
INFORMATICA, 2023, Vol. 34, No. 1, 147–168 147
© 2023 Vilnius University
DOI: https://doi.org/10.15388/22-INFOR505

Intelligent and Efficient IoT Through the
Cooperation of TinyML and Edge Computing

Ramon SANCHEZ-IBORRA1,∗, Abdeljalil ZOUBIR2,
Abderahmane HAMDOUCHI2, Ali IDRI2,3, Antonio SKARMETA4

1 University Centre of Defense, General Air Force Academy, Spain
2 MSDA, Mohammed VI Polytechnic University, Ben Guerir, Morocco
3 Mohammed V University, Rabat, Morocco
4 University of Murcia, Espinardo Campus, Spain
e-mail: ramon.sanchez@cud.upct.es, abdeljalil.zoubir@um6p.ma,
abderahmane.hamdouchi@um6p.ma, ali.idri@um5.ac.ma, skarmeta@um.es

Received: September 2021; accepted: November 2022

Abstract. The coordinated integration of heterogeneous TinyML-enabled elements in highly dis-
tributed Internet of Things (IoT) environments paves the way for the development of truly intel-
ligent and context-aware applications. In this work, we propose a hierarchical ensemble TinyML
scheme that permits system-wide decisions by considering the individual decisions made by the IoT
elements deployed in a certain scenario. A two-layered TinyML-based edge computing solution has
been implemented and evaluated in a real smart-agriculture use case, permitting to save wireless
transmissions, reduce energy consumption and response times, at the same time strengthening data
privacy and security.
Key words: TinyML, ensemble learning, IoT, smart-agriculture, LoRaWAN.

1. Introduction

So far, the Internet of Things (IoT) has revolutionized our lives by embedding novel com-
munication capabilities within many type of end-devices. This has allowed these elements
to be fully connected, hence, boosting the development of innovative applications in dif-
ferent fields (Cirillo et al., 2019). However, following this strategy, IoT devices need an
almost permanent connection with the cloud or another master device, which prevents
them to be totally autonomous entities. In this line, recent advances in Artificial Intelli-
gence (AI) and edge computing are permitting IoT devices to become truly smart units and
to create a fruitful distributed intelligent ecosystem (Sanchez-Iborra and Skarmeta, 2020).
These approaches will move the intelligence of IoT systems closer to the end-devices or
users, which brings a series of notable advantages related to their response time, data
security and privacy, sustainability aspects, etc., as discussed in the following sections.

∗Corresponding author.

https://doi.org/10.15388/22-INFOR505


148 R. Sanchez-Iborra et al.

Edge computing has emerged during the last years as a ground-breaking solution that
permits to enrich regular IoT deployments with novel services and possibilities. Under
this paradigm, the processing and storage capabilities of end-devices and edge-nodes are
exploited in order to reduce their cloud-dependency by adding a new layer in the network
architecture in charge of data aggregation, filtering, processing, and storage (Marjanovic et
al., 2018). When coupled with IoT deployments, edge-nodes can host supporting services
for constrained end-devices such as task offloading, data caching, or digital twins, among
many others (Sanchez-Iborra et al., 2018).

On the other hand, TinyML is a recently-emerged paradigm that proposes to embed
optimized Machine Learning (ML) models in units with limited computing resources,
such as those powered by micro-controllers (Warden and Situnayake, 2019). To this end,
the ML models produced in a non-constrained platform, e.g. a regular computer, by using
widely-known frameworks such as TensorFlow, ScikitLearn, or PyTorch, among others,
are converted aiming at being executable by the target device. Thus, this approach con-
verts IoT end-devices in intelligent elements able to perform on-device ML processing
(Sanchez-Iborra and Skarmeta, 2020). TinyML (Warden and Situnayake, 2019) is gaining
great momentum, evidenced by the support given by big companies such as Microsoft or
Google, which have released their own TinyML frameworks, namely, Embedded Learning
Library (ELL)1 and TensorFlow Lite,2 respectively.

Although the integration of intelligent decision-making mechanisms within con-
strained end-devices is a great advance, real-life IoT applications call for coordinated ef-
forts from different entities aiming at widening the cognitive capabilities of the complete
system. This is crucial to consider the individual circumstances of the elements deployed
in highly distributed environments; however, there is still a gap in this regard as this kind
of solutions has not been deeply investigated in the literature, yet. Therefore, the objective
of this work is to address this issue by designing and developing an intelligent system ca-
pable of making high-level beneficial decisions for a whole deployment by considering the
particular needs of the participants. To this end, we exploit together both paradigms men-
tioned above, i.e. edge computing and TinyML, in order to build a two-layered intelligent
IoT system. Concretely, in our proposal each end-device makes an individual decision by
employing a TinyML model and local data. Then, the attained outcome is employed by
a higher level ML-based Decision Support System (DSS) placed in an edge-node, which
gathers the individual decisions made by each end-device and makes a final decision with
a broader perspective of the target scenario, hence, adopting a stacking-based ensemble
ML approach (Pavlyshenko, 2018) implemented at the edge.

Thereby, we present a hierarchical TinyML-based DSS that brings notable advantages
in comparison with a cloud-based ML system as the raw data do not have to be trans-
mitted over the air, hence reducing the great energy consumption of communication ac-
tivities at the time of increasing data security and privacy. This approach also permits
to reduce the decision-making time as the low transmission data-rates of state-of-the-art
IoT communication technologies based on the Low Power-Wide Area Network (LPWAN)

1https://microsoft.github.io/ELL/
2https://www.tensorflow.org/lite/

https://microsoft.github.io/ELL/
https://www.tensorflow.org/lite/


Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 149

paradigm, e.g. LoRaWAN, leads to very long packet transmission times, in the order of
seconds (Sanchez-Gomez et al., 2020). To the authors’ knowledge, there is no prior work
proposing a hierarchical TinyML scheme leveraging the opportunities brought by an edge
computing-based architecture. Besides, we contextualize the potential application of our
proposal by adopting a realistic smart-agriculture case of study aiming at evaluating the
feasibility and performance of our solution. Please note that although we have adopted this
specific use-case, the proposed solution is extensible to other fields of application. Thus,
the main contributions of this work are the following: (i) a characterization and discussion
of the synergies opened by the cooperation of edge computing and TinyML paradigms is
given; (ii) a novel TinyML-based hierarchical DSS is presented and described; (iii) an
application use-case focused on smart-agriculture is shown to demonstrate the validity of
the proposal.

The remaining paper is organized as follows. Section 2 examines the enabling tech-
nologies employed in this work, namely, edge computing, TinyML, and hierarchical
stacking-based ensemble ML. Section 3 provides an overview of the proposal. Section 4
presents the experimental methodology and design of our solution and describes the appli-
cation use-case. Section 5 shows and discusses the obtained results. Section 6 addresses
the threats to validity of this study. Finally, the work is closed in Section 7, which also
draws future research lines.

2. Related Work

As aforementioned, the main pillars of our proposal are edge computing, TinyML,
and hierarchical intelligent schemes. In the following, we provide an overview of these
paradigms by reviewing relevant works in each field.

2.1. Edge Computing for IoT

Recently, a lot of efforts have been devoted to develop this network architecture (Poram-
bage et al., 2018) with the aim of exploiting the full potential of current IoT deployments
at the time of reducing their permanent dependency on the cloud (Ashouri et al., 2018).
Among others, there are two main reasons for this paradigm shift: Limiting the amount
of data sent to the cloud, hence strengthening data privacy and controlling the consumed
bandwidth in the backhaul network, and reducing the latency of the transactions as they
may be served at the edge of the network infrastructure (Lopez Pena and Munoz Fer-
nandez, 2019). Besides, as investigated in Cui et al. (2019) and Mocnej et al. (2018),
additional aspects related to end-device’s power consumption are also important when
adopting an edge computing architecture in order to find a trade-off between local pro-
cessing and communication tasks, which may permit to improve energy efficiency of end-
devices.

The range of services and applications enabled by the integration of edge-nodes with
certain processing and storage capabilities within IoT architectures is huge (Sanchez-
Iborra et al., 2018). As end-devices usually present highly restricted computation power,



150 R. Sanchez-Iborra et al.

task offloading has been extensively studied as it can notably enrich the capabilities of
constrained IoT units (Xu et al., 2019), even considering Quality of Service (QoS) aspects
(Song et al., 2017). Given the proximity of computation and storage resources to end-
devices, many user-centric or contextual services have been developed (Breitbach et al.,
2019). For example, quick indoor positioning (Santa et al., 2018), data caching, or digi-
tal twins (Santa et al., 2020) are widely-extended applications enabled by edge comput-
ing together with network virtualization techniques such as Software Defined Networking
(SDN) and Network Function Virtualization (NFV) (Santa et al., 2020). In this line, edge
computing may also help in networking tasks such as introducing novel data communica-
tion paradigms, e.g. Named Data Networking (NDN) (Wang et al., 2021), helping to select
the most adequate settings for end-device transmissions (Sanchez-Iborra et al., 2018), or
supporting IoT data security (Alaba et al., 2017).

