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Abstract. In many industrial sectors, the current digitalization trend resulted in new products and
services that exploit the potential of built-in sensors, actuators, and control systems. The business
models related to these products and services usually are data-driven and integrated into digital
ecosystems. Quantified products (QP) are a new product category that exploits data of individual
product instances and fleets of instances. A quantified product is a product whose instances collect
data about themselves that can be measured or, by design, leave traces of data. The QP design has
to consider what dependencies exist between the actual product, services related to the product, and
the digital ecosystem of the services. By investigating three industrial case studies, the paper con-
tributes to a better understanding of typical features of QP and the implications of these features for
the design of products and services. For this purpose, we combine the analysis of features of QP po-
tentially affecting design with an analysis of dependencies between features. The main contributions
of the work are (1) three case studies describing QP design and development, (2) a set of recurring
features of QPs derived from the cases, and (3) a feature model capturing design dependencies of
these features.
Key words: quantified product, feature modelling, product design, feature dependencies.

1. Introduction

In many industrial areas, the last decade has been characterized by substantial efforts to
digitize business further and operational processes, products, and services. The resulting
digital transformation of enterprises, industry, and service sectors has resulted in innova-
tive products and services that build upon new digital technologies, for example, cyber-
physical systems (Horvath and Gerritsen, 2012), machine learning (Russell, 2010), smart
systems (Fortino et al., 2015), visual analytics (Keim et al., 2008) and high-speed near
real-time data transfer on mobile networks (5G) (Farahani et al., 2017). Innovative prod-
ucts and services require new kinds of business models, many of them exploiting data
from product operations and data-driven services (Hansen and Bøgh, 2021). Examples
are product-as-a-service, functionality-on-demand or pay-per-use for physical products
(Alaluss et al., 2022). In this context, the specific focus of this paper is on innovations
related to physical products as data sources and the basis of new data-driven services.
Many physical products, like manufacturing machinery, medical devices, vehicles, traffic
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systems, or household devices, are equipped with control units, sensors, and actuators that
capture and provide access to relevant data.

In earlier work, we introduced the concept of “quantified products” (Sandkuhl, 2022):
a quantified product (QP) is a product whose instances collect data about themselves that
can be measured, or, by design, leave traces of data (cf. Section 3.1). QPs have certain
technological features and enable new business models that can be considered as a sub-
category of smart connected products (see Section 3). An example of a quantified product
that attracted much research are quantified vehicles (Kaiser et al., 2021) who collect data
about the technical status and performance of the vehicle in conjunction with driver ac-
tivity and even the vehicle’s environment.

QP’s design, development and operation has been found to include three tightly inter-
related aspects: physical product, data-driven services, and ecosystem management (Sand-
kuhl et al., 2022). The physical product is the device, machine, vehicle or any other tangi-
ble product that provides and collects data. Data-driven services are processing the data
for internal purposes of the enterprise developing or operating the QP and for services
offered by external parties. An ecosystem is a group of enterprises or actors that share
and offer data and services for mutual benefits, usually also by sharing a platform. This
paper aims to contribute to a better understanding of the dependencies between product,
service, and ecosystem when it comes to design decisions. When designing a physical
product, decisions have to be made what features and functionalities the product should
provide. Features and functionalities typically depend on customer requirements, appli-
cation scenarios, operation and production requirements. In the context of a quantified
product, the requirements resulting from data-driven services and possibly the ecosystems
these services are integrated in also require certain features and affect design decisions.
The research question for this paper is: In the context of QP development, what are rel-
evant features to consider during design and what dependencies between these features
must be taken into account?

For this purpose, we combine the analysis of features of QP potentially affecting design
with an analysis of QP case studies for validating the suitability and pertinence of the
features. Main contributions of this paper are (1) three case studies illustrating QP design
and development, (2) a set of features of QPs derived from the cases and (3) a feature
model showing design dependencies between these features.

Section 2 describes our research approach. Section 3 covers the theoretical background
and related work. Section 4 presents the first industrial case study to motivate our work
and to identify features affecting QP design. The validation of the features is the subject
of Section 5 and the feature model visualizing dependencies are described in Section 6.
Section 8 draws conclusions.

2. Research Method

Designing and evaluating technological and methodical support for quantified product de-
sign and development is the long-term objective of a research project that forms the frame
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for work presented in this paper. The overall research project follows the paradigm of de-
sign science research (Hevner et al., 2004). The five stages of design science research are
problem explication, requirement definition, design and development of the design arte-
fact, demonstration, and evaluation. This paper concerns the requirement analysis and first
steps toward designing the envisioned artefact, a methodology integrating the life-cycles
of a physical product, data-driven services and ecosystem services. This paper builds on
previous research on QP life-cycle management (Sandkuhl et al., 2022) and addresses the
research question presented in the introduction.

