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Abstract. Aimed at achieving the accurate restoration of Poissonian images that exhibit neat edges
and no staircase effect, this article develops a novel hybrid nonconvex double regularizer model.
The proposed scheme closely takes the advantages of total variation with overlapping group spar-
sity and nonconvex high-order total variation priors. The overlapping group sparsity is adopted to
globally suppress the staircase artifacts, while the nonconvex high-order regularization plays the
role of locally preserving the significant image features and edge details. Computationally, a quite
efficient alternating direction method of multipliers, associated with the iteratively reweighted �1
algorithm and the majorization-minimization method, is employed to settle the optimization prob-
lem iteratively. Finally, exhaustive simulation experiments are executed for recovering Poissonian
images, which are made comparisons with several state-of-the-art restoration strategies, indicate the
brilliant performance of our model in terms of intuitive effects and accuracy evaluation.
Key words: image restoration, Poisson noise, nonconvex regularizer, overlapping group sparsity,
alternating direction method of multipliers.

1. Introduction

In imaging science, the obtained images usually have undesirable degradation that is
caused by the limitation of external environment, electronic equipment and human fac-
tors. Among those, the pollution of Poisson noise is a widely considered issue, which
commonly occurs in medical imaging (Sarder and Nehorai, 2006), single particle emis-
sion computed tomography (Bardsley and Goldes, 2011) and various other applications.
Therefore, the problem of Poisson noise removal is an important and urgent task.

To solve the above problem, Setzer et al. (2010) proposed a classical Poissonian image
restoration model based on the total variation (TV) regularization as

min
u

‖∇u‖1 + λ〈1,Ku − f log Ku〉, (1)

where ∇ denotes the gradient operator, λ is a positive tuning parameter that controls the
data fidelity term, K means a nonnegative linear compact operator, and then u and f
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represent the original image and the positive, bounded observed version separately. With
the aim to optimize the minimization problem (1), the researches in (Setzer et al., 2010;
Liu and Huang, 2012; Pham et al., 2020) adopted the alternating split Bregman iteration
to avoid the inner loop. Besides, several valid numerical algorithms have been proposed
in recent years, such as the scaled gradient projection method (Bonettini et al., 2009), and
alternating direction algorithm (Figueiredo and Bioucas-Dias, 2010).

Generally speaking, the TV-based models have the edge-preserving property in the
process. That being said, the TV penalty often makes homogeneous regions easy to be
over-divided to appear piecewise constant. To compensate for this technical drawback,
there have emerged many efficient solvers, such as the high-order TV (HOTV, Chan et
al., 2000; Lysaker et al., 2003), nonlocal TV (Gilboa and Osher, 2008), and total gener-
alized variation (Bredies et al., 2010; Liu, 2016, 2021) regularized schemes. Devoted to
removing Poisson noise, the HOTV-based model formally reads as

min
u

∥∥∇2u
∥∥

1 + λ〈1,Ku − f log Ku〉, (2)

with ∇2 denoting the second-order gradient operator. The merit of high-order strategy is
able to eliminate the staircase effect caused by the TV model. Lately, another innovation
to conquer the unexpected distortion is the fractional-order TV (FOTV, Chowdhury et al.,
2020). Unfortunately, the images resulting from the aforesaid techniques sometimes suffer
from the over-smoothness of contours or the residue of noise.

As opposed to the convex models mentioned above, Nikolova et al. (2010) illustrated
that the nonconvex regularizers in the aspect of preserving shapes are superior to the con-
vex regularizers. As a matter of fact, nonconvex TV (Nikolova et al., 2010; Chartrand,
2007) possesses some excellent features of TV, but it may cause more serious staircase
artifacts. In our opinion, nonconvex HOTV (Adam and Paramesran, 2019; Oh et al., 2013)
is more appropriate for processing the degraded images relatively. Recently, the work (Lv
et al., 2016) considers the TV with overlapping group sparsity (OGS-TV) for deblurring
Poisson noisy images. It follows from the experiments that this approach can alleviate
the blocky aspects to a certain extent, however, the staircasing effect is still present in the
recovered image.