Finally, edge computing has also enabled the integration of ML in IoT infrastructures.
As discussed in Atitallah et al. (2020), the alliance between IoT and ML techniques paves
the way for the development of innovative services, for example, in the frame of smart
cities or e-health. Under this umbrella, an intelligent DSS framework on the edge for
the automatic monitoring of diabetes patients through the analysis of sensed data was
presented in Abdel-Basset et al. (2020). Work in Mrozek et al. (2020) also proposed an
edge-based remote monitoring solution, in this case for fall-detection. Authors explored
different ML models to evaluate their suitability in the proposed architecture, which is a
crucial aspect, especially considering the processing and memory limitations of IoT enti-
ties.

The use of ML in edge-nodes has also been exploited for other purposes, such as in-
telligent network management. Work in Veeramanikandan et al. (2020) proposed a dis-
tributed deep learning solution in the IoT-edge environment focused on the integration
of data flows with the aim of reducing the latency of the communications at the time of
increasing accuracy since the data-generation stage. In line with this work, authors of Liu
et al. (2019) presented an IoT network dynamic-clustering solution based on edge com-
puting using deep reinforcement learning. The aim was to enable high-performance IoT
data analytics, while fulfilling data communication requirements from IoT networks and
load-balancing requirements from edge servers.

In this paper, we propose an IoT-edge computing multi-layer intelligent architecture to
enable decision making at the highest level of the hierarchy, i.e. an edge-node, but consid-
ering the needs claimed by the individual elements deployed in a certain scenario. With
this solution, computations are locally performed by the end-devices and the edge-node,
which allows to have shorter response times as well as detaching the IoT system from the
cloud. While most of previous research has focused on the task-offloading problem and the
integration of ML at the edge, the coordinated operation of TinyML-enabled devices and
edge-nodes has been scarcely addressed. Therefore, different from the related literature,
we explore this synergy, which is crucial to build hierarchical distributed ML schemes as
described in the following.



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 151

2.2. Hierarchical Stacking-Based Ensemble ML

Ensemble ML has been employed during the last years in order to increase the accuracy of
single models or to make complex system-wide decisions (Rokach, 2010). Concretely, the
stacking technique, also known as stacked generalization, consists of using the output of
several ML decisors as the input of another one, known as meta-model (Wolpert, 1992),
(Chatzimparmpas et al., 2021).

Stacked ensemble ML has been widely studied in the literature. In his work, Pavlyshenko
(2018) explored different stacking techniques employed for time series forecasting and lo-
gistic regression with highly imbalanced data. From the attained results, authors demon-
strated that stacking models are able to achieve more precise predictions than single mod-
els. The fields of application of this technique are multiple, e.g. sentiment analysis (Emre
Isik et al., 2018), children disability detection (Mounica et al., 2019), star and galaxy
classification (Chao et al., 2020), or early illness detection (Ksia̧żek et al., 2020; Wang et
al., 2019), among many others. In the following, we provide some detailed examples.

Work in Silva and Ribeiro (2006) presented a two-level hierarchical hybrid model com-
bining Support Vector Machine (SVM)–Relevance Vector Machine (RVM) to exploit the
best of both techniques. Authors demonstrated the validity of their solution on a text clas-
sification task, in which the first hierarchical level made use of an RVM to determine the
most confident classified examples and the second level employed an SVM to learn and
classify the tougher ones. Authors of Kowsari et al. (2017) also tackled the text classifica-
tion problem but employing a hierarchical Deep Learning (DL)system in order to provide
specialized understanding at each level of the document hierarchy. In this case, differ-
ent DL models were combined to increase the accuracy of conventional approaches using
Naive Bayes or SVM. In Elwerghemmi et al. (2019), SVM was employed in a stacked fash-
ion for Quality of Experience (QoE) prediction. Authors confirmed its applicability for the
manipulation of non-stationary data in real-time applications, outperforming a range of
well-known QoE predictors in terms of accuracy and processing complexity. Finally, work
in Cheng et al. (2020) proposed a stacking-based ensemble ML scheme for predicting the
complex dynamics of unmanned surface vehicles. In this case, authors made use of tree-
based ensemble models, as well as DL techniques for producing different combinations
of stacked classifiers, resulting in a notably improved accuracy in comparison with other
state-of-the-art techniques.

As can be seen, stacking-based ensemble learning can be employed for a plethora of
applications. In our case, as mentioned above, we present a distributed multi-layer stacked
DSS that permits to make decisions affecting several end-devices by aggregating individ-
ual decisions made by these elements. Therefore, the isolated interests of end-devices,
which compose the lowest layer of the intelligent architecture, are gathered and consid-
ered by a higher-level intelligent instance, which looks for common benefits for the whole
deployment. This approach poses a step further compared to previous proposals, which
just leverage multi-layer ML schemes aiming to improve the performance of conventional
models, usually in terms of accuracy. Besides, with the proposed system we achieve a
reduction in end-device’s communication activities, as the raw data are processed on the
same device instead of sending them to the infrastructure.



152 R. Sanchez-Iborra et al.

2.3. TinyML

TinyML is a concept proposed in Warden and Situnayake (2019), which is attracting great
attention from both academia and industry (Sanchez-Iborra and Skarmeta, 2020). It per-
mits to integrate ML-based intelligence in resource-limited devices by optimizing and
porting ML models built in non-constrained platforms. This paves the way for obtaining
truly-intelligent IoT units able to make decisions without the support of additional devices
or servers. This approach reduces end-device communication activities as the sensed data
is locally processed, which permits to increase battery lifetimes given that wireless trans-
mission are highly power demanding as mentioned above. Besides, reducing raw data
exchanges between IoT devices and the infrastructure limits privacy and security risks
(Sanchez-Iborra and Skarmeta, 2020).

Given the novelty of this paradigm, not many works can be found in the literature
exploiting the full range of opened possibilities. A clear field of TinyML application is
vehicular scenarios, for example, to improve the performance of autonomous driving in
mini-vehicles (de Prado et al., 2020) or to increase driver safety (Lahade et al., 2020).
Thanks to TinyML, heavy computation tasks that are usually performed by powerful pro-
cessors such as image or audio processing (Wong et al., 2020; Pontoppidan, 2020) are
being investigated in order to be executed by end-devices. From a wider perspective,
other works have proposed TinyML-based DSSs for environmental parameter prediction
(Alongi et al., 2020) and smart-farming applications (Vuppalapati et al., 2020), obtaining
highly promising results although additional efforts should be performed to increase the
efficiency of TinyML models.

In this paper, we present a novel advance in comparison with previous works by pre-
senting a hierarchical TinyML scheme which is validated in a real use-case. As mentioned
above, adopting a vertically and horizontally distributed TinyML scheme is a proposal
not addressed yet in the related literature. Besides, the selected case of study (smart-
agriculture) is attracting a lot of attention from the IoT research community (Raj et al.,
2021). Concretely, our solution permits to decide whether to separately irrigate or fertilize
different subsets of plantations within the same green house attending to environmental
parameters sensed along the scenario. The insights of this use-case and its implementation
are provided in the following sections.

3. Hierarchical TinyML Scheme

TinyML has brought a new wave of opportunities for embedding intelligence within the
massive number of already deployed IoT devices. Although this is a great advance in order
to provide enhanced processing capabilities to these constrained units, the development
of distributed computing solutions will permit to improve the performance of isolated
models, not just in terms of accuracy but also by widening the limited scope of the deci-
sions that an isolated device can make. This is crucial when certain decisions affect a set
of elements instead of a single one, hence being greatly advantageous in order to weave
a web of collective intelligence (Hadj Sassi et al., 2019).



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 153

Fig. 1. Hierarchical stacked ML scheme.

Fig. 2. Hierarchical stacked TinyML workflow.

