
INFORMATICA, 2022, Vol. 33, No. 2, 279–298 279
© 2022 Vilnius University
DOI: https://doi.org/10.15388/22-INFOR479

Randentropy: A Software to Measure Inequality in
Random Systems

Guglielmo D’AMICO1,∗, Stefania SCOCCHERA2, Loriano STORCHI3,∗
1 Department of Economics, University G. D’Annunzio Chieti-Pescara,

viale Pindaro, 42-65127 Pescara, Italy
2 Banco BPM S.p.A., Credit Risk Models, Verona, Italy
3 Department of Pharmacy, University G. D’Annunzio Chieti-Pescara,

via dei Vestini 31, 66100 Chieti, Italy
e-mail: g.damico@unich.it, loriano@storchi.org

Received: March 2021; accepted: March 2022

Abstract. The software Randentropy is designed to estimate inequality in a random system where
several individuals interact moving among many communities and producing dependent random
quantities of an attribute. The overall inequality is assessed by computing the Random Theil’s En-
tropy. Firstly, the software estimates a piecewise homogeneous Markov chain by identifying the
change-points and the relative transition probability matrices. Secondly, it estimates the multivariate
distribution function of the attribute using a copula function approach and finally, through a Monte
Carlo algorithm, evaluates the expected value of the Random Theil’s Entropy. Possible applications
are discussed as related to the fields of finance and human mobility.
Key words: random entropy, Markov reward model, copula, change-point.

1. Introduction

The issue of measuring inequality in a system found extensive treatment in the literature.
One interesting approach is based on entropic measures. Starting from the pioneering work
by Shannon (1948) on the mathematical theory of communication, the concept of entropy
has found a rapid development and diffusion in many scientific communities. Notable
examples are statistics (see, e.g. Kullback and Leibler, 1951), statistical mechanics (see,
e.g. Jaynes, 1957), economy (see, e.g. Theil, 1967) and ecology (see, e.g. Phillips et al.,
2006), just to name a few.

Recent efforts have been dedicated mainly to introduce new entropies as the cumulative
residual entropy (see, Rao et al., 2004) or the cumulative past entropy (see, Di Crescenzo
and Longobardi, 2009). In the meantime, and mainly motivated by economic problems,
the notion of random entropy has emerged in terms of a normalization of a random process.
The random entropy shares the same functional form as the classical entropy but is related
to a random process (D’Amico and Di Biase, 2010). This more general entropy was called

∗Corresponding authors.

https://doi.org/10.15388/22-INFOR479


280 F. D’Amico et al.

by the author Dynamic Theil Entropy. Nevertheless, we refer to it as Random Entropy, to
avoid any possible misunderstanding with other dynamic entropies which are expressed as
deterministic functions as in Di Crescenzo and Longobardi (2002), Asadi and Zohrevand
(2007) and Calì et al. (2020).

The Random Entropy allows to quantify uncertainty in a random system evolving in
time and encompasses recent approaches and measures introduced in Curiel and Bishop
(2016). In this paper, we consider the general model considered in a previous work (D’Am-
ico et al., 2019) and we present a software that permits the calculation of the inequality in
a general system composed by a number of interacting individuals. Any individual moves
among several communities in time and according to its membership, and depending on
that of the other individuals, produces an attribute. The dynamic of individuals among the
communities is described according to a piecewise homogeneous Markov chain which re-
quires the identification of an unknown number of change-points (i.e. where the Markov
chain changes its dynamic). Conditional on the occupancy of the communities, the individ-
uals produce an attribute in quantities expressed by a multivariate probability distribution
where the dependence structure is managed by a copula function. Finally, using a Monte
Carlo algorithm, we show how to compute the moments of the Random Entropy.

The main innovation brought by this research is the building of the software Ran-
dentropy. It contemplates different aspects that were only partially considered in other
research papers. Indeed, different studies deal with software and packages related to
multi-state models of Markovian type. For example, in Ferguson et al. (2012) the authors
consider a package for computing marginal and conditional occupation probabilities for
Markov and non-Markov multi-state models, including the censoring problem and the use
of covariates. In Jackson et al. (2011), multi-state models for panel data observed contin-
uously and generally based on the Markov assumption have been instead considered. The
possibility to obtain a time-varying model is considered using piecewise-constant time-
dependent covariates. Contrarily to these studies, our software gives different transition
probability matrices according to the change-point detection methodology presented in
Polansky (2007), which is based only on observations of the Markov process and not on
additional covariates. Moreover, once the piecewise homogeneous Markov chain is identi-
fied, the software provides sequences of dependent random vectors denoting the ownership
of an attribute by the individuals of the system. Thus, the system becomes a multivariate
Markov reward process on which the Random Entropy is evaluated. To our knowledge,
our software is the only one that computes the Random Entropy and does it in a very gen-
eral framework that encompasses recent contributions presenting diversity measurement
based on (deterministic) entropy where the migration of individuals among the commu-
nities is not allowed, see Marcon and Hérault (2015a). Of potential interest is also the
use of the software Randentropy to problems approached with the traditional concept of
entropy, see e.g. Behrendt et al. (2019) and Saad and Ruai (2019).

The subsequent sections of this paper present the general mathematical model, relevant
scenarios of application and the software main characteristics, both the CLI (Command
Line Interface) and GUI (Graphical User Interface) are described.