For the purpose of overcoming the staircasing effect and obtaining sharp jump dis-
continuities simultaneously, as well as improving the accuracy of image restoration, this
paper focuses on a novel hybrid regularizers strategy for image deblurring under Poisson
noise. The proposed model closely incorporates the advantages of OGS-TV and noncon-
vex HOTV regularizers. Mathematically, the resulting optimization model is formulated
as follows

min
u

φ(∇u) + α
∥∥∇2u

∥∥p

p
+ λ〈1,Ku − f log Ku〉, (3)

where φ(·) is defined by the overlapping group sparsity, and ‖·‖p
p is a nonconvex �p norm

with 0 < p < 1. The parameter α > 0 controls the tradeoff between the first and second
regularizers.
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The main ideas and contributions of the current article are summarized as follows.
First, a novel hybrid regularizers model, which combines the superiorities of OGS-TV and
nonconvex HOTV, is explored for deblurring Poissonian images. The inclusion of dou-
ble regularizers contributes to achieving accurate restoration, and preserving sharp edges
while suppressing the staircasing artifacts. Second, to deal with the resulting nonconvex
minimization problem, we design an efficient alternating direction method of multipliers,
integrating it with the popular variable splitting method, majorization-minimization (MM)
method and iteratively reweighted �1 algorithm. Lastly, compared with several state-of-
the-art denoising techniques, numerous numerical experiments are presented to illustrate
the superior performance of our newly developed scheme.

The remainder of this paper is generalized as follows. In Section 2, we briefly present
some mathematical notations and necessary definitions, as well as the algorithms related
to our research. Moreover, the detailed solving steps of the proposed minimization are
described in Section 3 together with some efficient methods and remark. Subsequently, in
Section 4 we conduct several numerical experiments to display the comparisons of differ-
ent models, and demonstrate our significant improvements. Finally, Section 5 presents a
conclusion of this paper.

2. Preliminaries

In this section, our main target is to outline some necessary background knowledge, which
is tailored for the sequel numerical computations.

2.1. Notation

Suppose that � ⊂ R
n is an open, bounded domain. Then the TV of u ∈ L1(�) is formu-

lated as

TV(u) =
∫

�

|∇u|dx = sup

{∫
�

udiv(ψ)dx : ψ ∈ C1
c

(
�;Rn

)
, |ψ | � 1

}
, (4)

with div being the divergence operator. As for the high-order version, it takes the form of

HTV(u) =
∫

�

∣∣∇2u
∣∣dx = sup

{∫
�

n∑
i,j=1

u∂j ∂iψ
ij dx : ψ ∈ C2

c

(
�;Rn×n

)
, |ψ | � 1

}
,

(5)

where |ψ(x)| =
√∑n

i,j=1(ψ
ij )2, and C2

c (�;Rn×n) is the set of continuous quadratic
differentiable vector functions on the compact support set in �.

At present, we are in a position to give the discrete setting. For notational conve-
nience, we assume that the size of an image is n1 × n2, and define the function space
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U = C2
c (�;Rn×n). By the theory of finite difference method, the first-order forward and

backward difference operators are respectively characterized by

(
∂+
x u

)
i,j

=
{

ui+1,j − ui,j , 1 � i < n1,

0, i = n1,

(
∂+
y u

)
i,j

=
{

ui,j+1 − ui,j , 1 � j < n2,

0, j = n2,

(
∂−
x u

)
i,j

=

⎧⎪⎨
⎪⎩

ui,j − ui−1,j , 1 < i < n1,

u1,j , i = 1,

−un1−1,j , i = n1,

(
∂−
y u

)
i,j

=

⎧⎪⎨
⎪⎩

ui,j − ui,j−1, 1 < j < n2,

ui,1, j = 1,

−ui,n2−1, j = n2.

Consequently, the discrete gradient operator enjoys the following expression

(∇u)i,j = ((
∂+
x u

)
i,j

,
(
∂+
y u

)
i,j

)T
, (6)

and the counterpart of second-order operator is thus defined by

(∇2u
)
i,j

=
(

∂−
x (∂+

x u)i,j ∂+
x (∂+

y u)i,j

∂−
y (∂−

x u)i,j ∂−
y (∂+

y u)i,j

)
. (7)

Furthermore, the discrete forms of the first-order and second-order divergence opera-
tors on the space U are described as

(divu)i,j = (
∂−
x u

)
i,j

+ (
∂−
y u

)
i,j

,(
div2u

)
i,j

= ∂+
x

(
∂−
x u

)
i,j

+ ∂−
x

(
∂−
y u

)
i,j

+ ∂+
y

(
∂+
x u

)
i,j

+ ∂+
y

(
∂−
y u

)
i,j

.

