(A,B) = CIFS(A,B). Obviously, the weighted cosine similarity measure of two
IFSs A and B also satisfies P1,2,3.

The concept of Choquet integral is a generalization of the concept of weighted mean.
Yang and Ha (2008) proposed a similarity measure between IFSs by considering the Cho-
quet integral. Now, we recall the concepts of fuzzy measure and Choquet integral.

Definition 7 (Choquet, 1953). Let X �= ∅ be a finite set and let P(X) be the power set
of X. If

(i) σ(∅) = 0,
(ii) σ(X) = 1,

(iii) σ(A) � σ(B) for any A,B ⊂ X such that A ⊆ B (monotonicity),

then the set function σ : P(X) → [0, 1] is called a fuzzy measure on X.

Definition 8 (Choquet, 1953). Let X �= ∅ be a finite set and let σ be a fuzzy measure
on X. The Choquet integral of a function f : X → [0, 1] with respect to σ is defined by

(C)

∫
X

f dσ :=
n∑

k=1

(
f (x(k)) − f (x(k−1))

)
σ(E(k)),

where the sequence {x(k)}nk=0 is a permutation of the sequence {xk}nk=0 such that 0 :=
f (x(0)) � f (x(1)) � f (x(2)) � · · · � f (x(n)) and E(k) := {x(k), x(k+1), . . . , x(n)}.

Definition 9 (Yang and Ha, 2008). Let X = {x1, . . . , xn} be a finite set and let A and B

are two given IFSs in X and let σ be a fuzzy measure on X. A similarity measure between
A and B is given with

W(A,B) = 1 −
(

(C)

∫
X

f dσ

) 1
p

,

where f (xi) = α|μA(xi)−μB(xi)|p +β|νA(xi)− νB(xi)|p + γ |πA(xi)−πB(xi)|p and
α, β, γ ∈ [0, 1], α + β + γ = 1 and 1 < p < +∞.
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3. Choquet Cosine Similarity Measure

In this section, by considering the Choquet integral we construct a new cosine similarity
measure.

Definition 10. Let X = {x1, . . . , xn} be a finite set and let A and B be two IFSs in X

and let σ be a fuzzy measure on X. A Choquet cosine similarity measure between A and
B is given with

W
(C, σ)
IFS (A,B) := (C)

∫
X

fA,B dσ,

where

fA,B(xi) := μA(xi)μB(xi) + νA(xi)νB(xi)√
μ2

A(xi) + ν2
A(xi)

√
μ2

B(xi) + ν2
B(xi)

, for i = 1, . . . , n.

Proposition 1. Let X = {x1, . . . , xn} be a finite set, let A and B be two IFSs in X. The
Choquet cosine similarity measure W

(C, σ)
IFS satisfies the following properties:

(P1) 0 � W
(C,σ)
IFS (A,B) � 1;

(P2) W
(C,σ)
IFS (A,B) = W

(C,σ)
IFS (B,A);

(P3) If A = B then W
(C,σ)
IFS (A,B) = 1.

Proof. (P1) Since fA,B(xi) ∈ [0, 1] and for any i = 1, . . . , n and the Choquet integral is
monotone, we have 0 � W

(C,σ)
IFS (A,B) � 1.

(P2) It is trivial that since fA,B(xi) = fB,A(xi) for any i = 1, . . . , n.
(P3) If A = B, then μA(xi) = μB(xi) and νA(xi) = νB(xi) for i = 1, . . . , n. We have
fA,B(xi) = 1 and so W

(C,σ)
IFS (A,B) = 1. Thus, the proof is completed.

4. Applications

The proposed cosine similarity measure can be used to evaluate the degree of similarity
between two IFSs. Therefore, it can be applied to pattern recognition problems with the
intuitionistic fuzzy information. It is more delicate than the cosine similarity measures in
the literature since it considers interactions between criteria.

Let X = {x1, . . . , xn} be a finite set of attributes and let C = {C1, . . . , Cm} be a finite
set of alternatives. Here, Q needs to be classified in one of Ci , i = 1, . . . , m. Now, we
give the implementation steps of the promised Choquet integral model.