Therefore, following the scheme shown in Fig. 1, we present a distributed hierarchical
stacking-based TinyML solution. We propose an ensemble ML model as single IoT units
are not always able to make an adequate decision that may affect others, given their limited
sensing range. Apart from this concatenation of ML models, we also propose to adopt a
hierarchical approach by placing these models at different layers. The first level constituted
by IoT end-devices and a top-layer implemented in an edge-node, both of them leveraging
the possibilities brought by TinyML. With this strategy, we intend to obtain a system-
wide decision that takes into consideration the individual demands of each IoT device.
The workflow of this distributed model is shown in Fig. 2.

This edge computing-based configuration presents a number of advantages in com-
parison with typical centralized cloud-computing models. Firstly, there is a clear detach-
ment from the cloud as local data is processed inside the proposed system.This leads to
a reduction in the number of end-device’s transmissions, which permits to save energy
and avoids malicious attacks in the wireless segment of the communication infrastruc-
ture. The latency of the decision-making process is also reduced, specially considering
the long transmission times that current state-of-the IoT communication technologies, i.e.
LPWANs, present. This family of communication technologies is being broadly adopted
in present IoT deployments given its great transmission ranges with a very low power
consumption (Sanchez-Iborra and Cano, 2016). An example of an LPWAN-based solu-
tion that is extensively used in different IoT scenarios, e.g. smart cities, smart-agriculture,
Internet of Vehicles (IoV), etc., is LoRaWAN (Sanchez-Gomez et al., 2019).



154 R. Sanchez-Iborra et al.

Adopting a hierarchical TinyML scheme permits end-devices to form part of the de-
cision process as their individual decisions are considered by the higher-level instance.
Besides, the system scalability and reliability is ensured given the modularity of the solu-
tion. Finally, this proposal also permits low-cost deployments as no expensive processing
units or data centres are needed. This is achieved thanks to the adoption of the TinyML
paradigm and the exploitation, in a distributed way, of the processing capabilities of IoT
devices. In the following section, we present the application of our proposal in the spe-
cific use-case of smart-agriculture, which is receiving great attention from the AI research
community (van Klompenburg et al., 2020).

4. Experimental Design

In this Section, we comprehensively present the general empirical methodology and the
implementation details of our specific use-case. Thereby, we explore the ML models de-
veloped as well as their conversion to TinyML ones, the employed datasets, and the equip-
ment used in our validation and evaluation experiments.

4.1. Empirical Methodology

The empirical methodology consisting of the design and development of a distributed
DSS with two decision levels, aiming at considering the particular needs identified by in-
dividual IoT end-devices, while dealing with the severe processing and communication
limitations of these elements. The first decision level (end-device) consists of a set of p
zones, and each zone contains r slave devices, so the number of elements at this level is
r ×p. Each IoT device contains a TinyML model that outputs its individual decision using
a set of inputs {x1, x2, . . . , xn} collected from the environment. In turn, the second level
consists of a single master device (edge-node) which provides a final-decision TinyML
model using as input a categorical vector of r dimensions {s1, s2, . . . , sr }, which repre-
sents the outputs of the individual devices within a zone, and provides as output a final
decision for that zone.

The training and evaluation of the different ML models have been carried out in a
Python non-constrained environment and used the criterion of accuracy (for balanced
data) and the balanced accuracy (for unbalanced data) as performance metrics. The con-
version of these ML models into TinyML ones was done by using compatible TinyML
libraries (specified below) and their evaluations were performed using the following cri-
teria: Flash memory, SRAM, and latency as figures of merit. As further explained in fol-
lowing sections, diverse ML algorithms have been investigated under these conditions to
select the most adequate regarding the defined criteria. Finally, as communication technol-
ogy to connect end-devices with the edge-node, we have considered the use of an LPWAN-
based solution, due to its low power consumption and long coverage range, which are
highly valued characteristics for IoT deployments.

Therefore, the followed empirical methodology consists of the next steps:



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 155

Fig. 3. Smart-agriculture use-case.

1. Produce a dataset of m samples and n features (m × n).
2. Apply data pre-processing when needed (standardization, check of unbalanced data

problem, missing values, feature selection, etc.).
3. Use a k-folds cross validation strategy to determine training and testing sets.
4. Train and evaluate a set of classifiers using a grid search-based hyper-parameters tun-

ing strategy to identify the best settings of each classifier. For each classifier, we retain
the best five configurations, i.e. those with the lowest values of accuracy/balanced ac-
curacy.

5. Convert these ML models into TinyML ones using adequate libraries.
6. Run and evaluate the TinyML models on a resource-limited device by means of the

three defined criteria: Flash memory, SRAM, and latency.
7. Choose the best configuration for each model.
8. Repeat the previous steps for the edge decision level.
9. Connect end-devices and edge-node through an LPWAN link and test connectivity.

10. Evaluate the performance of the whole system.

4.2. Scenario and Problem Description

We consider the case of a green house equipped with (i) a range of ground sensors that
monitor the status of the plantation and (ii) a set of fixed sprinklers that cover certain
plantation zones. Each of these elements is equipped with a communication module that
connects it with an edge-node (Fig. 3). Each ground sensor is able to detect the needs of
its surrounding plants in terms of moisture, nutrients, etc. However, as each sprinkler is
placed in the green house ceiling and covers an area monitored by a number of sensors,



156 R. Sanchez-Iborra et al.

the irrigation decision (and its composition) should be made considering the individual
needs of the affected plants. Therefore, firstly each ground sensor decides the needs of its
sensed plants by using its embedded TinyML model and, then, this decision is submitted
to the edge-node (instead of transmitting all the raw sensed data). Once the edge-node
gathers every decision made by the sensors under a common sprinkler, it finally decides
the action of this sprinkler by using a top-level meta-TinyML model. As can be seen,
the decision made for each sprinkler takes into consideration the individual needs of the
irrigated plants thanks to the hierarchical TinyML scheme, hence obtaining a greater ir-
rigation precision and adapting it to the actual needs of the individual plants. This may
permit the exploitation of the green house for different types of plantations as well as
increasing the efficiency of the irrigation and fertigation systems.

4.3. DSS Definition

For the sake of clarity, in the following we explore the proposed hierarchical TinyML
scheme by individually describing the two levels of decision explained previously (Fig. 1).

4.3.1. End-Device-Level Decision
Firstly, each deployed sensor should evaluate the status of its monitored plantation. To this
end, a series of environmental parameters are tracked in order to infer the real needs of the
plants. Concretely, the following parameters have been selected for this task: Air tempera-
ture (T ), soil moisture (M), soil PH (PH), and soil electrical conductivity (EC). Therefore,
the resulting vector of features is {T ,M, PH, EC}, where the two former inputs are em-
ployed to detect irrigation needs and the others permit to evaluate the level of nutrients
in the soil (although an excess of nutrients may lead to a needed correction by means of
extra irrigation). With this information, the TinyML model at this level infers the most ad-
vantageous action for the monitored plant(s) and outputs (o) it, o = {a0, a1, a2}, where a0

indicates “no action”, a1 represents the “irrigation action” (watering), and a2 symbolizes
the “fertigation action” (watering with nutrients). Thereby, the individual decision made
by each sensor thanks to its embedded TinyML model is transmitted to the edge-node,
where the second level of decision resides.

4.3.2. Edge-Level Decision
As mentioned above, a certain number of plants inside a defined zone shares a common
sprinkler, therefore the objective of the edge-level decisor should be oriented to achieve
a common benefit for the affected plants. Regarding our specific use-case, we consider
that each sprinkler covers a zone monitored by 4 sensors. This distribution is shown in
Fig. 4, which represents the partition of a greenhouse into 6 zones. Thus, the meta-model
placed in the edge-node receives 4 input parameters {s1, s2, s3, s4}, where si represents the
decision made in the previous step by each of the 4 sensors within a certain zone. Finally,
this model generates a single output (O) with three possible commands {A0, A1, A2} for
the implicated sprinkler, with similar meanings as those described for the end-device-level
model, i.e. “no action”, “irrigation”, and “fertigation”, respectively. Recall that, in order



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 157

Fig. 4. Elements distribution in the considered scenario.

to produce its output, this model takes into consideration each of the implicated sensors’
decisions, hence, the end-devices are involved in the final decision process which directly
affects their monitored plants.