2.2. OGS-TV Method

As stated in Selesnick and Chen (2013), an L-point group of the vector s is represented
as

si,L = [si , si+1, . . . , si+L−1] ∈ R
L, (8)

where L denotes the size of group, and si,L is a block that is composed of L continuous
components of s beginning with index i. On the basis of this notation, the work (Peyre
and Fadili, 2011) puts forward a general 1D group sparsity regularizer

ϕ(s) =
∑

i

‖si,L‖2 =
∑

i

(L−1∑
l=0

|si+l |2
)1/2

. (9)
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Note that if L = 1, ϕ(s) in (9) degrades into the commonly used 1D TV functional, and
when L > 1, ϕ(s) is beneficial for block sparsity (Bayram, 2011).

Regarding the case of 2D image u ∈ R
m×1 with m = n1 × n2, the associated L × L-

point group can be defined as the following square matrix. That is,

ũi,j,L =

⎡
⎢⎢⎢⎣

ui−m1,j−m1 ui−m1,j−m1+1 · · · ui−m1,j+m2

ui−m1+1,j−m1 ui−m1+1,j−m1+1 · · · ui−m1+1,j+m2
...

...
. . .

...

ui+m2,j−m1 ui+m2,j−m1+1 · · · ui+m2,j+m2

⎤
⎥⎥⎥⎦ , (10)

where m1 = 	L−1
2 
 and m2 = 	L

2 
, with 	·
 being the operation of rounding. By means
of piling up the L columns of the L × L matrix shown in (10), we obtain a vector ui,j,L

such that ui,j,L = ũi,j,L(:). Thus, the OGS function in a 2D arrangement is read as

ϕ(u) =
∑

i

∑
j

‖ui,j,L‖2. (11)

Consequently, the function φ(∇u) in (3) acted as a regularizer can be defined as

φ(∇u) = ϕ(∇xu) + ϕ(∇yu). (12)

It follows from the above formula that if L = 1, φ(∇u) is the anisotropic version of TV
function. Otherwise, when L > 1, this regularizer is denominated as the OGS-TV.

2.3. MM Method

The MM method (Hunter and Lange, 2004; Figueiredo et al., 2007) is frequently applied
to cope with the minimization problem. Rather than directly handling a complex cost
function P(u), this technique achieves the computational efficiency by solving a series of
more tractable optimization issues Q(u, uk) (k = 0, 1, 2, . . .). In fact, an MM iterative
approach that minimizes P(u) can be set as the model

uk+1 = arg min
u

Q
(
u, uk

)
, (13)

which requires that Q(u, uk) is not less than P(u), and Q(u, u) is equal to P(u).
For example, the form of an optimization scheme is as follows

min
u

{
P(u) = 1

2
‖u − u0‖2

2 + λϕ(u)

}
, (14)

with λ > 0, and ϕ denotes a penalty function that is given by (11).
To obtain an effective strategy for dealing with the minimization (14) by employing

the MM method, we need to seek out a majorizor of P(u). Owing to the quadratic form
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of the first term in (14), we actually need to find a majorizor of ϕ(u). The average value
inequality gives that

1

2‖t‖2
‖u‖2

2 + 1

2
‖t‖2 � ‖u‖2, (15)

where u, t �= 0. We remark that if and only if t = u, the equal sign in (15) holds. Substi-
tuting each group of ϕ(u) into (15), and then adding them up, this yields a majorizor of
ϕ(u) as

R(u, t) = 1

2

n1∑
i=1

n2∑
j=1

[
1

‖ti,j,L‖2
‖ui,j,L‖2

2 + ‖ti,j,L‖2

]
, (16)

with R(u, t) � ϕ(u) and R(t, t) = ϕ(t). And for ∀i, j , (16) needs to meet ‖ti,j,L‖2 �= 0.
By an uncomplicated calculation, it can be reformulated as

R(u, t) = 1

2
uT 
(t)u + C, (17)

where C is a constant related to t , and each element in the diagonal matrix 
(t) is ex-
pressed by

[

(t)

]
d,d

=
m2∑

i=−m1

m2∑
j=−m1

( m2∑
k1=−m1

m2∑
k2=−m1

|ud−i+k1,d−j+k2 |2
)−1/2

, (18)

with the subscript d = 1, 2, . . . , m.
So as to minimize P(u), an iterative algorithm using the MM approach is defined by

uk+1 = arg min
u

1

2
‖u − u0‖2

2 + λ

2
uT 


(
uk

)
u. (19)

After some manipulations, we can easily get the final solution

uk+1 = (
I + λ


(
uk

))−1
u0, (20)

where I means an identity matrix, which has the same size as 
(uk).