Step 1. Since the model is a fuzzy integral model, it is necessary to establish a fuzzy
measure on a given set before we can use the model. The decision maker determines
which fuzzy measure will be used according to the situation and the number of elements
of the set is mostly effective in making this determination. The thing to note here is that if
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the weights of the singletons in the set are given, these weights could be equal to the fuzzy
measure of the singletons with the condition that the sum of fuzzy measure of singletons is
equal to one. Otherwise, we may use decision making methods such as analytic hierarchy
process (AHP), analytic network process (ANP) to determine fuzzy measure of singletons.
For example, in sets with at least 3 elements, the decision maker establishes a hypothetical
measure that will be effective in relieving the decision-making process as it can directly
see the interaction between the criteria. Let X be a finite set with at least 3 elements, and
let σ be a fuzzy measure on X. If

(i) σ({xi, xj }) = σ({xi}) + σ({xj }), then no interaction xi between xj ,
(ii) σ({xi, xj }) > σ({xi}) + σ({xj }), then xi and xj are positively interactive,

(iii) σ({xi, xj }) < σ({xi}) + σ({xj }), then xi and xj are negatively interactive, for all
xi, xj ∈ X (Grabisch, 1997).

Moreover, the decision maker can also use measures such as λ-fuzzy measures (Larbani
et al., 2011), k-additive fuzzy measures (Grabisch, 1997), p-symmetric fuzzy measures
(Miranda et al., 2002) in the measurement determination process in order to ease the de-
cision making process. Here, we use hypothetical fuzzy measure and a λ-fuzzy measure
in the process of solving the pattern recognition and the medical diagnosis problem, re-
spectively.

Step 2. The function fQ,C(xi) is calculated by using Definition 10.

Step 3. We choose the best alternative by using the recognition principle of maximum
degree of similarity between IFSs.

4.1. Pattern Recognition Problem

We consider a pattern recognition problem which is adapted from Ye (2011).

Example 1. Let C1, C2 and C3 be three patterns which are represented by following IFSs
in a given finite set X = {x1, x2, x3}:

C1 = {〈x1, 1.0, 0.0〉, 〈x2, 0.8, 0.0〉, 〈x3, 0.7, 0.1〉},
C2 = {〈x1, 0.8, 0.1〉, 〈x2, 1.0, 0.0〉, 〈x3, 0.9, 0.0〉},
C3 = {〈x1, 0.6, 0.2〉, 〈x2, 0.8, 0.0〉, 〈x3, 1.0, 0.0〉}.

Let Q = {〈x1, 0.5, 0.3〉, 〈x2, 0.6, 0.2〉, 〈x3, 0.8, 0.1〉} be a pattern that needs to be classi-
fied in one of three classes C1, C2, and C3.

Consider the following hypothetical fuzzy measure σ on X: σ({x1}) = 0.5, σ({x2}) =
0.3, σ({x3}) = 0.2, σ({x1, x2}) = 0.7, σ({x1, x3}) = 0.8, σ({x2, x3}) = 0.6,
σ({x1, x2, x3}) = 1. For the sake of completeness, the weights used in Example 5.1 of Ye
(2011) are considered here as the measures of singletons.

The cosine values are given in Table 1 and the results of similarity are given in the
Table 2. For example, for C3 pattern we have fC3,Q(x2) � fC3,Q(x1) � fC3,Q(x3) and
so we get
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Table 1
Cosine values.

fC1,Q(x1) = 0.8574 fC1,Q(x2) = 0.9486 fC1,Q(x3) = 0.9998
fC2,Q(x1) = 0.9146 fC2,Q(x2) = 0.9486 fC2,Q(x3) = 0.9922
fC3,Q(x1) = 0.9761 fC3,Q(x2) = 0.9486 fC3,Q(x3) = 0.9922

Table 2
Comparison of classification results of Example 1.