Randentropy: A Software to Measure Inequality in Random Systems 281

2. Theory

The main function driving the development of the software we are presenting here (i.e.
Randentropy) refers to the computation of a measure of inequality on the distribution of
a given attribute among a set of N individuals. The quantity of this attribute depends on
a discriminatory criterion, according to whom the individual belongs to a given group.
Accordingly to the nomenclature mainly derived within the ecology community, but pre-
serving its general validity also in other domains, we denote the set of individuals as
a meta-community that is partitioned in several interacting groups called communities.
This description is the same adopted in Marcon and Hérault (2015b).

Let denote the meta-community by C and the number of its members by N . Each
individual c ∈ C belongs, at any time t ∈ N, to one of D different communities that form
the meta-community C. The variable xc(t) with values in E = {1, 2, . . . , D} denotes the
community to which the individual c belongs to at time t . Every time the individual is
a member of a given community, it owns a quantity of the personal attribute denoted by
sc(t). The considered system is stochastic, in the sense that each individual passes through
different communities randomly in the course of time and, as a consequence, the personal
attributes evolve over time randomly. In this way, the proposed approach is more general
as compared to that proposed by Marcon and Hérault (2015b), where the possibility for
members to migrate from a community to another is not permitted.

The sequence of the visited communities by any individual c ∈ C, that is {xc(t)}t∈N,
is assumed to be a realization of a stochastic processes Xc := (Xc(t))t∈N. Thus, the se-
quences of individual’s attribute, that is {sc(t)}t∈N, evolve randomly, too. We will denote,
from now on, the stochastic process describing the evolution of individuals’ attribute as
Sc := (Sc(t))t∈N. The processes Xc and Sc evolve jointly, meaning that: the evolution of
the process Sc is driven by the stochastic process Xc, which controls it. A precise descrip-
tion of this mechanism follows.

Firstly, we assume an independence assumption between the dynamics of the indi-
viduals. Thus, the community process for every individual will be denoted simply by
X = X(t), and the reference to specific individual c ∈ C is dropped.

Moreover, we assume that X = X(t) is distributed according to a piecewise homoge-
neous Markov chain (PHMC). The process X is a PHMC taking values in the finite set E,
if a positive number of change-points k, a sequence τ0 = 0 < · · · < τk of increasing
times and a sequence (0)P, . . . , (k)P of stochastic matrices (such that for any l ∈ N, l � k)
exist, it ensues that: for any t ∈ {τl, . . . , τl+1 − 1} and any i, j ∈ E the following Markov
property holds:

P
(
X(t + 1) = j

∣∣X(t) = i, X
(
0 : (t − 1)

) = i0:(t−1)

)
= P

(
X(t + 1) = j

∣∣X(t) = i
) = (l)pij .

The symbols i0:(t−1) = (i0, . . . , it−1) ∈ Et , X(0 : (t − 1)) = (X(0), . . . , X(t −
1)) and {τl, . . . , τl+1 − 1} represents the time interval, enclosed between the lth and the
l + 1th change-point where the dynamics at community-level are fixed and described by
the transition probability matrix (l)P = {(l)pij }i,j∈E .



282 F. D’Amico et al.

Fig. 1. Example of three change-points.

Intuitively, the term piecewise refers to the existence of some points in time where the
dynamic changes consistently. These times are called change-points. They break up the
timeline into several sub-periods within whom the Markov process is homogeneous.

However, for the sake of clarity of presentation, consider the example illustrated in
Fig. 1 where three change-points are considered at times τ1 = 10, τ2 = 25, τ3 = 32. For
every time t ∈ {τ0, . . . , τ1 − 1} = {0, . . . , 9} the dynamic of the process is given by the
transition probability matrix (0)P, thus it results that ∀t ∈ {0, . . . , 9}:

P
(
X(t + 1) = j

∣∣X(t) = i, X
(
0 : (t − 1)

) = i0:(t−1)

) = (0)pij .

At any time point t during the interval {τ1, . . . , τ2 − 1} = {10, . . . , 24} it results that

P
(
X(t + 1) = j

∣∣X(t) = i, X
(
0 : (t − 1)

) = i0:(t−1)

) = (1)pij .

A similar argument applies to the dynamic during the intervals {τ2, . . . , τ3 − 1} =
{10, . . . , 24} and {τ3, . . .} = {32, . . .} where the dynamics are given by the matrices (2)P
and (3)P, respectively.

Next step concerns the specification of the processes describing the personal attributes,
i.e. Sc. We consider a meta-community where the personal attributes of the individuals
can be considered to be dependent among each others.

This strategy is pursued first by assuming that the marginal distributions of the at-
tributes of the individuals allocated in the same community at a given time share the same
probability distribution function. Formally, let Fx be the conditional distribution of at-
tribute Sc(t) knowing the community Xc(t) = x of the individual c ∈ C, then

Fx := D
(
Sc(t)

∣∣Xc(t) = x
)
, for any t ∈ N,

where, for a given random variable A, the symbol D(A) denotes its probability distribu-
tion.

Before presenting our second main assumption we need to present the concept of cop-
ula which will be a key issue in the model and software.

An N -dimensional copula C is any function C : [0, 1]N → [0, 1], grounded and
N -increasing whose marginals satisfy

Ci(u) = C(1, . . . , 1, u, 1, . . . , 1) = u), ∀u ∈ [0, 1].

From the above definition of the copula, it is understandable that if we consider
a set of univariate cumulative distribution functions F1, F2, . . . , FN , the function



Randentropy: A Software to Measure Inequality in Random Systems 283

C(F1, F2, . . . , FN) is a multivariate distribution function with marginal distributions Fi ,
i = 1, . . . , N .