4.4. Dataset

Given that the proposed scheme presents two different decisors, two different datasets
for training each of the respective models are needed. Regarding the end-device level, we
have produced a large dataset of 10,000 samples in which we have assigned random values
to the input parameters following an uniform distribution within certain ranges, namely,
T ∈ [17 ◦C, 33 ◦C], M ∈ [0%, 100%], PH ∈ [0, 14], and EC ∈ [1.1 S/m, 6.3 S/m].
Then, making use of the thresholds shown in Table 1, an automatic labelling algorithm
has been developed to assign the proper action {a0, a1, a2} to each input vector. After a
first round of automatic data labeling, a subsequent manual tuning has been conducted,
especially in those samples with values close to the established thresholds. This process
has been conducted with the support of expert agriculture engineers from the Mohammed
VI Polytechnic University. Finally, the dataset has been z-score normalized and partitioned
by using the k-fold cross validation method, with k = 10, for training and validating the
different TinyML models that have been evaluated in real IoT devices.

Regarding the top-level decisor, a different dataset has been generated. Considering
that the input vector consists of 4 elements with 3 possible values ({a0, a1, a2}), there is



158 R. Sanchez-Iborra et al.

Table 1
Decision thresholds.

Input condition Plantation need

Temperature (T ) > 26 ◦C Irrigation
Soil Moisture (M) < 60% Irrigation
Soil PH (PH) < 5.5 Fertigation
Soil PH (PH) > 7 Fertigation
Soil Electrical Conductivity (EC) < 2.5 S/m Fertigation
Soil Electrical Conductivity (EC) > 3.5 S/m Irrigation

a limited range of possible inputs, namely, 34 = 81. We have applied the mode statistical
operator to obtain the final decision (O = {A0, A1, A2}) for each input combination and
we have manually revised each of the 814-elements input vector, aiming at selecting the
most adequate output in the case of conflict. Given the limited number of possible input
samples, all of them have been employed for the training and testing phases of the different
TinyML models evaluated in the edge-node.

We consider that the followed dataset generation procedures are sufficient for the pur-
pose of validating our proposal at this point of our research. Thus, the generation of
datasets from field-sampled data has been left for future work in order to better adjust our
models. Besides, for replicability purposes, we have made the end-device-level dataset
publicly available.3

4.5. TinyML Models Generation

As described above, the first step to produce a TinyML model is to obtain a regular ML
model in a non-constrained platform. To this end, we have used the well-known Python’s
Scikit-learn library to produce a series of ML models with different configurations that
will be described in Section 5. Concretely, we have considered the following ML algo-
rithms: Multi-Layer Perceptron (MLP), Decision Tree (DT), Random Forest (RF), and
Support Vector Machine (SVM), given that all of them are supported by the TinyML
toolkits employed in our experiments.

Once the non-constrained ML model is produced and adjusted, it should be ported to be
runnable in constrained units. For this task, we have employed a series of TinyML toolkits,
depending on the involved ML algorithm, given that each toolkit is compatible with a
limited set of algorithms. We have employed the emlearn4 and MicroMLGen5 frameworks
given their efficiency in the porting process and their compatibility with a notable number
of models generated by Scikit-learn as mentioned previously.

4.6. Equipment

We have selected the Arduino Uno board as the target device for evaluating the perfor-
mance of the developed models for both of the decisors described above (end-device and

3https://github.com/ramonjsi/Smart-Agriculture
4https://github.com/emlearn/emlearn
5https://github.com/eloquentarduino/micromlgen

https://github.com/ramonjsi/Smart-Agriculture
https://github.com/emlearn/emlearn
https://github.com/eloquentarduino/micromlgen


Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 159

edge levels). We have chosen this unit given its popularity, low-cost, and notable process-
ing and memory constraints, which make it a good benchmarking tool for efficient IoT
developments. It is equipped with a 16 MHz 8-bit processor (ATmega 328p) with flash
and Static RAM (SRAM) memories of 32 KB and 2 kB, respectively. Considering these
resources, the Arduino Uno belongs to the most constrained type of Micontroller Units
(MCUs) (Class 0) according to the classification in Bormann et al. (2014).

As communication technology to connect the deployed sensors and the edge-node, we
have selected LoRA, an LPWAN-based solution that permits long-range transmissions
with a great energy-efficiency (Sanchez-Iborra and Cano, 2016), which are highly valued
characteristics for the scenario under study. However, these attractive characteristics are
achieved at the expense of notably reducing the transmission data-rate, leading to very
long transmission times, even more than a second under certain configurations. Besides,
given that LoRa makes use of unlicensed frequency bands, a strict duty cycle-based reg-
ulation that restricts LoRa transmissions to 1% of the available time, i.e. a maximum of
3.6 seconds per hour per device, is established. For these reasons, it is highly desirable to
limit the number of communications using this type of communication technology, which
is achieved in the proposed solution. For our experiments, we have employed the Semtech
SX1272 LoRa modem (Semtech, 2019).

5. Results

In this section, we present and discuss the performance results obtained for the range of
TinyML models generated for implementing both decisors explained above, i.e. the end-
device-level and edge-level decisors. Please note that we have analysed these models in
the lab, as the real field deployment of the presented solution is still in process.

5.1. End-Device-Level Decisor

As explained previously, we have evaluated the performance of different types of ML
algorithms, namely, Multi-Layer Perceptron (MLP), Decision Tree (DT), Random Forest
(RF), and Support Vector Machine (SVM), with different model configurations for each
of them. Aiming at selecting the best setup among the plethora of evaluated alternatives
for each model, the accuracy when making a decision with respect to the labels assigned
in the generated dataset (see Section 4.4) has been adopted as a principal figure of merit.
To this end, we have employed the grid search technique that permits to obtain the optimum
configuration for each model.

Table 2 presents the performance of the best configurations for each of the ML algo-
rithms under consideration and the values assigned to their basic configuration parameters.
Regarding accuracy, observe the notable performance of all the algorithms although DT
and RF stand out with an almost perfect accuracy of 99.9%. Considering the memory foot-
prints of the models on the Arduino device, the MLP model is the heaviest one in terms
of flash memory and SRAM. In turn, RF and, especially, DT are lighter models, which
is a highly valued aspect considering the severe storage and memory constraints of the



160 R. Sanchez-Iborra et al.

Table 2
End-device decisor models’ performance.

Algorithm Configuration TinyML toolkit Flash memory SRAM Latency Accuracy

MLP Hidden layers: 1 emlearn 6516 B 1218 B 4.1 ± 0.2 ms 0.976
Neurons: 10
Act. Function: tanh
Max. iterations: 1000

DT Criterion: Entropy emlearn 3544 B 346 B 20 ± 2 μs 0.999
Depth: 3 MicroMLGen 3392 B 346 B 13 ± 2 μs 0.999

RF Criterion: Entropy emlearn 4444 B 368 B 84 ± 7 μs 0.999
Estimators: 6 MicroMLGen 3952 B 366 B 79 ± 5 μs 0.999
Max. depth: 3

SVM Kernel: rbf MicroMLGen out-of-range 349 B – 0.972
Gamma: 0.01

target device. It is remarkable that the optimized SVM model exceeded the flash memory
available on the device, hence it could not be deployed on it. In order to obtain an SVM
model that could be embedded on the selected unit, we had to simplify it very much,
thus dramatically reducing the model accuracy. This behaviour was already detected in
Sanchez-Iborra and Skarmeta (2020).

Decision-making latency is another key aspect when evaluating a TinyML model,
given the computation restrictions of the target MCU. Again, the DT algorithm presents
the best performance in comparison with RF and MLP, which is the slowest one. This
behaviour is justified by the simplicity of the former, as the MLP and RF produce more
complex models as evidenced by their memory and RAM footprints discussed above. Fi-
nally, comparing the performance of the TinyML toolkits under consideration, observe
that in all cases, the models generated by MicroMLGen are lighter and faster than those
produced by emlearn.

In the light of these results, the DT model generated by MicroMLGen would be the
most adequate one to implement the end-device-level decisor, which permits each sensor
to decide the most proper action for its monitored plants.

5.2. Edge-Level Decisor

Given that this decisor should not be subject to any uncertainty, we have selected the
simplest model for each of the considered algorithms that provides a perfect accuracy of
100%. Therefore, after evaluating a large set of different configurations, for the sake of
simplicity, we only show the performance results of the finally chosen models (Table 3).
Please note that as the SVM algorithm was not able to provide a perfect accuracy for this
decision model (best result of 81.5% with linear kernel), we have not included it in the
following discussion and in the table.

Regarding the MLP algorithm, we have obtained that the simplest configuration ob-
taining a perfect decision accuracy is using 8 hidden layers with 6 neurons in each layer
with the ReLu activation function and a limit of 1000 training iterations. The rest of omit-
ted parameters have been set to the default values of the Scikit-learn library (also applica-
ble for the following algorithms). For the DT algorithm, we employed the entropy function



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 161

Table 3
Edge-level decisor models’ performance.