The research approach used is a combination of literature study, descriptive case study
and conceptual modelling. The motivation for using case studies as empirical basis is the
lack of scientific work on quantified products. In previous work (Sandkuhl et al., 2022),
we conducted a literature analysis on the state of research on QP design and develop-
ment with the conclusion that hardly any work exists in the field. An additional literature
search in Scopus and IEEE Xplore when preparing this paper confirmed this finding (see
Section 3.1) and is summarized in Section 3. Thus, we had to explore the practice of QP
implementation in enterprises active in this field, i.e. in case studies of real-world envi-
ronments designing and developing QP. Based on the research question presented in the
introduction, we identified industrial case studies suitable to shed light on QP develop-
ment.

The analysis of the first case study follows the intention to investigate what features
in this case were relevant to QP design. The identified features were examined from the
perspective if they potentially could also be applicable in other QP application domains
and cases, i.e. the intention was to capture candidates for general QP features. In the next
step, two more case studies are used to validate the identified features and lead to a second
version of the set of features. By modelling the identified features with the technique of
feature modelling, we intend to structure them and to contribute to finding dependencies
between features. According to Yin (1998), the case studies in this paper are exploratory,
as they are used to explore development approaches and design features of QP.

3. Background and Related Work

This section summarizes the theoretical background from variability modelling (Sec-
tion 3.2) and data-driven services and ecosystems (Section 3.3). Furthermore, an overview
of the existing work in the field of QP is given in Section 3.1.

3.1. Quantified Products (QP)

3.1.1. Related Work and Literature Analysis
Work on QP is related to various research streams of the past years with a focus on turning
data into value. Service sectors start to “collect data on everything” (Mayer-Schönberger
and Cukier, 2013) to achieve automation and increased efficiency. Smart connected prod-
ucts (SCP) are not only a category of IoT products but also represent a business model
category characterized by IT- and data-based services (Porter and Heppelmann, 2014).
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In individual lifestyle, the term Quantified Self (Swan, 2013) is used when people collect
physical and bio-metric data to “quantify” their life. The term quantified vehicle adapts
this idea for the automotive industry as a complete ecosystem for using data for data-driven
services (Kaiser, 2022).

To identify additional related work, we performed a literature analysis in Scopus and
IEEE Xplore. The fulltext search for the keyword “quantified product” in Scopus returned
37 hits. 31 papers were from chemistry, biology or physics and used the term QP for the
quantification of volume, weight or costs of products or chemical reactions, and thus, are
not relevant for our research.

Dadvandipour and Oliaei (2018) use the term QP only in the abstract without men-
tioning or explaining it in the research paper. Persad et al. (2011) also use the term QP but
as part of the composite term “quantified product demand”, i.e. with focus on quantified
demand. Similarly, Campbell (1998) uses QP as part of quantified product improvement.
Both are not relevant for our work.

The only relevant papers found in Scopus are our own previous work (Sandkuhl et
al., 2022; Sandkuhl, 2022) and a paper about product modularization (Lennartsson et al.,
2022) referring to our work as part of future work discussion.

In IEEE Xplore, the search returned 9 results, but all of them were not relevant because
they use “quantified product” as part of composite terms, such as quantified product re-
quirement (Ebert and Riegg, 1991), quantified product metrics (Baisch et al., 1995) or
quantified product feature matrix (John et al., 2006).

3.1.2. Definition of the Term
Products are often equipped with sensors, e.g. for capturing geographic positions, energy
consumption, usage profiles or other information pertinent to operation and maintenance
of the product. Such products also collect additional data, which could be of interest for
third parties. For instance, suppliers want to know how their components are used in the
field (Farahani et al., 2017). In case of cars, insurance companies want to know how the
insured person drives and traffic planners, how roads are used by vehicles (Kong et al.,
2018).

For the definition of the term quantified product, we differentiate between product data
traditionally captured during product life-cycle management (PLM) and data collected
by manufactured individual copies of a product, which we refer to as product instances:
“A Quantified Product is a product whose instances collect data about themselves that
can be measured, or, by design, leave traces of data, including operational, physical, be-
havioural, or environmental information for the purpose of data analysis and (optional)
data sharing and services” (Sandkuhl, 2022).