Additionally, a dependence structure is introduced through the application of a copula
function. This is formally done advancing the second main assumption stating that: the
conditional joint distribution of (S1(t), . . . , SN(t)) knowing (X1(t) = x1, . . . , XN(t) =
xN) is given by

D
(
S1(t), . . . , SN(t)

∣∣X1(t) = x1, . . . , XN(t) = xN
) = Cθ(Fx1 , . . . , FxN ),

where Cθ is the copula, with dependence parameter θ . According to the considered copula
function, θ may also be a vector of parameters.

A notable example of copula function is the Normal (or Gaussian) copula. Let R be
a correlation matrix and denote by �R the standardized multivariate normal distribution
with correlation matrix R. The Gaussian copula is defined according to:

C(u1, . . . , uN ; R) = �R
(
�−1(u1), . . . , �

−1(uN)
)
,

where the vector (u1, . . . , uN) belongs to the unit cube [0, 1]N and �−1(·) is the inverse
of the standard normal cumulative distribution function.

In general, the corresponding density of the copula is

c(u1, . . . , uN) = ∂C(u1, . . . , uN)

∂u1 · · · ∂uN

and in the Gaussian case it assumes the well known form

c(u1, . . . , uN) = exp(− 1
2KT · (R − I ) · K)√

det(R)
,

where Ki = �−1(ui), see e.g. Durante and Sempi (2016).
Here, the parameters are represented by the correlation matrix R.
As we are interested in measuring the inequality of the distribution of attributes in the

meta-community, we need to introduce a measure of inequality. In particular, the measure
of inequality we consider allows the user to face with stochastic processes. The measure is
based on the Theil entropy (see Theil, 1967), closely related to the Shannon entropy (see
Shannon, 1948). Given a probability distribution

p = (
p1, . . . , pN

)
, pi � 0,

N∑
i=1

pi = 1,

the Theil index, T (p) of p, is defined as the Kullback–Leibler (KL) divergence K(p|u) be-
tween p and the uniform distribution u, or equivalently, as the difference between log(N)

and the Shannon entropy ξ(p). Precisely,

T (p) := K(p|u) :=
N∑

i=1

pi log
(
N · pi

) = log(N) − ξ(p), (1)



284 F. D’Amico et al.

where ξ(p) = − ∑N
i=1 pi log pi . The usual convention that if pi = 0 for some i, the value

of the corresponding expression 0 log(0) is set to be 0, is considered.
The definition of Theil index has been extended for stochastic processes by D’Amico

and Di Biase (2010) and successively applied and further investigated in D’Amico et al.
(2012) and in D’Amico et al. (2014) for an additive decomposition of this index. The
random extension of the Theil index is, indeed, introduced.

Let shc(t) be the share of the attribute held by individual c ∈ C at time t ∈ N. It is
defined as the proportion of its own attribute Sc(t) relative to the sum of the attribute over
all individuals, i.e.

shc(t) = Sc(t)∑
d∈C Sd(t)

.

The vector of shares of attributes at time t , sh(t) := (shc(t))c∈C defines a probability
distribution on the set of countries C. Note that sh := (sh(t)t∈N) is a stochastic process
that depends on the stochastic processes Sc, controlled by Xc.

We denote the Random Entropy in the meta-community by the stochastic process
DT(sh(t)), defined according to the following equation

DT(sh(t)) =
∑
c∈C

shc(t) log
(
N · shc(t)

)
, t ∈ N. (2)

In this case also, if shc(t) = 0 for some c and t , the value of the corresponding expression
0 log(N · 0) is set to be 0.

An explicit formula for the expected value of DT(sh(t)) has been provided in D’Am-
ico et al. (2019). Nevertheless, that formula can only be effectively implemented for small
sized meta-communities and number of communities. In the contrary case, a Monte Carlo
simulation approach can be successfully implemented. The proposed algorithm simulates
repeatedly the trajectories of all individuals according to the underlying Markov model,
providing the sequence of communities to which each individual belongs in time. More-
over, the personal attributes are simulated by using the copula function with marginal
distribution for each individual dependent on the community of membership. The ex-
pected value of the Random Entropy can be estimated by averaging, for each time, over
all simulated attributes in the meta-community.

The whole computational procedure is made of several steps, thus, to simplify the
readability of the reported pseudocode (see Algorithm 1), we are omitting some of the
preliminary tasks, such as: the identification of the number K and dislocation in time of the
change points {τk}Kk=1; the corresponding estimation of the transition probability matrices
(l)P = { (l)pij }i,j∈E ; the cdf’s {Fx, x ∈ E} of attribute depending on the community x;
and the identifiability of the copula function Cθ . Obviously, the software Randentropy is
designed to solve all the aforementioned tasks, including the implementation of the Monte
Carlo algorithm which represents the very last step of the computation.