Algorithm Configuration TinyML toolkit Flash memory SRAM Latency

MLP Hidden layers: 8 emlearn 6338 B 944 B 3 ± 0.1 ms
Neurons: 6
Act. Function: ReLu
Max. iterations: 1000

DT Criterion: Entropy emlearn 4072 B 354 B 45 ± 3 μs
Depth: 7 MicroMLGen 4048 B 356 B 32 ± 2 μs

RF Criterion: Entropy emlearn 4990 B 370 B 84 ± 5 μs
Estimators: 3 MicroMLGen 4724 B 368 B 81 ± 5 μs

for the split criterion and a tree depth of 7 levels for obtaining a perfect accuracy. Finally,
the RF algorithm was configured with the same split-criterion function as the DT model
and 3 estimators. With these configurations, the memory requirements of each model and
their computation delays are shown in Table 3.

Comparing the different families of algorithms, again the MLP presents more demand-
ing requirements in terms of memory than the DT and RF algorithms. It is also noticeably
slower than the others. As expected, DT models demand less memory and are faster than
the RF ones. Finally, comparing the models generated by both emlearn and MicroMLGen
libraries, it can be seen how the latter produces slightly more optimized (in terms of mem-
ory) and faster models than the former.

In the light of the attained results, as in the previous case, the DT model produced by
MicroMLGen is the most convenient one for implementing this decisor, given its perfect
accuracy with low impact on the device (13% and 17% of total flash and SRAM memories
in the device, respectively) and its quick decision-making time.

5.3. Overall System Performance

In the following, we explore the performance of the whole system considering the commu-
nication activities between end-devices and edge-node, too. As mentioned above, using
an LPWAN-based solution such as LoRa, permits reliable long communications at the
expense of severely reducing the data-rate, hence, increasing the time needed for com-
pleting a transmission. Although one of the key characteristics of LPWAN technologies is
their reduced energy consumption, the communication activities are still the most power-
demanding task for an end-device. For those reasons, we explore the performance of the
systems from both latency and energy consumption perspectives.

Regarding end-to-end latency, we should consider both processing and transmission
times. In LoRa, the transmission time for a given message is markedly determined by
its low-level configuration, especially the Spreading Factor (SF) parameter. As the SF
increases the data-rate is reduced, therefor,e the robustness of the transmission is enhanced
but the transmission time notably grows. In order to explore the system performance,
we have made use of the two extreme SF configurations, i.e. SF7 (high data-rate, low
transmission robustness) and SF12 (low data-rate, high transmission robustness). The rest
of LoRa configuration parameters have been fixed as follows: Bandwidth (BW): 125 kHz,



162 R. Sanchez-Iborra et al.

Table 4
Activities’ latency.

End-device
decision

End-device → Edge-node
transmission

Edge-node
decision

Edge-node → Sprinkler
transmission

SF7 13 μs 25.8 ms 32 μs 25.8 ms
SF12 13 μs 663.5 ms 32 μs 663.5 ms

Table 5
Activities’ energy consumption with LoRa’s SF7.

End-device
decision

End-device → Edge-node
transmission/reception

Edge-node
decision

Edge-node → Sprinkler
transmission

End-device 0.11 μA 3.2 mA – –
Edge-node – 0.29 mA 0.28 μA 3.2 mA

Coding Rate (CR): 4/5, and CRC check: On. Given that there are only 3 possible messages
to be exchanged between end-devices, the edge-node, and the sprinklers, i.e. “no action”,
“irrigation”, and “fertigation”, just 2 bits are needed for their codification, which will be
the data payload transported in each transmission.

Thereby, the end-to-end latency for making a decision with the previously selected
models at each level (DTs) and assuming that the environmental data are already collected,
is presented in Table 4. As can be seen, processing times are negligible in comparison
with transmission times. This happens for the finally selected models (DTs), but observe
that other algorithms such as MLP would introduce a non-negligible delay (see Table 2
and Table 3), hence this fact should be taken into consideration when designing systems
as the one presented. Other delays related to the transmission coordination among end-
devices could be also considered, although these aspects are out of the scope of this work.
Given that the greatest contribution to the end-to-end latency comes from communication
activities, it is necessary to reduce them, for example, by avoiding the transmission of big
volumes of raw data from the end-devices to the edge-node, as we propose in our solution.

Regarding energy consumption, we have considered the processing and transmission
times shown in Table 4, as well as the consumption charts that can be found in the
employed equipment’s datasheets (Arduino Uno’s microcontroller (ATmega 328p) and
Semtech SX1272 LoRa modem). We have calculated each device’s energy consumption
by assuming LoRa’s SF7 and 20 dB gain, with the microcontroller working at 16 MHz and
5 V of operating voltage (configuration by default). Please, note that this is a theoretical
estimation of the involved processing and communication activities’ consumption with-
out considering other devices’ tasks, e.g. environmental sensing. The attained results are
shown in Table 5. As discussed in previous sections, communication activities are notably
much more consuming than computation tasks. Nevertheless, the reduced consumption of
LoRa technology and the limited number of transmissions per day permit devices to have
long battery lifetimes employing usual power-banks used in IoT deployments. This is a
crucial feature for ensuring the system scalability and manageability.

In the light of the attained results, we consider that the proposed solution may be of
high interest for introducing an intelligent, low-cost, and efficient automation system into



Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 163

current non-digitalized green-houses or other cultivation facilities, hence enabling the
transition of the traditional agriculture towards the smart-agriculture paradigm.

6. Threats to Validity

This section presents the threats that may potentially impact the validity of this empirical
study and the measures taken to mitigate them. Three threats to validity are discussed,
namely, internal, external, and construct validity.

6.1. Threats to Internal Validity

This threat concerns the evaluation process which can be inaccurate, hence leading to
biased conclusions. To mitigate this possible issue, all the models were trained and tested
using a 10-fold cross validation to overcome the internal limitations and to prevent the
overfitting of our classifiers that may appear using the random train-test split. Moreover,
we used the grid search strategy to tune the hyper-parameters of the different employed
classifiers in order to search the optimum configuration for each of them.

6.2. Threats to External Validity

External validity is related to the extent to which the results obtained in this study can be
generalized outside the context of this study. In our case, the used datasets were generated
by using a set of empirical knowledge provided by agriculture engineers. It concerned the
models’ classification characteristics (temperature, soil moisture, soil PH, and soil electri-
cal conductivity), as well as the defined classes (irrigation and fertigation). This approach
helps to the generalization of the findings of this study, especially in real-life case-studies.
Besides, we have comprehensively detailed the followed empirical methodology to ease
the reproducibility of this study in other fields of application.

6.3. Threats to Construct Validity

Construct validity addresses the reliability of the predictive model performance obtained
through this study. To reduce this potential limitation, four criteria were used: three are
related to the constraints of end-devices in an IoT context (flash memory, SRAM, and
latency), and one is related to the ML domain (accuracy). Other ML criteria could be
added to assess the reliability of our classifiers such as Area Under Curve (AUC), F1-
score, precision and recall. Moreover, statistical tests or ranking methods have been left
for future study to assess the significance of performances and to obtain an overall rank
of our classifiers in a real deployment.

7. Conclusion

This work has presented a novel stacking-based ensemble TinyML system for enabling
collaborative decision-making between IoT-devices and edge-nodes. Our proposal poses



164 R. Sanchez-Iborra et al.

a step forward in comparison with the state-of-the-art, as it enables the development of hi-
erarchical intelligent IoT systems by adopting an edge-computing approach and exploiting
the TinyML paradigm, which has not been addressed in the literature yet. Concretely, the
proposed solution permits end-devices to make individual decisions considering their sur-
rounding information. Thereafter, these individual decisions are submitted to a top-level
element at the edge, which aggregates them in order to make a system-wide one, aiming
at obtaining common benefits for the deployed elements. Without loss of generality, the
proposal has been evaluated in a realistic use-case focused on smart-agriculture. To this
end, a real implementation has been carried out considering several ML models, which
have been embedded on an Arduino Uno unit with LoRa-powered communication capa-
bilities, using two different TinyML frameworks. The attained results show the validity of
the proposal as many different TinyML models can be integrated within the IoT board for
performing the desired ML-based tasks. Concretely, the DT algorithm has evidenced the
most adequate performance in terms of memory and storage footprint, processing latency,
energy consumption, and decision accuracy. Therefore, the presented solution enables
the integration of distributed intelligence in current IoT deployments while ensuring long
life-times of end-devices. This paves the way for further research in the field of embed-
ded distributed intelligence within the scope of the IoT ecosystem and egde computing.
Besides, we are currently working on the deployment of the presented system in a farm in
production placed on Ben Guerir (Morocco). This implementation in a real environment
will permit us to evaluate other TinyML mechanisms and toolkits while improving the
performance of the system presented in this paper.