Often enterprises quantify the products by (a) collecting data not only from a single
device but the entire fleet of products operating in the field, (b) using this data for monitor-
ing and real-time control in a management system for the fleet, and (c) offering aggregated
data on marketplaces.

Implementation of QP is accompanied by substantial changes in the companies’ PLM
of QP, as different kinds of products and their life-cycles have to be coordinated:
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• The actual physical product,
• Services built upon data from connected physical products and services exploiting data

from a complete fleet of products,
• Data-driven services using the fleet data for ecosystem services, possibly in combina-

tion with other services.

Coordination of these different life-cycles requires both organizational, structural, and
technical solutions.

3.2. Variability Modelling and Feature Models

The general purpose of variability modelling is to analyse and capture variants and poten-
tial configurations of complex systems in model-based representations to be used in system
development and application processes. A substantial part of the research on variability
modelling has its origin in work on software product lines and generative programming
(Czarnecki et al., 2002). Complex software and information systems usually offer a large
set of functions and features to their users, but cause a challenge to their developers: how
to restrict the systems’ complexity to achieve maintainability and at the same time provide
high flexibility for the users with many possible variants in different application contexts?
Variability modelling offers a contribution to control the number of variants of systems by
capturing and visualizing commonalities and dependencies between features and between
the components providing feature implementations.

Variability modelling has been frequently used for more than 20 years in the field
of complex software systems, embedded systems and technical systems. Among the es-
tablished variability modelling approaches, feature models are considered as particularly
suitable for QPs. A feature is a “distinctive and user-visible aspect, quality, or characteris-
tic of a software system or systems” (Kang et al., 1990). The purpose of a feature model is
to capture, structure and visualize the commonality and variability of a domain or a set of
products. Commonalities are the properties of products shared among all the products in
a set, placing the products in the same category or family. Variability are the elements of
the products that differentiate and show the configuration options, choices and variation
points that are possible between variants of the product, aimed to satisfy customer needs
and requirements. The variability and commonality are modelled as features and orga-
nized into a hierarchy of features and sub-features, sometimes called feature tree, in the
feature model. The hierarchy and other properties of the feature model are visualized in a
feature diagram. Feature diagrams express the relation between features with the relation
types mandatory, optional, alternative, required and mutually-exclusive.

Different methodical approaches in the field and the exact syntax of feature diagrams
were analysed and compared in Thörn and Sandkuhl (2009) and an overview to methods
for feature model development is provided in Li et al. (2020). Both papers show that feature
modelling notations and approaches mostly were specialized for certain application fields,
i.e. there is no generally accepted feature model development method. In our work, we use
the meta-model of Kang’s approach (Kang et al., 1990), but adapted the visual notation
slightly. The reason for adapting the visual notation is that the practitioners in the use cases
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Fig. 1. Comparison of Kang’s visual notation and the notation used in this paper.

presented in Sections 4 to 6 had problems to remember the meaning of different relations
before the changes were made. Figure 1 shows the differences in the two visual notations.

3.3. Data-Driven Services and Ecosystems

In general, the exploitation of data and data analysis functionality is expected to create new
ways for growth and competitive advantage in many industrial and service sectors (Dav-
enport and Harris, 2017). The growing availability of data opens opportunities for the
implementation of entirely new services (Manyika et al., 2011), data-driven digital busi-
ness models and options for data analytics and visualization (Hartmann et al., 2016). In
the context of quantified products, both, data generated by instances of products or by the
entire product fleet, can be exploited using data-driven services. This includes sensor data
and other operational that have their own value on data marketplaces and for data-focused
business models. From the QP instance or fleet, the data is transmitted to a data-driven
service, for example via an IoT platform. Data marketplaces provide an infrastructure for
trading data and data-related services, i.e. data-driven services often use or operate on data
marketplaces. Data marketplaces are expected to have high impact on data-related busi-
ness activities that transform the data economy (Spiekermann, 2019). A digital ecosystem
“is an interdependent group of enterprises, people and/or things that share standardized
digital platforms for a mutually beneficial purpose” (Gartner Group, 2017). Data mar-
ketplaces, providers of data-driven services and operators of QP can be considered as
members of a data-driven service ecosystems using context and sensor data originating
from QPs in an integrated manner for enabling new business models. Such ecosystems and
their operational models are shaped by organizations involved in infrastructure provision,
service delivery and platform operation and their mutual relationships.
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4. Case Study A: Robot Lawn Mower

4.1. Case Study Description

The first case study (Case A) that was the basis for exploring features of QP is related
to a research project conducted with a producer of garden and outdoor products for both,
the consumer and business market (robotic and conventional lawn mowers, various sizes
and types of chainsaws, garden tractors, watering systems, trimmers, and other devices).
The business line “outdoor products” was the main partner in this research project that
focused on the shift from products without connectivity to the Internet to smart and net-
worked ones (QPs). The core objective of the business line was to develop an ecosystem
of products and services that extends the conventional (physical) product lines and offers
a common application architecture and service infrastructure. The ecosystem is meant to
include different profit centres of the business line with their services and products, as
well as product and services from external companies.