3. Numerical Algorithm

Our task, in this section, is chiefly to resolve our proposed hybrid model that combines
the OGS-TV and nonconvex HOTV functions for image restoration.

For solving the �p-norm based nonconvex optimization problem, in all other typical
algorithms that we are aware of, the iteratively reweighted �1 algorithm (Candes et al.,
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2008; Ochs et al., 2015) is generally an ideal treatment. Applying this method to the above
minimization reduces to the following approximation

min
u

φ(∇u) + αωk
∥∥∇2u

∥∥
1 + λ〈1,Ku − f log Ku〉, (21)

where the weight ω is calculated at the k-th iteration by ωk = p/(|∇2uk| + ε)1−p, with ε

denoting a small positive number that prevents the denominator from being equal to zero.
To deal with the non-linearity and non-differentiability properties of the constructed

model, we then resort to the classical variable splitting technique. Therefore, the objective
function (21) can be transformed into a constrained optimization problem by introducing
three auxiliary variables v, w and z. Namely,

min
v,w,z,u

φ(v) + αωk‖w‖1 + λ〈1, z − f log z〉, s.t. v = ∇u, w = ∇2u, z = Ku.

(22)

The above minimization problem can be effectually solved adopting the alternating
direction method of multipliers (Gabay and Mercier, 1976; Bertsekas and Tsitsiklis, 1997).
Consequently, we define the corresponding augmented Lagrangian function

L(v,w, z, u; μ1, μ2, μ3)

= φ(v) + αωk‖w‖1 + λ〈1, z − f log z〉
− 〈μ1, v − ∇u〉 + γ1

2
‖v − ∇u‖2

2 − 〈
μ2, w − ∇2u

〉
+ γ2

2

∥∥w − ∇2u
∥∥2

2 − 〈μ3, z − Ku〉 + γ3

2
‖z − Ku‖2

2, (23)

where the symbols μ1, μ2, μ3 stand for the Lagrange multipliers, and three positive
penalty parameters γ1, γ2, γ3 are used to measure the quadratic penalization.

Obtaining the optimal solution of (22) is equivalent to seeking a saddle point of L.
Since it is technically more difficult to settle all the variables simultaneously, this is done
by alternately minimizing L(v,w, z, u; μ1, μ2, μ3) with respect to v, w, z and u,

(
vk+1, wk+1, zk+1, uk+1)

= arg min
v,w,z,u

φ(v) + αωk‖w‖1 + λ〈1, z − f log z〉

− 〈
μk

1, v − ∇u
〉 + γ1

2
‖v − ∇u‖2

2 − 〈
μk

2, w − ∇2u
〉

+ γ2

2

∥∥w − ∇2u
∥∥2

2 − 〈
μk

3, z − Ku
〉 + γ3

2
‖z − Ku‖2

2, (24)

with the updating Lagrange multipliers μk+1
1 , μk+1

2 and μk+1
3⎧⎪⎨

⎪⎩
μk+1

1 = μk
1 + γ1

(∇uk+1 − vk+1
)
,

μk+1
2 = μk

2 + γ2
(∇2uk+1 − wk+1

)
,

μk+1
3 = μk

3 + γ3
(
Kuk+1 − zk+1

)
.

(25)
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More precisely, the optimization problem (24) can be effectively solved by yielding
the decoupled decomposition as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk+1 = arg min
v

φ(v) + γ1

2

∥∥v − ∇uk
∥∥2

2 − 〈
μk

1, v − ∇uk
〉
,

wk+1 = arg min
w

αωk‖w‖1 + γ2

2

∥∥w − ∇2uk
∥∥2

2 − 〈
μk

2, w − ∇2uk
〉
,

zk+1 = arg min
z

λ〈1, z − f log z〉 + γ3

2

∥∥z − Kuk
∥∥2

2 − 〈
μk

3, z − Kuk
〉
,

uk+1 = arg min
u

γ1

2

∥∥vk+1 − ∇u
∥∥2

2 − 〈
μk

1, v
k+1 − ∇u

〉 + γ2

2

∥∥wk+1 − ∇2u
∥∥2

2

−〈
μk

2, w
k+1 − ∇2u

〉 + γ3

2

∥∥zk+1 − Ku
∥∥2

2 − 〈
μk

3, z
k+1 − Ku

〉
.