Funding

This work has been supported by the European Commission, under the DEMETER (Grant
No. 857202) and FLUIDOS (Grant No. 101070473) projects; and by the Spanish Min-
istry of Science, Innovation and Universities, under the project ONOFRE 3 (Grant No.
PID2020-112675RB-C44).

References

Abdel-Basset, M., Manogaran, G., Gamal, A., Chang, V. (2020). A novel intelligent medical decision support
model based on soft computing and IoT. IEEE Internet of Things Journal, 7(5), 4160–4170. https://doi.org/
10.1109/JIOT.2019.2931647. https://ieeexplore.ieee.org/document/8787865/.

Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F. (2017). Internet of things security: a survey. Jour-
nal of Network and Computer Applications, 88, 10–28. https://doi.org/10.1016/j.jnca.2017.04.002. https:
//linkinghub.elsevier.com/retrieve/pii/S1084804517301455.

Alongi, F., Nicolò, G., Danilo, P., Terraneo, F., Fornaciari, W. (2020). Tiny neural networks for environmental
predictions: an integrated approach with Miosix. In: Fifth IEEE Workshop on Smart Service Systems (Smart-
Sys 2020), pp. 350–355. https://doi.org/10.1109/SMARTCOMP50058.2020.00076.

Ashouri, M., Davidsson, P., Spalazzese, R. (2018). Cloud, edge, or both? Towards decision support for de-
signing IoT applications. In: 2018 Fifth International Conference on Internet of Things: Systems, Manage-
ment and Security, pp. 155–162. https://doi.org/10.1109/IoTSMS.2018.8554827. https://ieeexplore.ieee.org/
document/8554827/.

https://doi.org/10.1109/JIOT.2019.2931647
https://doi.org/10.1109/JIOT.2019.2931647
https://ieeexplore.ieee.org/document/8787865/
https://doi.org/10.1016/j.jnca.2017.04.002
https://linkinghub.elsevier.com/retrieve/pii/S1084804517301455
https://linkinghub.elsevier.com/retrieve/pii/S1084804517301455
https://doi.org/10.1109/SMARTCOMP50058.2020.00076
https://doi.org/10.1109/IoTSMS.2018.8554827
https://ieeexplore.ieee.org/document/8554827/
https://ieeexplore.ieee.org/document/8554827/


Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 165

Atitallah, S.B., Driss, M., Boulila, W., Ghézala, H.B. (2020). Leveraging deep learning and IoT big data
analytics to support the smart cities development: review and future directions. Computer Science Re-
view, 38, 100303. https://doi.org/10.1016/j.cosrev.2020.100303. https://linkinghub.elsevier.com/retrieve/pii/
S1574013720304032.

Bormann, C., Ersue, M., Keranen, A. (2014). Terminology for constrained-node networks. In: IETF RFC 7228.
https://doi.org/10.17487/RFC7228. https://www.rfc-editor.org/info/rfc7228.

Breitbach, M., Schafer, D., Edinger, J., Becker, C. (2019). Context-aware data and task placement in edge
computing environments. In: IEEE International Conference on Pervasive Computing and Communications
(PerCom), pp. 1–10. https://doi.org/10.1109/PERCOM.2019.8767386. https://ieeexplore.ieee.org/document/
8767386/.

Chao, L., Wen-hui, Z., Ran, L., Jun-yi, W., Ji-ming, L. (2020). Research on star/galaxy classification based on
stacking ensemble learning. Chinese Astronomy and Astrophysics, 44(3), 345–355. https://doi.org/10.1016/
j.chinastron.2020.08.005. https://linkinghub.elsevier.com/retrieve/pii/S0275106220300783.

Chatzimparmpas, A., Martins, R.M., Kucher, K., Kerren, A. (2021). StackGenVis: alignment of data, algo-
rithms, and models for stacking ensemble learning using performance metrics. IEEE Transactions on Visu-
alization and Computer Graphics, 27(2), 1547–1557. https://doi.org/10.1109/TVCG.2020.3030352. https:
//ieeexplore.ieee.org/document/9222343/.

Cheng, C., Xu, P.-F., Cheng, H., Ding, Y., Zheng, J., Ge, T., Sun, D., Xu, J. (2020). Ensemble learning ap-
proach based on stacking for unmanned surface vehicle’s dynamics. Ocean Engineering, 207, 107388.
https://doi.org/10.1016/j.oceaneng.2020.107388. https://linkinghub.elsevier.com/retrieve/pii/S00298018203
04170.

Cirillo, F., Wu, F.-J., Solmaz, G., Kovacs, E. (2019). Embracing the future Internet of things. Sensors, 19(2),
351. https://doi.org/10.3390/s19020351. https://www.mdpi.com/1424-8220/19/2/351.

Cui, L., Xu, C., Yang, S., Huang, J.Z., Li, J., Wang, X., Ming, Z., Lu, N. (2019). Joint optimization of energy con-
sumption and latency in mobile edge computing for Internet of things. IEEE Internet of Things Journal, 6(3),
4791–4803. https://doi.org/10.1109/JIOT.2018.2869226. https://ieeexplore.ieee.org/document/8457190/.

de Prado, M., Donze, R., Capotondi, A., Rusci, M., Monnerat, S., Benini, L., Pazos, N. (2020). Robust Navigation
with TinyML for Autonomous Mini-Vehicles. arXiv preprint: arXiv:2007.00302.

Elwerghemmi, R., Heni, M., Ksantini, R., Bouallegue, R. (2019). Online QoE prediction model based on
stacked multiclass incremental support vector machine. In: 8th International Conference on Modeling Simu-
lation and Applied Optimization (ICMSAO), pp. 1–5. https://doi.org/10.1109/ICMSAO.2019.8880302. https:
//ieeexplore.ieee.org/document/8880302/.

Emre Isik, Y., Gormez, Y., Kaynar, O., Aydin, Z. (2018). NSEM: novel stacked ensemble method for sentiment
analysis. In: International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–4. https://
doi.org/10.1109/IDAP.2018.8620913. https://ieeexplore.ieee.org/document/8620913/.

Hadj Sassi, M.S., Jedidi, F.G., Fourati, L.C. (2019). A new architecture for cognitive Internet of things and
big data. Procedia Computer Science, 159, 534–543. https://doi.org/10.1016/j.procs.2019.09.208. https://
linkinghub.elsevier.com/retrieve/pii/S1877050919313924.

Kowsari, K., Brown, D.E., Heidarysafa, M., Jafari Meimandi, K., Gerber, M.S., Barnes, L.E. (2017). HDLTex:
hierarchical deep learning for text classification. In: 16th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pp. 364–371. https://doi.org/10.1109/ICMLA.2017.0-134. http://ieeexplore.
ieee.org/document/8260658/.

Ksia̧żek, W., Hammad, M., Pławiak, P., Acharya, U.R., Tadeusiewicz, R. (2020). Development of novel en-
semble model using stacking learning and evolutionary computation techniques for automated hepatocel-
lular carcinoma detection. Biocybernetics and Biomedical Engineering, 40(4), 1512–1524. https://doi.org/
10.1016/j.bbe.2020.08.007. https://linkinghub.elsevier.com/retrieve/pii/S0208521620300991.

Lahade, S.V., Namuduri, S., Upadhyay, H., Bhansali, S. (2020). Alcohol sensor calibration on the edge using
tiny machine learning (Tiny-ML) hardware. In: 237th ECS Meeting with the 18th International Meeting on
Chemical Sensors (IMCS 2020), May 10–14, 2020. ECS.

Liu, Q., Cheng, L., Ozcelebi, T., Murphy, J., Lukkien, J. (2019). Deep reinforcement learning for IoT network
dynamic clustering in edge computing. In: 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 600–603. https://doi.org/10.1109/CCGRID.2019.00077. https://ieeexplore.
ieee.org/document/8752691/.