The products of the business line in most cases have built-in electronic components im-
plementing and networking and communication capabilities; these components connect to
a common services architecture and infrastructure (see Fig. 2). The embedded electronic
systems and infrastructure services primarily are controlling the mechatronic components
in the product, but also used for collecting data when the product is in operation. The data
includes, e.g. status of mechatronic components, performance data and service informa-
tion, or information from the product’s operational environment. The tight integration
with the service infrastructure allows for usage statistics, information about maintenance
requirements, license information or location data to the vendor’s back-office and/or to
the product owner.

The QPs in focus of our investigation is the robotic lawn mower (RLM). RLMs are
connected via a wireless connection to a base station installed at the point of operation.
The base station in turn is connected to the Internet and the service infrastructure of the
case company for providing software updates, license information and other services to
the RLM. When installed at end-consumers, the RLM also provides operation data to
the base station (see Table 1 for examples). When installed at business customers, e.g.
garden service providers or housing companies, RLMs often are operated as a fleet of
robotic mowers, often in combination with additional products, such as trimmers or gar-
den tractors. Fleet management functionality also offers the possibility to equip workers
with devices that capture their working hours and routes. The case company provides fleet
management services and the required data collection through a cloud-based platform for
their business customers. Examples for services included in fleet management are operat-
ing, supervising and planning garden and park maintenance.

As most of the garden products require similar networking and communication func-
tions, the QP development process included planning, design and implementation of
reusable components, services and infrastructure features for both, the QP and fleet man-
agement back-office. In this context, an essential design step was the alignment between
different product lines in terms of communication and networking functionality, common
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Fig. 2. Simplified IT and service architecture of Case A. As the figure is part of the case study data, we kept the
original way of depicting the architecture, which uses a visualization similar to UML package diagrams. The
figure shows different layers (e.g. ecosystem services, domain-specific services, etc.) of the architecture with
their modules and the dependencies between the layers. This shows the overall structure and organization of the
architecture.

services, and service registry and provision. The resulting IT and service architecture is
depicted in Fig. 1. The infrastructure services are labelled support and common services.
Another design step concerned the definition of integration services and domain-specific
services as part of the ecosystem architecture. Integration services provide a kind of mid-
dleware for fleets of devices, like RLMs, with service registry, event processing, push
message services, API and pathways to common services and other integration possi-
bilities. Using the integration services, services for specific domains, such as workforce
management, account management or fleet management, were implemented. Ecosystem
services provide data processing or information supply to other services in the ecosystem
using the domain-specific and common services.

As for the data-driven services, there are device-level services (e.g. theft protection of
RLM for end consumer) and fleet-level services (e.g. fleet management for housing com-
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Table 1
Data collected by the QP robotic lawn mower.

Attribute Accuracy/Resolution Description

GPS coordinate 16 ft accuracy, recorded every
minute

Position of the mower robot

Start and end of charging Day, hour, minute, seconds Charging duration
Start and end of operation Day, hour, minute, seconds Operation time
Battery level Recorded every 10 seconds Battery level development
Speed of the mower in km/h, recorded every 10 seconds Speed differs based on quality

requirements of the cutting
Rotation speed of cutting device Rotations/second with same energy

supply
Basis for calculation resistance of
grass type

Vertical and horizontal position Recorded every 10 seconds Basis for calculation of “pollution”
of grass area

External temperature Recorded every 30 minutes Basis for control if device is used in
conditions not permitted

External humidity level Recorded every 30 minutes Basis for control if device is used in
conditions not permitted

panies), and additional shared services for other divisions of the enterprise. This creates
an enterprise-internal ecosystem approach.

4.2. Feature Identification

4.2.1. Procedure for Feature Identification
For the feature identification, we used a procedural approach with four steps that is de-
picted in Fig. 3:

• Scoping: the objective of scoping is to exactly define the application field or system
under consideration. The scope of the feature model specifies the boundaries of the
feature model, i.e. what parts of a system or product are included and what parts are
not.