(26)

In what follows, our purpose is to settle each subproblem in detail one by one. At first,
fixing the variables {w, z, u}, the minimization of energy L regarding v is of the form

vk+1 = arg min
v

φ(v) + γ1

2

∥∥∥∥v −
(

∇uk + μk
1

γ1

)∥∥∥∥
2

2
. (27)

This, together with the definitions of OGS and MM algorithms, leads to a converted for-
mation that we are interested in:

vk+1 = arg min
v

1

2
vT 


(
vk

)
v + γ1

2

∥∥∥∥v −
(

∇uk + μk
1

γ1

)∥∥∥∥
2

2
. (28)

Based on the preliminaries described above, the solution of v is obviously given by

vk+1 =
(

I + 1

γ1



(
vk

))−1(
∇uk + μk

1

γ1

)
. (29)

Subsequently, we aim to figure out the subproblem pertaining to w. The second ex-
pression in (26) equivalently shares the following more concise formula

wk+1 = arg min
w

αωk‖w‖1 + γ2

2

∥∥∥∥w −
(

∇2uk + μk
2

γ2

)∥∥∥∥
2

2
. (30)

For notational simplicity, let us denote by Xk = (∇2uk + μk
2/γ2). The solving process of

sequence (30) is given explicitly by utilizing a soft thresholding with the shrink operator.
Concretely, which takes the form of

wk+1 = shrink
(

Xk,
αωk

γ2

)
= max

{∣∣Xk
∣∣ − αωk

γ2
, 0

}
· sgn

(
Xk

)
, (31)
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with the 1D shrinkage formula being defined by

shrink(t, ρ) = max
(|t | − ρ, 0

) · sgn(t). (32)

Thereafter, the concerned subproblem with regard to z corresponds to the equivalent
minimization problem as follows

zk+1 = arg min
z

λ〈1, z − f log z〉 + γ3

2

∥∥∥∥z −
(

Kuk + μk
3

γ3

)∥∥∥∥
2

2
. (33)

According to the variational method, this results in the first-order optimization condition
as

0 = λ

(
1 − f

zk+1

)
+ γ3

(
zk+1 − Kuk − μk

3

γ3

)
. (34)

More explicitly, by using the extract roots formula of quadratic equation, we acquire the
following closed-form solution

zk+1 = Kuk − λ
γ3

+ μk
3

γ3

2
+

√√√√(
Kuk − λ

γ3
+ μk

3
γ3

2

)2

+ λ

γ3
f . (35)

The last procedure of the alternating method is to minimize for u. Deducing from the
fourth equation in (26), we thus obtain

uk+1 = arg min
u

γ1

2

∥∥∥∥∇u − vk+1 + μk
1

γ1

∥∥∥∥
2

2
+ γ2

2

∥∥∥∥∇2u − wk+1 + μk
2

γ2

∥∥∥∥
2

2

+ γ3

2

∥∥∥∥Ku − zk+1 + μk
3

γ3

∥∥∥∥
2

2
. (36)

Considering that the subproblem (36) is a simple quadratic problem, the specific Euler–
Lagrange equation can be derived as follows

0 = γ1∇∗
(

∇uk+1 − vk+1 + μk
1

γ1

)
+ γ2

(∇2)∗
(

∇2uk+1 − wk+1 + μk
2

γ2

)

+ γ3K
∗
(

Kuk+1 − zk+1 + μk
3

γ3

)
, (37)

where ∗ indicates the conjugate operator. By doing a simple arrangement, the above for-
mulation can be represented as

[
γ1∇∗∇ + γ2

(∇2)∗∇2 + γ3K
∗K

]
uk+1

= ∇∗(
γ1v

k+1 − μk
1

) + (∇2)∗(
γ2w

k+1 − μk
2

) + K∗(
γ3z

k+1 − μk
3

)
, (38)



582 X. Liu, W. Lian

with the periodic boundary condition for u. Note that all the operators K∗K , ∇∗∇ and
(∇2)∗∇2 have block circulant structure. Hence, the solution to uk+1 can be solved effi-
ciently by using fast Fourier transform (FFT) and its inverse. As a matter of convenience,
let υk+1

1 = γ1v
k+1 − μk

1, υk+1
2 = γ2w

k+1 − μk
2 and υk+1

3 = γ3z
k+1 − μk

3. Therefore, we
have

uk+1 = F−1
(F(∇)∗ ◦ F(υk+1

1 ) + F(∇2)∗ ◦ F(υk+1
2 ) + F(K)∗ ◦ F(υk+1

3 )

γ1F(∇)∗ ◦ F(∇) + γ2F(∇2)∗ ◦ F(∇2) + γ3F(K)∗ ◦ F(K)

)
,

(39)

where F stands for the FFT operator and “◦” is the componentwise multiplication opera-
tor. Additionally, we also employ the discrete cosine transform to solve the problem (38)
under the Neumann boundary condition.