Lopez Pena, M.A., Munoz Fernandez, I. (2019). SAT-IoT: an architectural model for a high-performance
fog/edge/cloud IoT platform. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 633–638.
https://doi.org/10.1109/WF-IoT.2019.8767282. https://ieeexplore.ieee.org/document/8767282/.

https://doi.org/10.1016/j.cosrev.2020.100303
https://linkinghub.elsevier.com/retrieve/pii/S1574013720304032
https://linkinghub.elsevier.com/retrieve/pii/S1574013720304032
https://doi.org/10.17487/RFC7228
https://www.rfc-editor.org/info/rfc7228
https://doi.org/10.1109/PERCOM.2019.8767386
https://ieeexplore.ieee.org/document/8767386/
https://ieeexplore.ieee.org/document/8767386/
https://doi.org/10.1016/j.chinastron.2020.08.005
https://doi.org/10.1016/j.chinastron.2020.08.005
https://linkinghub.elsevier.com/retrieve/pii/S0275106220300783
https://doi.org/10.1109/TVCG.2020.3030352
https://ieeexplore.ieee.org/document/9222343/
https://ieeexplore.ieee.org/document/9222343/
https://doi.org/10.1016/j.oceaneng.2020.107388
https://linkinghub.elsevier.com/retrieve/pii/S0029801820304170
https://linkinghub.elsevier.com/retrieve/pii/S0029801820304170
https://doi.org/10.3390/s19020351
https://www.mdpi.com/1424-8220/19/2/351
https://doi.org/10.1109/JIOT.2018.2869226
https://ieeexplore.ieee.org/document/8457190/
http://arxiv.org/abs/arXiv:2007.00302
https://doi.org/10.1109/ICMSAO.2019.8880302
https://ieeexplore.ieee.org/document/8880302/
https://ieeexplore.ieee.org/document/8880302/
https://doi.org/10.1109/IDAP.2018.8620913
https://doi.org/10.1109/IDAP.2018.8620913
https://ieeexplore.ieee.org/document/8620913/
https://doi.org/10.1016/j.procs.2019.09.208
https://linkinghub.elsevier.com/retrieve/pii/S1877050919313924
https://linkinghub.elsevier.com/retrieve/pii/S1877050919313924
https://doi.org/10.1109/ICMLA.2017.0-134
http://ieeexplore.ieee.org/document/8260658/
http://ieeexplore.ieee.org/document/8260658/
https://doi.org/10.1016/j.bbe.2020.08.007
https://doi.org/10.1016/j.bbe.2020.08.007
https://linkinghub.elsevier.com/retrieve/pii/S0208521620300991
https://doi.org/10.1109/CCGRID.2019.00077
https://ieeexplore.ieee.org/document/8752691/
https://ieeexplore.ieee.org/document/8752691/
https://doi.org/10.1109/WF-IoT.2019.8767282
https://ieeexplore.ieee.org/document/8767282/


166 R. Sanchez-Iborra et al.

Marjanovic, M., Antonic, A., Zarko, I.P. (2018). Edge computing architecture for mobile crowdsensing.
IEEE Access, 6, 10662–10674. https://doi.org/10.1109/ACCESS.2018.2799707. http://ieeexplore.ieee.org/
document/8272334/.

Mocnej, J., Miškuf, M., Papcun, P., Zolotová, I. (2018). Impact of edge computing paradigm on energy consump-
tion in IoT. IFAC-PapersOnLine, 51(6), 162–167. https://doi.org/10.1016/j.ifacol.2018.07.147. https://www.
sciencedirect.com/science/article/pii/S2405896318308917.

Mounica, R.O., Soumya, V., Krovvidi, S., Chandrika, K.S., Gayathri, R. (2019). A multi layer ensemble learn-
ing framework for learning disability detection in school-aged children. In: 10th International Conference
on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. https://doi.org/10.1109/
ICCCNT45670.2019.8944774. https://ieeexplore.ieee.org/document/8944774/.

Mrozek, D., Koczur, A., Małysiak-Mrozek, B. (2020). Fall detection in older adults with mobile IoT devices
and machine learning in the cloud and on the edge. Information Sciences, 537, 132–147. https://doi.org/
10.1016/j.ins.2020.05.070. https://linkinghub.elsevier.com/retrieve/pii/S0020025520304886.

Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. In: IEEE Second International
Conference on Data Stream Mining & Processing (DSMP), pp. 255–258. https://doi.org/10.1109/DSMP.
2018.8478522. https://ieeexplore.ieee.org/document/8478522/.

Pontoppidan, N.H. (2020). Voice separation with tiny ML on the edge. In: TinyML Summit.
Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., Taleb, T. (2018). Survey on multi-access edge com-

puting for Internet of things realization. IEEE Communications Surveys & Tutorials, 20(4), 2961–2991.
https://doi.org/10.1109/COMST.2018.2849509. https://ieeexplore.ieee.org/document/8391395/.

Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., Niyato, D. (2021). A survey on the role
of Internet of things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applica-
tions, 187, 103107. https://doi.org/10.1016/j.jnca.2021.103107. https://linkinghub.elsevier.com/retrieve/pii/
S1084804521001284.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39. https://doi.org/
10.1007/s10462-009-9124-7. http://link.springer.com/10.1007/s10462-009-9124-7.

Sanchez-Gomez, J., Gallego-Madrid, J., Sanchez-Iborra, R., Skarmeta, A.F. (2019). Performance study of
LoRaWAN for smart-city applications. In: IEEE 2nd 5G World Forum (5GWF), pp. 58–62. https://doi.org/
10.1109/5GWF.2019.8911676. https://ieeexplore.ieee.org/document/8911676/.

Sanchez-Gomez, J., Gallego-Madrid, J., Sanchez-Iborra, R., Santa, J., Skarmeta Gómez, A.F. (2020). Impact
of SCHC compression and fragmentation in LPWAN: a case study with LoRaWAN. Sensors, 20(1), 280.
https://doi.org/10.3390/s20010280. https://www.mdpi.com/1424-8220/20/1/280.

Sanchez-Iborra, R., Cano, M.-D. (2016). State of the art in LP-WAN solutions for industrial IoT services. Sensors,
16(5), 708. https://doi.org/10.3390/s16050708. http://www.mdpi.com/1424-8220/16/5/708/htm.

Sanchez-Iborra, R., Skarmeta, A.F. (2020). TinyML-enabled frugal smart objects: challenges and opportunities.
IEEE Circuits and Systems Magazine, 20(3), 4–18. https://doi.org/10.1109/MCAS.2020.3005467. https://
ieeexplore.ieee.org/document/9166461/.

Sanchez-Iborra, R., Sanchez-Gomez, J., Skarmeta, A. (2018). Evolving IoT networks by the confluence of
MEC and LP-WAN paradigms. Future Generation Computer Systems, 88, 199–208. https://doi.org/10.1016/
j.future.2018.05.057. http://linkinghub.elsevier.com/retrieve/pii/S0167739X17324159.

Santa, J., Fernández, P.J., Sanchez-Iborra, R., Ortiz, J., Skarmeta, A.F. (2018). Offloading positioning onto
network edge. Wireless Communications and Mobile Computing, 2018, 1–13. https://doi.org/10.1155/
2018/7868796. https://www.hindawi.com/journals/wcmc/2018/7868796/.

Santa, J., Skarmeta, A.F., Ortiz, J., Fernandez, P.J., Luis, M., Gomes, C., Oliveira, J., Gomes, D.,
Sanchez-Iborra, R., Sargento, S. (2020). MIGRATE: mobile device virtualisation through state transfer.
IEEE Access, 8, 25848–25862. https://doi.org/10.1109/ACCESS.2020.2971090. https://ieeexplore.ieee.org/
document/8978626/.

Semtech (2019). SX1272 LoRa Modem Datasheet v4. Technical report. https://www.semtech.com/products/
wireless-rf/lora-transceivers/sx1272.

Silva, C., Ribeiro, B. (2006). Two-level hierarchical hybrid SVM-RVM classification model. In: 5th International
Conference on Machine Learning and Applications (ICMLA’06), pp. 89–94. 0-7695-2735-3. https://doi.org/
10.1109/ICMLA.2006.52. http://ieeexplore.ieee.org/document/4041475/.