For easiness of notation we adopt the following vectorial notation along the Algo-
rithm 1:



Randentropy: A Software to Measure Inequality in Random Systems 285

Algorithm 1 Monte Carlo Simulation of the Random Entropy
for c = 1 : N

set X(0, c) = ic;
end for
set k = 1;
3. set h = τk−1 while h < (τk ∧ M)

for c = 1 : N

sample the random variable X ∼ (k)pX(h−1,c),·
set X(h, c) = X(ω);

end for
sample (v1, v2, . . . , vN) from N independent Uniform U(0, 1);
set u1 = v1 and S(h, 1) = F−1

X(h,1)(u1);
for b = 2 : N

set Cθ(vb|(u1, . . . , ub−1)) = ∂b−1
(u1,...,ub−1)

Cθ (u1,...,ub−1,vb,1,...,1)

∂b−1
(u1,...,ub−1)

Cθ (u1,...,ub−1,1,1,...,1)
;

set ub = C−1
θ (vb|(u1, . . . , ub−1));

set S(h, b) = F−1
X(h,b)(ub);

end for
for b = 1 : N

set s(h, b) = S(h,b)∑N
c=1 S(h.c)

;
end for
set DT(h) = ∑N

c=1 s(h, c) · log(N · s(h, c));
set k = k + 1 and continue to 3.

end while

• X(t, c) = Xc(t) denotes the community to which the individual c belongs to at time t .
Thus, X(· , ·) is a matrix whose values are element of E. Its i-th row X(i, ·) provides
the meta-community configuration at time i, that is, the allocation of the individuals
at that time among the communities. Instead, the j -th column of the matrix (X(·, j))
gives the trajectory of the individual j in time, that is, the sequence of communities it
visited in time;

• s(t, c) = shc(t) denotes the attribute held by individual c at time h. Thus, s(· , ·) is
a matrix whose values are non-negative real numbers. Its i-th row s(i, ·) provides the
share of the attribute owned by the individuals of the meta-community at time i; it rep-
resents a probability distribution. The j -th column of the matrix s(· , j) shows instead
the evolution in time of the share of the attribute owned by the individual j ;

• DT (t) = DT(sh(t)) denotes the value of the Random Entropy at time t in the meta-
community. Specifically, it gives the Theil’s entropy computed on the probability dis-
tribution s(t, ·) which represents a realization of the Random Entropy in a given simu-
lation;

• M denotes the horizon time of the simulation.



286 F. D’Amico et al.

The Algorithm 1 generates a vector of observations (u1, . . . , uN) from random vari-
ables having Uniform U(0, 1) marginals and sharing the N -dimensional Copula Cθ . To
do this, first a vector (v1, . . . , vN) is generated from N independent uniform distributions
over [0, 1] and then their conditional distributions are assessed using the copula, in fact
the quantity

Cθ

(
vb

∣∣(u1, . . . , ub−1)
) = ∂b−1

(u1,...,ub−1)
Cθ (u1, . . . , ub−1, vb, 1, . . . , 1)

∂b−1
(u1,...,ub−1)

Cθ (u1, . . . , ub−1, 1, 1, . . . , 1)
,

gives the conditional cumulative distribution function of a uniform random variable Ub

given the values of the previous b − 1 variables, i.e.

P(Ub � vb|U1 = u1, . . . , Ub−1 = ub−1).

The computation of ub = C−1
θ (vb|(u1, . . . , ub−1)) produces the number ub ∈ [0, 1] that

is dependent on (u1, . . . , ub−1). The value ub is then used to generate the attribute of
individual b through the inverse of the cumulative distribution function of the specific
community to which the individual belongs to at time h, i.e.

S(h, b) = F−1
X(h,b)(ub).

In this way, the resulting individual attributes at any time h show a dependence to each
other which is due to the copula function.

The result of Algorithm 1 is a sequence of values {DT(h)}, h = 1, . . . ,M . Now, if
we execute the cited algorithm L times, we can denote by {DT(l)(h)}, h = 1, . . . , M the
result of the simulation at the l-th repetition. Then, we are able to provide an estimation of
the expected value of the Random Entropy by the average value in the L simulation, i.e.

D̂T(h) = 1

L

L∑
l=1

DT(l)(h), h = 1, . . . ,M.

3. Relevant Scenarios of Application

In this section we provide a short description of two possible domains of application of
the model. Certainly, a variety of additional situations falls well within the described the-
oretical setting.

3.1. Financial Inequality in an Economic Area

This application was originally considered by D’Amico et al. (2018a) and (2018b) and
successively in a more comprehensive way in D’Amico et al. (2019). In this framework
we have a meta-community that coincides with a given set of countries all belonging to



Randentropy: A Software to Measure Inequality in Random Systems 287

a given Economic Area. A possible case is represented by the European Economic Area.
Practically, every country receives a note about its financial creditworthiness, which is
expressed in terms of a sovereign credit rating, see e.g. Trueck and Rachev (2009) and
D’Amico et al. (2017). Credit ratings are measured in an ordinal scale and assigned by the
rating agencies. Moody’s, Standard & Poor’s and Fitch are three major among others.

Each rating class can be seen as a community, in which the countries are allocated at
every time. According to its own riskiness (expressed by rating class), each country pays
interest rates on its debt. When the interest rates are compared to a benchmark they define
the so-called credit spreads. Thus, credit spreads can be seen as personal attributes held
by each country in time.

Empirical analysis has shown that credit spreads of European countries are positively
correlated, with the exception of Denmark, Sweden and the United Kingdom. To model
this complex correlation structure a copula function can be used according to our frame-
work. Once the credit spreads are obtained, it is possible to compute the vector of at-
tributes at time t , sh(t) := (shc(t))c∈C . Finally, the computation of the expected value of
DT(sh(t)) gives an effective tool for forecasting the financial inequality in an economic
area and its evolution in time.

3.2. Human Mobility and Environmental Implications

Another area in which the DT(sh(t)) might be useful is related to the analysis of human
mobility data and specific attributes of interest, see e.g. Song et al. (2006) and Krumme
et al. (2013). Evidently, it is possible to use Markov chains as a tool to measure patterns
of movements of individuals in a given area. Substantially, the global area, in which the
totality of individuals (the meta-community) lives, is partitioned into different locations
(communities) and the probability of the next visited location is assumed to depend only
on the current location and not on the previous ones. As members of a given location,
individuals possess a personal attribute that can be of different nature.