• Feature identification: this step has the task to identify and elaborate the actual features
essential to the scope defined in the first step. It includes
– enumerating what features, i.e. distinctive user-visible characteristics (see Sec-

tion 3.2), the system or product under consideration offers. This information can be
obtained from product documentation, interviews with product managers or work-
shops with relevant stakeholders in enterprises

– developing each feature with a short text or reference to the product documentation
to make it explicit

– document if a feature is always available in a product (mandatory) or optional
• feature data analysis: the task of this step is to capture for all identified features what

data is required to realize each feature. This information helps to identify dependencies
between features and required functionality and components for the implementation.

• Feature dependency analysis: the objective of this task is to identify and document the
dependencies between the features. This includes what features are prerequisites for
what other features, if features are alternatives to each other and what features require
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Fig. 3. Procedural approach for feature identification.

Table 2
Definition of terms in the context of feature identification.

Term Definition

Feature A set F of features characterize every quantified product. Each feature is a distinct
user-visible characteristic of the QP. The set MF of mandatory features is a subset
of F . The set AF of alternative features consists of disjoint sets of features that are
subsets of F with MF ∩ AF = �. The set OF of optional features is also a subset
of F , with MF ∩ OF = � and AF ∩ OF = �.

Feature dependency Two types of dependency are distinguished. A feature is an alternative to another
feature if the two features are elements of the same set in AF . A feature f2 is a
sub-feature of another feature f1 if the inclusion of f1 in a QP variant is the
precondition for the inclusion of f2. f1 and f2 both are elements of F and elements of
the feature set of the variant under consideration.

Feature data For each feature exists a set of data required to implement the feature. Data is captured
in type/value pairs called attributes.

QP variant The features of a QP characterize each variant product of the QP, i.e. variants differ
from each other by the set of features they offer. There are no two variants with the
same set of features. Every variant offers all features included in MF , one feature of
every feature set of AF and no or an arbitrary amount of features of OF .

the same data. The latter indicates potential dependencies implied by components im-
plementing the features

Table 2 provides definitions of important terms used when describing the feature iden-
tification procedure.

This approach is based on the work of Kang et al. (1990) on feature modelling and,
for the first steps, refinements inspired by a procedural approach by Noy and McGuinness
(2001) for ontology development exploiting the similarities between concept identification
in ontologies and feature identification in feature model development.

4.2.2. Feature Identification in the Case Study
Following the procedural approach described in the previous section and using the mate-
rial in the RLM case, we started by defining the scope. The scope is the features of the QP
(i.e. the RLM) offered to the product’s users. The “users” in this case are the enterprise-
internal managers of the QP and the external end-consumers and business customer groups
expected to use the QP, data from the QP or services built upon QP data. In feature iden-
tification, these features were written down with their names and a short description of
their meaning.
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Table 3
Identified features of QP.

Device-level Fleet-level Service-level

Access to real-time information
of individual device [RTID]

Access to real-time information
aggregated for fleet [RTF]

Definition of services tailored to
application domain

Recording of information during
operations [RDOP]

Recording of fleet information
during operations [RFOP]

Fleet and device-level visualization
of recorded data

Configure what information to be
captured (real-time or recorded)
[CDIC]

Configure fleet information to be
captured (real-time or recorded)
[CFIC]

Fleet and device-level visualization
of real-time data

Modify sensors on device [MSD] Access to context information
aggregated for fleet [ACIF]

Fleet and device-level visualization
of context data

Access to context information
[ACID]

Recording of context information
[RCIF]

Provision of real-time information
from specified devices or fleets for
a specified set of features

Recording of context information
[RCID]

Provision of real-time information
from specified devices for a defined
set of features [PDIF]

Provision of historic information
from specified devices or fleets for
a specified set of features

Table 4
Relevance of data for different feature levels in Case A.

Feature
Attribute (from Table 1) Device level Fleet level Service level

GPS coordinate yes yes yes
Start and end of charging yes yes no
Start and end of operation yes yes yes
Battery level yes yes no
Speed of the mower yes yes no
Rotation speed of cutting device yes yes no
Vertical and horizontal position no yes no
External temperature no yes yes
External humidity level no yes yes

In feature data analysis, we have to differentiate between data collected during op-
eration of individual product instances (device-level services), and data-driven services
on aggregation level across all instances (fleet-level services). Device-level services ad-
dress the target groups of operators or owners of the device, whereas fleet-level services
also encompass data-driven services for third parties. The latter often abstract from the
device-level and offer aggregations, combination or selection of data. On device-level,
information can be captured regarding the actual device (like battery level, energy con-
sumption of certain components, mowing speed) and regarding the “context” of the device
(like temperature, weather conditions or the terrain). The context information also is of
interest on fleet level and for some third-party services.