Song, Y., Yau, S.S., Yu, R., Zhang, X., Xue, G. (2017). An approach to QoS-based task distribution in edge
computing networks for IoT applications. In: IEEE International Conference on Edge Computing (EDGE),
pp. 32–39. https://doi.org/10.1109/IEEE.EDGE.2017.50. http://ieeexplore.ieee.org/document/8029254/.

https://doi.org/10.1109/ACCESS.2018.2799707
http://ieeexplore.ieee.org/document/8272334/
http://ieeexplore.ieee.org/document/8272334/
https://doi.org/10.1016/j.ifacol.2018.07.147
https://www.sciencedirect.com/science/article/pii/S2405896318308917
https://www.sciencedirect.com/science/article/pii/S2405896318308917
https://doi.org/10.1109/ICCCNT45670.2019.8944774
https://doi.org/10.1109/ICCCNT45670.2019.8944774
https://ieeexplore.ieee.org/document/8944774/
https://doi.org/10.1016/j.ins.2020.05.070
https://doi.org/10.1016/j.ins.2020.05.070
https://linkinghub.elsevier.com/retrieve/pii/S0020025520304886
https://doi.org/10.1109/DSMP.2018.8478522
https://doi.org/10.1109/DSMP.2018.8478522
https://ieeexplore.ieee.org/document/8478522/
https://doi.org/10.1109/COMST.2018.2849509
https://ieeexplore.ieee.org/document/8391395/
https://doi.org/10.1016/j.jnca.2021.103107
https://linkinghub.elsevier.com/retrieve/pii/S1084804521001284
https://linkinghub.elsevier.com/retrieve/pii/S1084804521001284
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
http://link.springer.com/10.1007/s10462-009-9124-7
https://doi.org/10.1109/5GWF.2019.8911676
https://doi.org/10.1109/5GWF.2019.8911676
https://ieeexplore.ieee.org/document/8911676/
https://doi.org/10.3390/s20010280
https://www.mdpi.com/1424-8220/20/1/280
https://doi.org/10.3390/s16050708
http://www.mdpi.com/1424-8220/16/5/708/htm
https://doi.org/10.1109/MCAS.2020.3005467
https://ieeexplore.ieee.org/document/9166461/
https://ieeexplore.ieee.org/document/9166461/
https://doi.org/10.1016/j.future.2018.05.057
https://doi.org/10.1016/j.future.2018.05.057
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17324159
https://doi.org/10.1155/2018/7868796
https://doi.org/10.1155/2018/7868796
https://www.hindawi.com/journals/wcmc/2018/7868796/
https://doi.org/10.1109/ACCESS.2020.2971090
https://ieeexplore.ieee.org/document/8978626/
https://ieeexplore.ieee.org/document/8978626/
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272
https://doi.org/10.1109/ICMLA.2006.52
https://doi.org/10.1109/ICMLA.2006.52
http://ieeexplore.ieee.org/document/4041475/
https://doi.org/10.1109/IEEE.EDGE.2017.50
http://ieeexplore.ieee.org/document/8029254/


Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing 167

van Klompenburg, T., Kassahun, A., Catal, C. (2020). Crop yield prediction using machine learning: a systematic
literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.
2020.105709. https://linkinghub.elsevier.com/retrieve/pii/S0168169920302301.

Veeramanikandan, Sankaranarayanan, S., Rodrigues, J.J.P.C., Sugumaran, V., Kozlov, S. (2020). Data flow and
distributed deep neural network based low latency IoT-edge computation model for big data environment.
Engineering Applications of Artificial Intelligence, 94, 103785. https://doi.org/10.1016/j.engappai.2020.
103785. https://linkinghub.elsevier.com/retrieve/pii/S0952197620301780.

Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, J., Kedari, S., Vuppalapati, R. (2020). Democratiza-
tion of AI, Albeit constrained IoT devices & tiny ML, for creating a sustainable food future. In: 3rd Interna-
tional Conference on Information and Computer Technologies (ICICT), pp. 525–530. https://doi.org/10.1109/
ICICT50521.2020.00089. https://ieeexplore.ieee.org/document/9092247/.

Wang, X., Wang, X., Li, Y. (2021). NDN-based IoT with edge computing. Future Generation Computer Sys-
tems, 115, 397–405. https://doi.org/10.1016/j.future.2020.09.018. https://linkinghub.elsevier.com/retrieve/
pii/S0167739X20303903.

Wang, Y., Wang, D., Geng, N., Wang, Y., Yin, Y., Jin, Y. (2019). Stacking-based ensemble learning of deci-
sion trees for interpretable prostate cancer detection. Applied Soft Computing, 77, 188–204. https://doi.org/
10.1016/j.asoc.2019.01.015. https://linkinghub.elsevier.com/retrieve/pii/S1568494619300195.

Warden, P., Situnayake, D. (2019). TinyML: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-
Power Microcontrollers. O’Reilly UK Ltd. 978-1492052043.

Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-
6080(05)80023-1. https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231.

Wong, A., Famouri, M., Shafiee, M.J. (2020). AttendNets: Tiny Deep Image Recognition Neural Networks for
the Edge via Visual Attention Condensers. arXiv preprint: arXiv:2009.14385.

Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L. (2019). A computation offloading method over
big data for IoT-enabled cloud-edge computing. Future Generation Computer Systems, 95, 522–533. https://
doi.org/10.1016/j.future.2018.12.055. https://linkinghub.elsevier.com/retrieve/pii/S0167739X18319770.

R. Sanchez-Iborra is an assistant professor at the University Centre of Defense at the
General Air Force Academy (Spain). He graduated from the Technical University of Carta-
gena (Spain), received the BSc degree in telecommunication engineering in 2007 and the
MSc and PhD degrees in information and communication technologies in 2013 and 2015,
respectively. He has published more than 50 papers in international journals and confer-
ences. His main research interests are IoT/M2M architectures, management of wireless
networks, and green networking techniques.

https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://linkinghub.elsevier.com/retrieve/pii/S0168169920302301
https://doi.org/10.1016/j.engappai.2020.103785
https://doi.org/10.1016/j.engappai.2020.103785
https://linkinghub.elsevier.com/retrieve/pii/S0952197620301780
https://doi.org/10.1109/ICICT50521.2020.00089
https://doi.org/10.1109/ICICT50521.2020.00089
https://ieeexplore.ieee.org/document/9092247/
https://doi.org/10.1016/j.future.2020.09.018
https://linkinghub.elsevier.com/retrieve/pii/S0167739X20303903
https://linkinghub.elsevier.com/retrieve/pii/S0167739X20303903
https://doi.org/10.1016/j.asoc.2019.01.015
https://doi.org/10.1016/j.asoc.2019.01.015
https://linkinghub.elsevier.com/retrieve/pii/S1568494619300195
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231
http://arxiv.org/abs/arXiv:2009.14385
https://doi.org/10.1016/j.future.2018.12.055
https://doi.org/10.1016/j.future.2018.12.055
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18319770


168 R. Sanchez-Iborra et al.

A. Zoubir graduated in 2018 from the Royal Air School-Marrakesh with a state engineer-
ing diploma in aeronautical systems. In 2021, he will receive his master’s degree in data
science. He is currently pursuing a PhD in data sciences at Mohammed VI Polytechnic
University (Morocco). His research interests include embedded machine learning, graph
neural networks and their applications in medicine, and distributed intelligent systems.

A. Hamdouchi is a PhD student in data science at Mohammed VI Polytechnic University
(Morocco). He earned a BSc in mechanical engineering from the Royal Military Academy
(Morocco) in 2013 and a Diploma of Analyst in computer science from the Signal Training
Centre in 2017. He received his master’s degree in data science in 2021. His primary
research interests are real-time decision support systems and TinyML systems.

A. Idri is a full professor at the Computer Science and Systems Analysis School (ENSIAS,
Mohammed V University in Rabat, Morocco). He received his master and doctorate of 3rd
cycle in computer science from the Mohammed V University in 1994 and 1997, respec-
tively. He received his PhD in cognitive and computer sciences from the University of
Quebec at Montreal in 2003. He was the chair of the Web and Mobile Engineering De-
partment for the period 2014–2020 and currently he is the head of the Software Project
Management Research Team since 2010. He is very active in the fields of artificial intel-
ligence, machine learning, medical informatics, software engineering, and has published
more than 220 papers in well recognized journals and conferences.

A. Skarmeta received the BS degree (Hons.) from the University of Murcia, Spain, the
MS degree from the University of Granada, and the PhD degree from the University of
Murcia, all in computer science. He has been a full professor with the University of Mur-
cia, since 2009. He has taken part in many EU FP projects and even coordinated some of
them. He has published more than 200 international articles. His main interests include
the integration of security services, identity, the IoT, 5G, and smart cities.


	Introduction
	Related Work
	Edge Computing for IoT
	Hierarchical Stacking-Based Ensemble ML
	TinyML

	Hierarchical TinyML Scheme
	Experimental Design
	Empirical Methodology
	Scenario and Problem Description
	DSS Definition
	End-Device-Level Decision
	Edge-Level Decision

	Dataset
	TinyML Models Generation
	Equipment

	Results
	End-Device-Level Decisor
	Edge-Level Decisor
	Overall System Performance

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity

	Conclusion