Similarity measure Similarity scores
(C1, Q) (C2,Q) (C3, Q)

W (for α = β = γ = 1/3 and p = 2, with respect to σ ), (Yang and Ha, 2008) 0.7219 0.8248 0.6294

W
(C, σ)
IFS 0.9223 0.9437 0.9738

WIFS (Ye2011) 0.9133 0.9404 0.9712

W
(C, σ)
IFS (C3,Q) = (C)

∫
X

fC3,Q dσ =
3∑

k=1

(
fC3,Q(x(k)) − fC3,Q(x(k−1))

)
σ(E(k))

= (
fC3,Q(x2) − fC3,Q(x0)

)
σ(E(1))

+ (
fC3,Q(x1) − fC3,Q(x2)

)
σ(E(2))

+ (
fC3,Q(x3) − fC3,Q(x1)

)
σ(E(3))

= 0.9486 × 1 + (0.9761 − 0.9486) × 0.8

+ (0.9922 − 0.9761) × 0.2

= 0.9738.

According to the recognition principle of maximum degree of similarity between IFSs,
the process of assigning the pattern Q to Ci is described by

t = arg max
1�i�3

{
W

(C, σ)
IFS (Ci,Q)

}
. (1)

Therefore, we obtain t = C3 from (1) for the proposed cosine similarity measure W
(C, σ)
IFS .

Namely, Q pattern belongs to the class C3. This result is in agreement with the result
of Ye (2011). Moreover, we obtain again t = C3, when we solve this problem for W

(Definition 9) by using the same fuzzy measure σ .

4.2. Medical Diagnosis Problem

Medical diagnosis is the process of determining which disease explains the symptoms of
a patient. In this process, patterns of symptoms are compared with patterns of disease. We
take the medical diagnosis problem which is discussed by Ye (2011).
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Table 3
Standard preference table.

Importance scale Definition

1 Equal importance
3 Moderate importance of one over another
5 Essential or strong importance
7 Very strong importance
9 Extreme importance
2, 4, 6 and 8 Intermediate values between two adjacent judgments

Example 2. Let us consider a set of diagnosis and symptoms as follow.

Q =
{

Q1(Viral fever),Q2(Malaria),Q3(Typhoid),

Q4(Stomach problem),Q5(Chest Problem)

}
,

S =
{

s1(Temperature), s2(Headache), s3(Stomach pain),

s4(Cough), s5(Chest pain)

}
.

Suppose that a patient, with respect to all the symptoms, is represented by the following
IFS:

P(Patient) =
{ 〈s1, 0.8, 0.1〉, 〈s2, 0.6, 0.1〉, 〈s3, 0.2, 0.8〉,

〈s4, 0.6, 0.1〉, 〈s5, 0.1, 0.6〉
}

.

Moreover, assume that each diagnosis Qi for i = 1, 2, 3, 4, 5 is given as an IFSs with
respect to all the symptoms as follow.

Q1(Viral fever) =
{ 〈s1, 0.4, 0.0〉, 〈s2, 0.3, 0.5〉, 〈s3, 0.1, 0.7〉,

〈s4, 0.4, 0.3〉, 〈s5, 0.1, 0.7〉
}

,

Q2(Malaria) =
{ 〈s1, 0.7, 0.0〉, 〈s2, 0.2, 0.6〉, 〈s3, 0.0, 0.9〉,

〈s4, 0.7, 0.0〉, 〈s5, 0.1, 0.8〉
}

,

Q3(Typhoid) =
{ 〈s1, 0.3, 0.3〉, 〈s2, 0.6, 0.1〉, 〈s3, 0.2, 0.7〉,

〈s4, 0.2, 0.6〉, 〈s5, 0.1, 0.9〉
}

,

Q4(Stomach problem) =
{ 〈s1, 0.1, 0.7〉, 〈s2, 0.2, 0.4〉, 〈s3, 0.8, 0.0〉,

〈s4, 0.2, 0.7〉, 〈s5, 0.2, 0.7〉
}

,

Q5(Chest Problem) =
{ 〈s1, 0.1, 0.8〉, 〈s2, 0.0, 0.8〉, 〈s3, 0.2, 0.8〉,

〈s4, 0.2, 0.8〉, 〈s5, 0.8, 0.1〉
}

.