In the last step, we documented the dependencies between features visible in the pre-
vious steps and the inter-relations between implicated by data. Table 3 summarizes the
identified features on device-level, fleet-level and data-driven service level.

Table 4 shows the relevance of the data collected by the RBL (see Table 1) for the fea-
tures on different levels as implemented in Case A. If the data is directly used for realizing



836 K. Sandkuhl

a feature, we marked this as “yes”. Data about the technical status (e.g. battery status,
speed, rotation) is highly relevant for the device level. Data about the context (tempera-
ture and humidity) and performance (operation time) are relevant for the service level. All
data is relevant for the fleet level, as fleet operators are interested in both, technical device
status, performance and context.

5. Case Study B: Air Conditioning and Clean-Room Technologies

The content of this section is the description of a second industrial QP case. The main pur-
pose is to validate the QP features resulting from case study A, modify the set of features
if required, and investigate the implications of the feature set on QP design. Section 5.1
contains a brief introduction to case study B; Section 5.2 focuses on validation of the
features.

5.1. Case Study Description

The industrial application field of the second QP case study (Case B) are air conditioning
technologies (ACT), which are also used for implementing clean-rooms. The company un-
der consideration, a medium-sized enterprise from the North of Germany, designs, con-
structs, installs, operates and maintains large ACT facilities. For the purpose of energy
optimization and as a precondition for predictive maintenance, more sensors and control
systems have to be installed in ACT facilities and connected to a data network. The re-
sulting Internet-of-Things solutions provide the basis for offering new business services,
as, for example, in the area of energy optimization. Inspections of ACT facilities in public
buildings, shopping centres and hospitals revealed significant deviations of the expected
(planned) energy consumption and the real consumption. The case company decided for
the installation of additional sensors in air handling units to analyse the reasons for this
over-consumption. The direct and indirect operational processes of air handling units can-
not be managed in an optimal and energy-efficient way without processing of substantial
amounts of data in an intelligent way.

The QP in case study B is supposed to provide diagnosis support for the energy con-
sumption and potential optimizations in air handling units and also for the operation and
maintenance processes of the case study company. This requires processing of substantial
amounts of time-series data from different sources in each ACT facility under supervision.
The technical solution for QP operation has to be integrated with the case company’s work
processes and organizational structures to support new types of business services.

ACT facilities combine various technical devices into a control flow that together pro-
vide the required AC functionality. Devices typically included in AC facilities are heating
or cooling elements, ventilators, air filters, recuperators and humidifiers. Some devices,
like ventilators or recuperators, are already equipped with sensors for capturing relevant
data, like, e.g. energy consumption, temperature, or revolutions; other devices usually
have no sensors or do not provide the required information and have to be equipped with
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Table 5
Product instance-level feature comparison.

ID in
Table 2

Feature Application in Case A Application in Case B

RTID Access to real-time
information of individual
device

GPS position of RLM for
anti-theft protection

Energy consumption of
ventilation for anomaly detection

RDOP Recording of information
during operations

Energy consumption and other
values for predictive maintenance

Air flow, temperatures and other
values for predictive maintenance

CDIC Configure what information to
be captured (real-time or
recorded)

Adapt to differences of customer
types

Adapt to differences of ACT type

MSD Modify sensors on device Finer granularity for professional
product group

Lower resolution for ACT with
modern control units

ACID Access to context information Temperature, weather, terrain Outdoor temperature
RCID Recording of context

information
Analysis of energy consumption
of ACT in different terrains

Analysis of energy consumption
of ACT in outdoor temperature
conditions

additional sensors. On facility-level, the data collected is evaluated to determine energy
consumption, operational anomalies or error situations.

AC facilities can be categorized according to their intended behaviour and function-
ality. The categories often correspond to the kind of building they were designed for and
are installed in. Relevant ACT groups for the case company are manufacturing buildings,
hospitals, shopping malls and university of high school buildings. For all AC facilities
in a certain group, evaluation of the collected information on facility-level is expected
to be relevant in planning and operations of future facilities, for example, for dimension
planning, i.e. determining on the required performance level.