For example, it would be possible to consider pollution as a variable depending on the
specific location, and to measure by the index DT(sh(t)) the inequality of the distribution
of pollution in the global area and how it may evolve in time. Another possible choice, for
the personal attribute, can be the level of expenditures, in such a case the Random Entropy
could be used for assessing the inequality of expenditures in the area. The latter approach
can represent an indeed useful tool to optimize the displacement policies of new markets
and stores.

4. Computational Details and Applications

The software we are presenting here has been engineered so that the main computational
kernel is included in a single python module named randentropymod (Storchi, 2020).
The cited module contains two classes: randentropykernel and changepoint. The two
classes are devoted to the Markov reward approach computation, and to the change-point
estimation, respectively. The full software bundle is then composed by two Command



288 F. D’Amico et al.

Line Interfaces (CLIs): randentropy.py and randentropy_qt.py, and a single Graphical
User Interface (GUI) based on PyQt5 Summerfield (2007) (i.e. the Python binding of the
cross-platform GUI toolkit).

While the two mentioned CLIs have been specifically developed to perform separately
the Markov reward computation (i.e. randentropy.py) and the change-point estimation
(i.e. changepoint.py), the GUI has a wider ability. Indeed, the GUI may be used to perform
both the change-point estimation as well as the Markov reward computation, and clearly
also to easily visualize and explore the obtained results.

The full software suite has been developed within the Linux OS environment. How-
ever, once the needed packages are downloaded and installed, it should work, without
restrictions, also under Mac OS and Windows thanks to the intrinsic portability nature
of the Python programming language. The Python packages, in addition to the aforemen-
tioned PyQT5, strictly needed to run the code are: Numpy (see Dubois et al., 1996) and
Scipy (Jones et al., 2001) used to engineered the numerical tasks, matplotlib for the
plots and data visualization (see Hunter, 2007).

4.1. The Randentropykernel Class and Related CLI

As already stated, the randentropykernel class is devoted to the computation of the Ran-
dom Entropy which is based on the Markov model with dependent rewards as described in
Section 2. The class is made of several methods as the one to specify the community matrix
(i.e. set_community) and the attributes matrix (i.e. set_attributes), which correspond to
the matrices X(· , ·) and s(· , ·) used in the algorithm, respectively. There are clearly var-
ious methods to tune the computation behaviour such as: set the number of Monte Carlo
simulation steps (i.e. set_num_of_mc_iterations), or the simulated time period set_sim-
ulated_time. Finally, the user has the ability to enable or disable the copula function
via the set_usecopula method, and clearly to perform the main computation calling the
run_computation method. The software makes use of a Gaussian (or Normal) Copula
which is probably the most frequently used copula in the applications. Nevertheless, Al-
gorithm 1 is general and holds for any copula function, and since the software is open
source, any researcher can adapt it to consider a different copula. Once the computation
is completed, the user can retrieve all the results: the first and the second-order moments
of the Random Entropy using get_entropy and get_entropy_sigma, respectively.

The randentropy.py is the CLI that is naturally bonded to the mentioned class. As
can be seen from Fig. 2, the user has the possibility to specify two input matrices (i.e. to
specify both their locations and names): the first one representing the community matrix,
while the second is the Attributes one. The mentioned matrices may be stored both on a
MatLab file or on a CSV style one.

Evidently, the CLI options reported in Fig. 2 reflect the cited randentropykernel capa-
bilities. Then, -s allows for the bin width specification, needed to estimate the probability
distribution of the attribute given the community membership. Secondly, -t enables the
user to specify the simulated period, and -n refers to the number of Monte Carlo itera-
tions. Optionally, the -i flag allows the user to run the simulation after computing the
stationary distribution.



Randentropy: A Software to Measure Inequality in Random Systems 289

Fig. 2. CLI for the Markov reward approach.

It is finally somehow interesting to report here that: in case one wants to perform the
simulation using the stationary distribution π of the Markov chain X = X(t) we need
to solve a linear matrix equation ax = b. To solve the given equation one can compute
the value of x that minimizes the Euclidean 2-norm ‖b − ax‖2. This has been done by
applying a specific function within Numpy libraries (see Dubois et al., 1996).

4.2. The Changepoint Class and Related CLI

As already stated within the randentropymod module there is also the changepoint class.
The cited class, and thus the related CLI, is devoted to detect the position of k change-
points, where k = 1, 2, 3. In particular, the code finds the positions of the change-points
by maximizing the likelihood function of the observed trajectories of the members within
their communities. At the same time, the 	 test is carried out in order to assess statistically
significant differences among the transition probability matrices found. Additional details
on this statistical test are available in Polansky (2007) and D’Amico et al. (2019).

The most relevant methods within the class are needed to specify the transition
matrix (i.e. set_community) and the number of change-points to be detected (i.e.
set_num_of_cps). Once the initial settings have been specified, the main computation
starts using the compute_cps method. Finally, the calculated x change-points can be re-
trieved using the get_cp1_found, get_cp2_found and get_cp3_found, respectively, for
the first, second and third change-point.

Once again the CLI options, reported in Fig. 3, as expected, reflect the class capabil-
ities. Thus, to run the code, the input transition matrix has to be specified, in terms of a
Matlab or a CSV filename, as well as the matrix name within the file (options -m and
-M, respectively). The number of change-points to be considered has to be defined as well
(i.e. using the -c option), otherwise the code will run assuming a single change-point.
Optionally, an output filename, where all the results are written, can be specified using
the -o/-output-file option.