The goal is to classify P into one of the diagnosis Qi (i = 1, 2, 3, 4, 5) with respect
to all symptoms. For this purpose we need a fuzzy measure. We calculate the measures
of singletons by Analytic Hierarchy Process (AHP) (Saaty, 1980). In AHP we use the
following Standard Preference (Table 3).

Table 4 depends on the expert view and it is giving the consistent reciprocal compari-
son matrix with consistency index 0.0941903 used in (AHP).
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Table 4
Reciprocal comparison matrix.

s1 s2 s3 s4 s5

s1 1 3 2 7 8
s2 0.333333 1 0.333333 6 6
s3 0.5 3 1 4 5
s4 0.142857 0.166667 0.25 1 3
s5 0.125 0.166667 0.2 0.333333 1

Table 5
Weight of singletons.

Ws1 = 0.428156 Ws2 = 0.191606
Ws3 = 0.280161 Ws4 = 0.062917
Ws5 = 0.0371593

Table 6
Fuzzy measure.

η(∅) = 0 η({s1}) = 0.685876 η({s2}) = 0.386562
η({s3}) = 0.51713 η({s4}) = 0.145252 η({s5}) = 0.0882035
η({s1, s2}) = 0.836764 η({s1, s3}) = 0.887728 η({s1, s4}) = 0.742572
η({s1, s5}) = 0.720304 η({s2, s3}) = 0.726001 η({s2, s4}) = 0.481904
η({s2, s5}) = 0.444458 η({s3, s4}) = 0.595614 η({s3, s5}) = 0.564789
η({s4, s5}) = 0.222067 η({s1, s2, s3}) = 0.969258 η({s1, s2, s4}) = 0.873979
η({s1, s2, s5}) = 0.859362 η({s1, s3, s4}) = 0.918363 η({s1, s3, s5}) = 0.906331
η({s1, s4, s5}) = 0.772556 η({s2, s3, s4}) = 0.777517 η({s2, s3, s5}) = 0.757284
η({s2, s4, s5}) = 0.532325 η({s3, s4, s5}) = 0.637119 η({s1, s2, s3, s4}) = 0.989366
η({s1, s2, s3, s5}) = 0.981468 η({s1, s2, s4, s5}) = 0.893659 η({s1, s3, s4, s5}) = 0.934564
η({s2, s3, s4, s5}) = 0.80476 η({s1, s2, s3, s4, s5}) = 1

Table 7
Cosine values.

fQ1,P (s1) = 0.9922 fQ1,P (s2) = 0.6484 fQ1,P (s3) = 0.9946 fQ1,P (s4) = 0.8877
fQ1,P (s5) = 0.9997 fQ2,P (s1) = 0.9922 fQ2,P (s2) = 0.4678 fQ2,P (s3) = 0.9701
fQ2,P (s4) = 0.9863 fQ2,P (s5) = 0.9991 fQ3,P (s1) = 0.7893 fQ3,P (s2) = 1
fQ3,P (s3) = 0.9994 fQ3,P (s4) = 0.4678 fQ3,P (s5) = 0.9985 fQ4,P (s1) = 0.2631
fQ4,P (s2) = 0.5881 fQ4,P (s3) = 0.2425 fQ4,P (s4) = 0.4290 fQ4,P (s5) = 0.9936
fQ5,P (s1) = 0.2461 fQ5,P (s2) = 0.1643 fQ5,P (s3) = 1 fQ5,P (s4) = 0.3987
fQ5,P (s5) = 0.2824

The weights that are calculated by (AHP) are given in Table 5.
Now, we are ready to construct a fuzzy measure which is a λ-fuzzy measure (see,

Takahagi, 2000). By taking λ = 0.75 we construct the fuzzy measure σ given in Table 6.
We calculate the Choquet cosine similarity measure of the IFSs. For this purpose we

need the cosine values obtained in Table 7.
The results of the cosine similarity measure are given in Table 8. For example, for Q4

symptom we obtain fQ4,P (s3) � fQ4,P (s1) � fQ4,P (s4) � fQ4,P (s2) � fQ4,P (s5) and
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Table 8
Comparison of classification results of Example 2.