To recap, putting the above solving steps altogether, we achieve at the following al-
ternating direction method of multipliers (ADMM) that settles the proposed optimization
problem (21).

Algorithm 1 ADMM for solving the problem (21)
Input f .
Initialize v0, w0, z0, u0 = f ; Choose α, λ, p,L, γ1, γ2, γ3.
while ‖uk+1 − uk‖2/‖uk+1‖2 > tol, do

Compute vk+1 according to (29);
Compute wk+1 according to (31);
Compute zk+1 according to (35);
Compute uk+1 according to (39);
Update μk+1

1 , μk+1
2 , μk+1

3 according to (25);
end while
Output u = uk+1.

Remark 1. Algorithm 1 actually consists of four subproblems, and it is necessary to dis-
cuss the computational complexity of each subproblem. In the first place, the problem
with respect to v can be executed with a linear time complexity order O(n1n2) for an
n1 × n2 image. Secondly, we note in passing that the solution of the w subproblem is ex-
actly represented by shrinkage, thus there is a linear relationship between calculated cost
and n1n2. As for the subproblem of z, the solving structure shows that its complexity is
O(n1n2). Lastly, the u-subproblem is computed by FFT and inverse FFT, thus it needs
O(n1n2 log(n1n2)) arithmetic operations.

4. Experimental Results

In this section, we present some standard test images, which have been corrupted by dif-
ferent blurs and noise intensities, to demonstrate the performance of the proposed model
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for Poissonian image restoration. Note that Poisson noise is simulated by using the MAT-
LAB library function “poissrnd(I)”. Also, our introduced strategy will be compared with
the classical TV, FOTV, HOTV and OGS-TV models in terms of measuring the visual
effects and reconstruction accuracy. All experiments are performed under Windows 7 and
MATLAB R2011b on a PC with an Intel(R) Core(TM) i5-6500U CPU at 3.20 GHz and
4 GB of RAM.

During the simulations, we apply the widely used peak signal-to-noise ratio (PSNR)
criterion as the measure of restored image quality that is defined by

PSNR = 10 log10

(
P 2

MSE

)
, with MSE =

∑n1
i=1

∑n2
j=1(ui,j − ũi,j )

2

n1 × n2
, (40)

where P denotes the maximum peak value of image, u is the original image, ũ is the
reconstructed one, and n1 × n2 implies the image size. To have a fairer comparison, the
recovered perceptual quality is measured by calculating the structure similarity (SSIM,
Wang et al., 2004) index as

SSIM = (2μuμũ + C1)(2σuũ + C2)

(μ2
u + μ2

ũ
+ C1)(σ 2

u + σ 2
ũ

+ C2)
, (41)

with μu and μũ being the means of u and ũ, respectively, and σu, σũ indicating the varia-
tions of u and ũ. Besides, σuũ means the covariance between u and ũ, and C1, C2 are two
small constants to avoid instability in (41). Moreover, we also adopt the feature similarity
(FSIM, Zhang et al., 2011) criterion to evaluate the feature-preserving ability of different
methods.

It is noteworthy that the equivalent parameters chosen for the subsequent experiments
are selected as L = 3, p = 0.1, and the iteration of MM method is fixed to 5. Three equal
parameters γ1, γ2 and γ3 are updated by using the rule stated in Chan et al. (2011) with
the initial value 0.1. In addition, we set α = 3 for image denoising and α = 5 for image
deblurring. With regard to the stopping condition, each algorithm is terminated using the
following formula

‖uk+1 − uk‖2

‖uk+1‖2
< 10−4. (42)

In this simulation, we illustrate the compared results by five different methods on two
test data for image denoising. The first original image peppers sized by 256 × 256 pixels
is shown on the upper left of Fig. 1. Its noisy version displayed in Fig. 1(b) is obtained
by adding Poisson noise to the clean image with the parameter P = 90. Figures 1(c)–(g),
which correspond to the different outcomes, represent the intuitive comparison of TV,
FOTV, HOTV, OGS-TV models and our proposed scheme. As a declaration, our model
is implemented by setting the parameter λ = 65. For a more convincing explanation, we
also present in Fig. 2 the zoom-in regions of the restorations in detail. Besides, the same
applications are performed on the image Sailboats (512 × 512), as shown in Fig. 3, with
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Fig. 1. Restoration results for the image Peppers (P = 90) by using five methods. (a) original image, (b) noisy
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

Fig. 2. Zoomed-in results for the image Peppers (P = 90) by using five methods. (a) original image, (b) noisy
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

the adjusted parameter λ = 60. Meanwhile, the quantitative measures of PSNR, SSIM
and FSIM values and the CPU time (in seconds) are listed in Table 1.