290 F. D’Amico et al.

Fig. 3. CLI for change-point detection algorithm.

Finally, we introduced some methods, and clearly the relative CLI options that can be
used also to distribute the computational burden among several processes, thus CPUs. In-
deed, while working with a huge amount of data it can be convenient to specify a range of
time within which the algorithm is carried out, or to use a specific time distance between
two change-points. Thus, the user has the ability to define a range of time for the first
change-point (the same applies for the others) via the set_cp1_start_stop method.
Similarly, using the set_delta_cp method, one can specify the delta time to be con-
sidered among the change-points.

4.3. Graphical User Interface

All the previously illustrated functionalities have been integrated also on a GUI (Graphical
User Interface). The GUI has been implemented using PyQT5, a comprehensive set of
Python bindings for Qt v5 (PyQT, 2012). While we implemented two different CLIs, to
fully cover the various aspects implemented within the randentropymod, the GUI is
unique and can be access via the randentropy_qt.py file (Storchi, 2020).

The computation starts after choosing an input file, it can be both a Matlab, as well as a
CSV, containing two matrices. The first matrix has to contain the data of the variable which
is supposed to evolve according to a Homogeneous Markov Chain (HMC) (e.g. in the
financial application the variable consists on the sovereign credit ratings, see Section 3.1).
As a matter of fact, the first matrix is expected to be named “ratings” by default (see
Fig. 4). The second matrix has to refer to the reward process describing the attribute which
is driven by the HMC. In the case of the financial application, as illustrated in Section 3.1,



Randentropy: A Software to Measure Inequality in Random Systems 291

Fig. 4. Dialog to specify the input matrices.

Fig. 5. Dialog to specify the the input parameters related to the Monte Carlo simulation.

this is the credit spread. As the code directly computes the credit spread starting from the
interest rates, the second matrix directly collects the interest rate data. Indeed, by default,
this matrix within the file is expected to be named “interest_rates” (see Fig. 4).

Once the two matrices have been specified, the user may start the computation: Edit
-> Run. The use is prompted with a dialog window, reported in Fig. 5, where there is
the ability to specify: the bin width to estimate the empirical distributions (one for each
ordered variable of the first matrix), the simulated period and the number of Monte Carlo
iterations.

Alternatively, the user can flag “Simulation using stationary distribution” to compute
the asymptotic values of the Random Theil’s Entropy. After clicking the button OK, the
program will start the computation, and when it finishes, it returns the plot of the Dynamic
inequality (Fig. 6) that the user has the ability to interact with and to save as a graphical
file (i.e. PNG, PDF, PS, and more).

Subsequently, by clicking on Edit -> Plot CS distributions the user can plot the
histograms of the empirical distributions of the attribute. Moreover, by clicking on Edit
-> View Transition matrix the transition probability matrix, estimated on the
sequences of visited communities, is shown (Fig. 7).

Finally, with Edit -> RunChangePoint one can run the change-point detection
algorithm. As described for the CLI, the code runs after the specification of: the number of



292 F. D’Amico et al.

Fig. 6. Output: dynamic inequality.

Fig. 7. Histogram of the CS empirical distribution/transition probability matrix.

Fig. 8. Options required for change-point detection.

change-points to be detected and the corresponding 	 test (see Fig. 8); the range of time
where the algorithm is carried out and, eventually, the distance between two subsequent
change-points.



Randentropy: A Software to Measure Inequality in Random Systems 293

Fig. 9. Output of the change-point detection algorithm.

In the case reported in Fig. 8, a single change-point is detected within a range of time
spreading between t = 70 and t = 100.

After confirming the chosen options, the computation starts and the GUI returns the
plot of the likelihood function estimated on the community data (see in Fig. 9), together
with the value of the maximum likelihood function, and the corresponding position of the
calculated change-point. Evidently, also in this case, the resulting plot can be saved into a
standard graphical file format.

4.4. Testing Financial Inequality in an Economic Area

Finally, we will show how the described CLIs and GUI can be used to predict the financial
inequality in the European Economic Area according to the theoretical model proposed in
D’Amico et al. (2018a, 2018b). In this specific case, the meta-community coincides with
all the countries within the European Community. Thus, each rating class, as assigned
by rating agencies, can be seen as a community, in which the countries are allocated at
every time step. Clearly, as also already stated in the previous section, the credit spread
represents the personal attributes held by each country.

The results we are here reporting have been obtained using the monthly rating, at-
tributed by the Standard & Poor’s agency, to the 26 European countries (UK and Cyprus
have been excluded in the current meta-community sample) from January 1998 to De-
cember 2016 (see, D’Amico et al., 2018a, for extra details on the data-set we are here
considering).

To detect the position of a change-point, within the considered horizon time, we com-
pute the maximum value of the likelihood function considered as a function of the position
of the change point. Finally, we fix the change point as the value that maximizes the like-
lihood function. In the proposed software one can use both the changepoint.py CLI as
well as the GUI:

python3changepoint.py − m./files/sepmonthly.mat − c1.



294 F. D’Amico et al.

Fig. 10. GUI results for the change-point detection, see text for details.