Similarity measure Similarity scores
(Q1, P ) (Q2, P ) (Q3, P ) (Q4, P ) (Q5, P )

W (for α = β = γ = 1/3 and p = 2,
with respect to η), (Yang and Ha, 2008)

0.6579 0.7420 0.6855 0.4544 0.4692

W
(C, η)
IFS 0.9685 0.9546 0.9426 0.4557 0.6441

CIFS (Ye, 2011) 0.9046 0.0.8602 0.8510 0.5033 0.4542

so we have

W
(C, η)
IFS (Q4, P ) = (C)

∫
X

fQ4,P dη =
5∑

k=1

(
fQ4,P (s(k)) − fQ4,P (s(k−1))

)
η(E(k))

= (
fQ4,P (s3) − fQ4,P (s0)

)
η(E(1))

+ (
fQ4,P (s1) − fQ4,P (s3)

)
η(E(2))

+ (
fQ4,P (s4) − fQ4,P (s1)

)
η(E(3))

+ (
fQ4,P (s2) − fQ4,P (s4)

)
η(E(4))

+ (
fQ4,P (s5) − fQ4,P (s2)

)
η(E(5))

= 0.2425 × 1 + (0.2631 − 0.2425) × 0.893659

+ (0.4290 − 0.2631) × 0.532325

+ (0.5881 − 0.4290) × 0.444458

+ (0.9936 − 0.5881) × 0.0882035

= 0.4557.

Therefore, we obtain t = Q1 from (1) for the proposed cosine similarity measure
W

(C, η)
IFS . Namely, P patient has viral fever. This result is in agreement with the one obtained

in Ye (2011). Moreover, we obtain again t = Q1, when we solve this problem for W

(Definition 9) by using the proposed fuzzy measure η.
The numerical results presented in Table 2 and Table 8 show that the result of the

proposed cosine similarity measure is consistent with Ye (2011). The difference of this
cosine similarity measure from the existing similarity measures is that it is established
by considering the interaction between the criteria. Indeed, in both similarity measures
proposed by Yang and Ha (2008) and the cosine similarity measure algorithms proposed
in this study, the interaction between the criteria using the fuzzy measure is considered.
However, as the variables α, β, γ and p change, the result may change and the decision
maker has to explain what he/she pays attention to when choosing these variables. When
these variables are independent of special selection, both ordering of their f (xi) values
and the calculation of the Choquet integral become difficult and as the number of elements
of the set increases, it becomes very hard to make comparisons between these calculations.
In the Choquet cosine similarity measure proposed in this paper fA,B(xi) is equal to cos θi
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Fig. 1. Choquet integral of fQ4,P .

for any i = 1, . . . , n. In this case, the decision maker will not have difficulty while ordering
functions and calculating the proposed cosine similarity measure.

Figure 1 illustrates the calculation of the Choquet integral of fQ4,P in Example 2.
Choquet integral value is the sum of 5 rectangle areas.

5. Conclusion

In this paper, we propose a new cosine similarity measure based on the Choquet integral,
inspired by the cosine similarity measure given for intuitionistic fuzzy sets in the literature.
In addition, we apply this new similarity measure to a pattern recognition and a medical
diagnosis problem and we obtain results that are consistent with the results obtained in
the past. If we consider the sensitivity of Choquet integral compared with the weighted
mean, we can say that the similarity measure proposed in this paper is more sensitive than
the one proposed in the past. In the future, different kind of similarity measures and fuzzy
sets can be considered. The applications can be extended to some other real life areas such
as face recognition systems and classification.
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