The second experiment aims to further verify the denoising ability and effectiveness of
our proposed approach. For this purpose, we increase the Poisson noise density by setting
a smaller peak value. Two grayscale images Brid and Boats are depicted in Figs. 4(a)
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Fig. 3. Restoration results for the image Sailboats (P = 90) by using five methods. (a) original image, (b) noisy
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

Table 1
Comparison of the performance via five different methods.

Model Peppers (P = 90) Sailboats (P = 90)
Iter Time (s) PSNR SSIM FSIM Iter Time (s) PSNR SSIM FSIM

TV 36 1.3103 29.9055 0.9568 0.9653 38 4.8038 30.8020 0.9563 0.9787
FOTV 38 1.4198 29.9683 0.9577 0.9665 37 4.8965 30.5041 0.9526 0.9769
HOTV 76 2.3989 30.3281 0.9624 0.9692 79 9.3371 30.9519 0.9570 0.9785
OGS-TV 41 1.6928 30.4509 0.9613 0.9709 22 3.4210 31.3271 0.9598 0.9811
Ours 31 1.8225 30.8580 0.9640 0.9730 33 7.8308 31.7135 0.9633 0.9836

and 5(a), where Brid image of size of 256 × 256 contains rich counters and details, the
other has dimensions of 512×512 pixels and complex background. Figures 4(b) and 5(b)
indicate the contaminated images with P = 60. The remaining parts of Figs. 4 and 5 are
the corresponding restoration results of the above five different techniques on two images,
respectively. It is worth mentioning in this case, the proposed new strategy is computed
with the same setting as in the simulation of Sailboats image. Moreover, Table 2 reports
in detail the measurable comparisons regarding the PSNR, SSIM and FSIM values and
the CPU time.

As is obvious from both visual images and objective data, the TV-based approach can
preserve the object boundaries well, but it indeed produces the serious staircase artifacts
in smooth regions. On the contrary, we notice that the awful artifacts disappear when the
HOTV regularizer is utilized, while it causes the loss of important structural features be-
cause of excessive smoothness of the edges. The images restored by the FOTV model
exhibit no staircasing but show a little residual noise. For the OGS-TV model, it still pro-
duces slight piecewise constant aspects while denoising. As can be observed, the proposed
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Fig. 4. Restoration results for the image Bird (P = 60) by using five methods. (a) original image, (b) noisy
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

Fig. 5. Restoration results for the image Boats (P = 60) by using five methods. (a) original image, (b) noisy
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

model enables better image quality compared to the other models, and keeps sharp and
neat edges with less blocky effect.

Thirdly, the point of this experiment is to test the ability of restoring blurred and noisy
images. The standard test images Saturn and Lady, which are of size 256 × 256 pixels
and consist of homogeneous regions and abundant features, are chosen for this numeri-
cal example. Their corresponding deteriorated versions shown in Figs. 6(b) and 7(b) are
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Table 2
Comparison of the performance via five different methods.

Model Bird (P = 60) Boats (P = 60)
Iter Time (s) PSNR SSIM FSIM Iter Time (s) PSNR SSIM FSIM

TV 52 1.8598 28.1826 0.9622 0.9672 45 5.8043 28.4419 0.9527 0.9806
FOTV 53 1.9209 28.2058 0.9582 0.9698 50 6.5016 28.3214 0.9520 0.9813
HOTV 84 2.7963 28.2452 0.9620 0.9703 75 9.2308 28.6667 0.9556 0.9840
OGS-TV 44 1.9079 28.4524 0.9641 0.9715 34 5.5546 28.7160 0.9558 0.9807
Ours 35 2.1098 28.9880 0.9673 0.9746 35 8.3198 29.3100 0.9605 0.9848

Fig. 6. Restoration results for the image Saturn (P = 255) by using five methods. (a) original image, (b) degraded
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

corrupted by Gaussian blur with a kernel size of 7 × 7 pixels and standard deviation of 2,
and noisy due to Poisson noise with P = 255. In this case, the weighting parameter is
adjusted as λ = 300 for the former and λ = 370 for the latter. The recovered results and
comparisons of different models can be observed in sequence in Figs. 6(c)–(g), 7(c)–(g)
and Table 3.