5.2. Feature Identification

When identifying the features required in case study B, we followed the same steps as
for case study A (Section 4.2). Comparing the two cases, the first observation is that the
features in Case B also can be sorted into levels, but the levels have to be named differ-
ently if we follow the terminology used by the companies in their different application
domains: the device-level in Case A corresponds to the facility-level in Case B. Further-
more, the fleet-level in Case A corresponds to the group-level in Case B. To normalize
the terminology in an application-independent way, we propose to use “product instance
level” (instead of device or facility) and “product class level” (instead of fleet or group).
On product instance level and on product class-level, all features from case study A also
are relevant for case study B, which is illustrated in Tables 5 and 6. On service level, the
comparison is not yet possible as the implementation in Case B is ongoing.

6. Implications of Features on QP design

The implementation of a feature requires distinct technical functionality on product in-
stance or product class level. On product instance level, the implementation of this func-
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Table 6
Product class level feature comparison.

ID in
Table 2

Feature Application example in Case A Application example in Case B

RTIF Access to real-time
information aggregated for all
instances

Visualization of geographic
distribution of automowers and
trajectories

Visualization of operational state
of facilities (normal, error,
unknown, . . . )

RFOP Recording of product class
information during operations

Average downtime of product
instances and causes for
productivity analysis

Differences of energy
consumption depending on
application domain of product

CFIC Configure product class
information to be captured
(real-time or recorded)

Adapt to differences of customer
types

Adapt to differences of ACT type

ACIF Access to context information
for product class

Development of service offerings
for specific terrains

Development of configuration
variations for changed utilization
conditions

RCIF Recording of context
information

Terrain differences for instances
in fleet and effect on productivity

Outdoor temperature differences
and effect on energy consumption
depending on ACT configuration

tionality can affect the weight, material, size or components to be used in the product and,
asd a consequence, has to be taken into account during the design phase of the physi-
cal product development. In this paper, we will focus on the components only, not on all
design parameters.

Usually, there is no one to one match between a single feature or a set of features and
the component implementing it. A feature might require various technical functionalities
implemented by different components; components might also depend on each other. For
the two case studies, we started from the common set of features and analysed how these
features were technically implemented in the cases. The basis for the analysis was the case
material (see Sections 4 and 5), which in Case B had to be complemented with information
gathered in an interview with the QP designer. We found components in both cases with
similar or even identical functionality, but completely different implementation. An ex-
ample is the communication unit allowing for transmitting data from product instances to
the cloud. In case study A there is a WIFI module connecting to the base station and in
case study B there is a LoRaWAN module for connecting the ACT facility with the cloud.
As the term “component” usually is associated with a concrete implementation, we use
the term “building block” instead. Building blocks are providing a defined functionality,
possibly in different variants, contributing to implement features.

Our analysis resulted in a feature model identifying the relationship between features
(blue boxes) and building blocks (white boxes) and the dependencies between building
blocks (see Fig. 4). And it also resulted in a list of building blocks common for both cases
with their required implementation options (see Table 7). The terminology used in the
feature model and the list of building blocks is summarised in Table 8 and extends the
definition in Table 2.
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Fig. 4. Feature model excerpt.

Table 7
Building blocks for implementing QP features.

No. Building bock Implementation options

1 On-board sensors Fixed set; fixed + configurable set; dynamic set
2 Context sensors Depending on required functionality. Example:

temperature, position, other connected devices
3 Communication unit Cable-based interface; wireless, low range; wireless,

high range
4 On-board sensor integration approach Wireless; internal bus; direct (system on chip)
5 On-board sensor information computing Adaptive; fixed; none
6 Battery constraints High capacity; extended capacity; regular capacity
7 Reliability of sensors High (double sensors); normal
8 On-board computing memory (defined in storage size)
9 On-board storage capacity (defined in storage size)

10 Heartbeat required Yes/no
11 Firmware update Yes/no
12 On-board computing power (defined in performance metrics’, e.g. MIPS)

7. Case Study C: Pumps as a Service

The objective of the third case study is to investigate to what extent the feature model and
the identified building blocks also are valid beyond Case A and Case B. For this purpose,
we will first introduce the case study company and its QP (Section 7.1) and then discuss
the validity of the feature model (Section 7.2).

7.1. Case Study Description

The third case study concerns a medium-sized manufacturer of pumping devices and tech-
nologies for use in industrial environments (e.g. pumps for ships or sewage pumps for
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Table 8
Definition of terms in the context of feature implementation.

Term Definition

Building block A set B of building blocks is used to implement the features of a quantified product.
Building blocks are reusable across product variants and capture feature data.