The result is reported in Fig. 10, where the likelihood function is computed depending
on the position of the change point (measured on the X-axis). The software detects a
change-point at time 158 (the maximum value of the likelihood function). The value 158
corresponds to a change point detected in January 2012. Indeed, at the beginning of 2012
the value of the total credit spread in Europe had a peak of about 10.000 basis points (bp)
and this growth was driven by the rise of the securities yield of Greece (2.924 bp), Ireland
(1.245 bp) and Portugal (1.385 bp), see D’Amico et al. (2018b) for more detail about the
evolution of financial variables. Similarly, for the interested reader, financial examples
with multiple change-points can be found in D’Amico et al. (2019)

It is relevant to notice that the software (i.e. the changepoint.py CLI) also provides an
indication related to the choice of the best model as it computes the Bayesian information
criterion (BIC) to balance the improvement in the goodness of fit test obtained by increas-
ing the number of the parameters obtained by an increase in the number of change points.
Precisely, the BIC is evaluated according to the relation

BIC(k) = D · (D − 1) · (k + 1) log(n) − 2
k∑

r=0

L(τr , τr+1).

k is the number of change points, n is the size of the sample, D is the cardinality of
the state space of the Markov chain, thus, D · (D − 1) · (k + 1) is the total number
of parameters. The quantity

∑k
r=0 L(τr , τr+1) is the likelihood function conditional on

the estimated change points. The best model can be selected by minimizing the value of
the BIC(k) with respect to k. The application of the BIC to our financial data provides
interesting practical results that can be summarized as follows. First, we set k = 1 and we
obtain a value of the change point equal to 158 months. The corresponding log-likelihood
function assumes the maximum value of −320.06 and a BIC equal to 1129.10. Second,
we set k = 2 to understand if two change points better describe our data. In this case, the
optimal change points are identified at times 73 and 119. The corresponding log-likelihood
function assumes the maximum value of −311.12 which shows an increasing ability of
the model with two change points to fit the data but the BIC value increases to 1623.29.
Thus, the model with a single change point was found as the most suitable having least
BIC value.



Randentropy: A Software to Measure Inequality in Random Systems 295

Fig. 11. Random Entropy. Results obtained using the CLI are reported on the left panel, while the ones obtained
using the GUI have been reported on the right panel.

Equivalently, a user can forecast the financial inequality in an economic area and its
evolution in time via the randentropy.py (or the GUI):

python3randentropy.py − m./files/sepmonthly.mat − b./files/sepmonthly.mat
− s0.25 − t36 − n1000 − v,

where the forecast period has been set to 36 months, using 1000 Monte Carlo simula-
tions. The final result, reported in Fig. 11, shows a similar trend for both the GUI and
CLI, with some clear differences related to the implicit randomness of the Monte Carlo
procedure (clearly the user can easily avoid this difference selecting a fixed random seed
using the – seed option, or equivalently via the set_use_a_seed method within the
randentropykernel class). The results entail a sharp increase in short-term financial
inequality, as measured in term of credit spread, which is expected to persist in the first 10
months of the forecast. Then, the rise is expected to be less pronounced until the reach-
ing of its maximum value around month 20. Immediately afterwards, a slight decrease is
expected to be observed.

As a final remark, it is somehow important to underline that, evidently, a user has the
capability of building its own code, to perform the same or similar computations just de-
scribed, accessing directly the functionalities implemented within the randentropymod
Python 3.x module.

5. Conclusions and Perspectives

The Randentropy software allows estimating the inequality in a stochastic system accord-
ing to the framework based on Random Entropy as developed in D’Amico et al. (2019).
The methodology is able to consider dependent behaviours of the individuals and time-
varying dynamics, which may be of interest in several applied domains. Possible devel-
opments of the research include the possibility to consider semi-Markov models, as done
in the SemiMarkov R Package developed by Król and Saint-Pierre (2015), to which a
reward scheme based on a copula function should be attached, followed by the evaluation
of the Random Entropy according to our software.



296 F. D’Amico et al.

Random Entropy evaluation, in the presented general framework, is a new and chal-
lenging subject of research and is not available in any software; this renders our investi-
gation an “unicum” in the literature of inequality assessment in stochastic systems.

References

Asadi, M., Zohrevand, Y. (2007). On the dynamic cumulative residual entropy. Journal of Statistical Planning
and Inference, 137(6), 1931–1941.

Behrendt, S., Dimpfl, T., Peter, F.J., Zimmermann, D.J. (2019). RTransferEntropy—quantifying information
flow between different time series using effective transfer entropy. SoftwareX, 10, 100265.

Calì, C., Longobardi, M., Navarro, J. (2020). Properties for generalized cumulative past measures of information.
Probability in the Engineering and Informational Sciences, 34(1), 92–111.

Curiel, R.P., Bishop, S. (2016). A measure of the concentration of rare events. Scientific Reports, 6, 32369.
D’Amico, G., Di Biase, G. (2010). Generalized concentration/inequality indices of economic systems evolving

in time. Wseas Transactions on Mathematics, 9(2), 140–149.
D’Amico, G., Di Biase, G., Manca, R. (2012). Income inequality dynamic measurement of Markov models:

application to some European countries. Economic Modelling, 29(5), 1598–1602.
D’Amico, G., Di Biase, G., Manca, R. (2014). Decomposition of the population dynamic Theil’s entropy and its

application to four european countries. Hitotsubashi Journal of Economics, 55(2), 229–239.
D’Amico, G., Di Biase, G., Janssen, J., Manca, R. (2017). Semi-Markov Migration Models for Credit Risk. John

Wiley & Sons.
D’Amico, G., Scocchera, S., Storchi, L. (2018a). Financial risk distribution in European Union. Physica A:

Statistical Mechanics and its Applications, 505, 252–267.
D’Amico, G., Regnault, P., Scocchera, S., Storchi, L. (2018b). A continuous-time inequality measure applied to

financial risk: the case of the European Union. International Journal of Financial Studies, 6(3), 62.
D’Amico, G., Petroni, F., Regnault, P., Scocchera, S., Storchi, L. (2019). A Copula-based Markov reward ap-

proach to the credit spread in the European Union. Applied Mathematical Finance, 26(4), 359–386.
Di Crescenzo, A., Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions.