As for the last experiment, to further comprehensively evaluate the performance of the
proposed model for Poissonian image restoration, another classical motion blur is added
to this simulation. Here we take the images Moon (358 × 537) and Lena (512 × 512),
which contain flat zones and neat counters embodied in Figs. 8(a) and 9(a), as the objects
for image denoising and deblurring. Figures 8(b) and 9(b) stand for the contaminated
images blurred by motion blur with motion distance l = 10 and angle θ = 45, and noisy
due to Poisson noise with the noise level P = 200. Thereinto, we alter the parameter
λ = 360 for Moon image, and λ = 300 for Lena image. Figures 8 and 9 represent the
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Fig. 7. Restoration results for the image Lady (P = 255) by using five methods. (a) original image, (b) degraded
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

Table 3
Comparison of the performance via five different methods.

Model Saturn (P = 255) Lady (P = 255)
Iter Time (s) PSNR SSIM FSIM Iter Time (s) PSNR SSIM FSIM

TV 133 4.6795 33.0938 0.9416 0.9367 85 3.0500 28.9949 0.8478 0.8586
FOTV 73 2.6083 33.3967 0.9453 0.9551 44 1.5527 28.2643 0.8419 0.8833
HOTV 105 3.4096 33.1280 0.9468 0.9561 97 3.1181 28.6701 0.8593 0.8884
OGS-TV 41 1.6945 33.4080 0.9470 0.9543 43 1.8380 29.1683 0.8595 0.8881
Ours 37 2.2526 33.6515 0.9473 0.9563 30 1.9765 29.5221 0.8656 0.9012

visual restorations by five different methods separately. And the PSNR, SSIM and FSIM
values of the reconstructions are listed in Table 4 minutely.

All in all, it is clear to observe that the staircase-like and fuzzy effects caused by the
TV-based model inevitably degrade the image quality. The HOTV model avoids the short-
coming of staircase aspects, but the resulting images are mostly composed of incorrect
edges and blurred counters. Even though the FOTV and OGS-TV models are able to
reduce the staircase artifacts to some extent, they lead to the unexpected phenomenon
of residual noise or staircase distortion. However, our introduced novel approach, which
combines the advantages of nonconvex second-order regularizer and OGS-TV function,
performs prominently in comparison with other existing popular techniques. Our scheme
not only substantially makes the artifacts disappear, but also shapes the edges sharper.
Quantitatively, this results in the restorations possessing the best PSNR, SSIM and FSIM
values in Tables 3 and 4.
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Fig. 8. Restoration results for the image Moon (P = 200) by using five methods. (a) original image, (b) degraded
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.

Fig. 9. Restoration results for the image Lena (P = 200) by using five methods. (a) original image, (b) degraded
image, (c) TV, (d) FOTV, (e) HOTV, (f) OGS-TV, (g) our model.
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Table 4
Comparison of the performance via five different methods.

Model Moon (P = 200) Lena (P = 200)
Iter Time (s) PSNR SSIM FSIM Iter Time (s) PSNR SSIM FSIM

TV 80 10.3288 33.3848 0.8623 0.8877 62 8.0070 28.6305 0.8349 0.9298
FOTV 64 8.8045 33.2102 0.8915 0.9084 42 5.4066 28.2719 0.8363 0.9364
HOTV 128 11.8345 33.6125 0.8743 0.9115 92 10.5619 28.7451 0.8497 0.9450
OGS-TV 59 7.0703 33.8428 0.9079 0.8986 36 5.3908 28.8995 0.8474 0.9414
Ours 36 6.7205 34.1525 0.9121 0.9140 33 7.8365 29.1134 0.8540 0.9492

5. Conclusion

A novel hybrid nonconvex variational model, which we have proposed in this paper, is
applied to reconstruct the degraded images under Poisson noise. The introduced scheme
closely integrates the superiorities of OGS-TV and nonconvex HOTV regularizers, this
combination helps to improve the accuracy of image restoration. To efficiently get the
optimal solution of the minimization problem, we develop a modified alternating direc-
tion method of multipliers by combining the iteratively reweighted �1 algorithm and the
majorization-minimization method. Lastly, for the case of reducing the staircase-like as-
pects and preserving edge features, numerous simulation examples, which are compared
with other widely applied regularization models, have demonstrated that our presented
strategy performs better for restoration of Poissonian images.
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