Journal of Applied probability, 39, 434–440.
Di Crescenzo, A., Longobardi, M. (2009). On cumulative entropies. Journal of Statistical Planning and Infer-

ence, 139(12), 4072–4087.
Dubois, P.F., Hinsen, K., Hugunin, J. (1996). Numerical python. Computers in Physics, 10(3), 262–267.
Durante, F., Sempi, C. (2016). Principles of Copula Theory, Vol. 474. CRC Press, Boca Raton, FL.
Ferguson, N., Datta, S., Brock, G. (2012). msSurv: an R package for nonparametric estimation of multistate

models. Journal of Statistical Software, 50(14), 1–24.
Hunter, J.D. (2007). Matplotlib: a 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.
Jackson, C.H., (2011). Multi-state models for panel data: the msm package for R. Journal of Statistical Software,

38(8), 1–29.
Jaynes, E.T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620.
Jones, E., Oliphant, T., Peterson, P. (2001). SciPy: Open source scientific tools for Python. [Online; accessed

2019-02-05]. http://www.scipy.org.
Król, A., Saint-Pierre, P. (2015). SemiMarkov: an R package for parametric estimation in multi-state semi-

Markov models. Journal of Statistical Software, 66(6).
Krumme, C., Llorente, A., Cebrian, M., Moro, E. (2013). The predictability of consumer visitation patterns.

Scientific Reports, 3, 1645.
Kullback, S., Leibler, R.A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1),

79–86.
Marcon, E., Hérault, B. (2015a). entropart: an R package to measure and partition diversity. Journal of Statistical

Software, 67(1), 1–26.
Marcon, E., Hérault, B. (2015b). entropart: an R package to measure and partition diversity. Journal of Statistical

Software, 67(1), 1–26.
Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006). Maximum entropy modeling of species geographic distri-

butions. Ecological Modelling, 190(3-4), 231–259.

http://www.scipy.org


Randentropy: A Software to Measure Inequality in Random Systems 297

Polansky, A.M. (2007). Detecting change-points in Markov chains. Computational Statistics & Data Analysis,
51(12), 6013–6026.

PyQT (2012). PyQt Reference Guide. http://www.riverbankcomputing.com/static/Docs/PyQt4/html/index.
html.

Rao, M., Chen, Y., Vemuri, B.C., Wang, F. (2004). Cumulative residual entropy: a new measure of information.
IEEE Transactions on Information Theory, 50(6), 1220–1228.

Saad, T., Ruai, G. (2019). PyMaxEnt: a Python software for maximum entropy moment reconstruction. Soft-
wareX, 10, 100353.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3),
379–423.

Song, L., Kotz, D., Jain, R., He, X. (2006). Evaluating next-cell predictors with extensive Wi-Fi mobility data.
IEEE Transactions on Mobile Computing, 5(12), 1633–1649.

Storchi, L. (2020). MarkovTheil code. GitHub.
Summerfield, M. (2007). Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Program-

ming (paperback). Pearson Education.
Theil, H. (1967). Economics and information theory. Technical report.
Trueck, S., Rachev, S.T. (2009). Rating Based Modeling of Credit Risk: Theory and Application of Migration

Matrices. Academic Press.

G. D’Amico is a full professor of mathematical methods in economics, finance and in-
surance at the Department of Economics of the “G. D’Annunzio” University of Chieti-
Pescara. He received his PhD in mathematics for applications in economics, finance and
insurance from the University “La Sapienza” of Rome in May 2005. His research interests
include the theory of stochastic processes and their applications in finance, insurance, eco-
nomics, reliability and wind energy. He is interested also in nonparametric statistical infer-
ence for stochastic processes. His research has appeared in several refereed journals such
as European Journal of Operational Research, Applied Mathematical Finance, Scandina-
vian Actuarial Journal, Applied Mathematical Modelling, IMA Journal of Management
Mathematics, Journal of the Operational Research Society, Reliability Engineering and
System Safety, Stochastics, Insurance: Mathematics and Economics. He has published a
book with John Wiley and Sons.

http://www.riverbankcomputing.com/static/Docs/PyQt4/html/index.html
http://www.riverbankcomputing.com/static/Docs/PyQt4/html/index.html


298 F. D’Amico et al.

S. Scocchera works in the Credit Risk Model office at Banco BPM SPA, dealing with
projects concerning the Credit Portfolio Model, the inclusion of the climate risk (ESG)
within risk parameters and satellite models. She received her PhD in accounting, manage-
ment and finance with specialization in mathematical finance from the “G. D’Annunzio”
University of Chieti-Pescara in May 2019.

L. Storchi is an associate professor and after more than 15 years of research activity he
has acquired wide competences in several programming languages, numerical methods
and data modelling. His multidisciplinary background is reflected both in the list of his
scientific interests, as well as in the diversity of his publications.


	Introduction
	Theory
	Relevant Scenarios of Application
	Financial Inequality in an Economic Area
	Human Mobility and Environmental Implications

	Computational Details and Applications
	The Randentropykernel Class and Related CLI
	The Changepoint Class and Related CLI
	Graphical User Interface
	Testing Financial Inequality in an Economic Area

	Conclusions and Perspectives