Feature –
building block
relations

For each feature fi ∈ F there is a set of building blocks BFi required for
implementing fi . The set MBFi of mandatory building blocks is a subset of BFi . The set
ABFi of alternative building blocks consists of disjoint sets of building blocks that are
subsets of BFi with MBFi ∩ ABFi = �. The set OBFi of optional building blocks is
also a subset of BFi , with MBFi ∩ OBFi = � and ABFi ∩ OBFi = �. A building
block is an alternative to another building block if the two building blocks are elements
of the same set in BFi .

Implementation
option

A set I of implementation options is available to configure building blocks for specific
requirements of features or the QP. Implementation options often are related to technical
components, such as sensors, memory units, computing devices or actuators.

Implementation
option – building
block relations

For each building block bj ∈ B there is a set of implementation options IBj available
for configuring bj . The set MIBj of mandatory implementation options is a subset of
IBj . The set AIAj of alternative implementation options consists of disjoint sets of
implementation options that are subsets of IBj with MIBj ∩ AIBj = �. The set OIBj of
optional implementation options is also a subset of IBj , with MIBj ∩ OIBj = � and
AIBj ∩ OIBj = �. An implementation option is an alternative to another implementation
option if the two implementation options are elements of the same set in AIBj .

Building block
variant

The implementation options of a building block lead to building block variants. Building
block variants differ from each other by the set of implementation options they use.
There are no two variants with the same set of implementation options. Every variant of
a building block bj ∈ B offers all implementation options included in MIBj , one
implementation option of every implementation option set of AIBj and no or an arbitrary
amount of implementation options of OIBj .

factories) and in the public sector (pumps in flood protection or public swimming pools).
The largest share of the company’s turnover comes from selling actual pumps, facilities
with several integrated pumps and control systems, and the installation and maintenance
of these pumps and facilities, which in some geographic regions is done in cooperation
with business partners. The company decided to explore the use of IoT technologies in
combination with the established product portfolio to explore new service opportunities
and business models.

In the company’s product management department, the development of a “black-box
datalink” component was started that allowed for the integration of sensors into pumping
devices and the transmission of information from the device to the back-office. Together
with an extension of the control device in the pump, this is meant to turn the device into a
smart connected pump that can be monitored and controlled from a remote desktop. The
black-box datalink transfers the captured data and stores them in a time-series database in
the company’s cloud. Examples of relevant information captured are the energy consump-
tion of the device, alerts about malfunctions, the volume of fluid pumped, and the speed of
pumping, which helps to detect the status of the built-in filters. One of the business models
facilitated by this smart product extension is “pumping as a service”. Pumping as a ser-
vice aims at selling the functionality of the pump instead of the pump as a physical device
which would lead to a service agreement where the company is paid for pumped cubic
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Fig. 5. Feature model excerpt for QP pump.

metres or hours of pumping. For this, the company needs full control over the operation
of individual pumps that can be integrated into a dashboard displaying all “pumping as a
service” devices for a specific customer. Many municipalities or industrial customers op-
erate a number of pumps, i.e. there is the need for considering fleet-level or product-class
level features similar to Cases A and B.

7.2. Feature Model Evaluation

As a first step of evaluating the feature model and building block, we analysed if the QP
features discovered in Case A and B were also valid in Case C. The feature identification
followed the same steps as for Cases A and B (Sections 4.2 and 5.2). As a result, we
were all able to confirm that all features on product instance, product class and service
level identified in the previous cases also are visible in Case C. It has to be noted that
information about the external context of the device (e.g. weather, temperature or terrain)
does not have the same importance for Case C as for Cases A and B. Only for pumps for
specific application fields, like pumps used in outdoor environments, for example, in flood
protection, this context information is essential. However, this still makes the features for
recording context information or access to this information relevant.

The second step was to investigate (1) the building blocks required for implementing
the features and (2) the variants of the building blocks. All building blocks identified in
Cases A and B are also required for Case C with the exception of the battery constraints.
All devices and facilities for pumping in Case C have to be equipped with an external
power supply which makes a battery superfluous. Case C also requires new variants of
the building blocks, for example, sensors for volume measurement or an industry PC as a
platform for computing power.

Figure 5 shows an excerpt of the feature model for the QP pump in Case C. In order
to allow for a comparison of the feature model of Case A, we selected the same portion
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of the model for the figure. There are no changes on the feature layer in the model, as
all features of the QP in Case A are also relevant for Case C. The same is true for the
building blocks, i.e. the same building blocks can also be used to implement the features in
Case C. Changes are visible on the variant level, as, for example, a different context sensor
(temperature instead of motion), which no longer is mandatory for the device but optional.

8. Summary

The paper aimed at contributing to the field of QP by analysing features of QP, the impli-
cations of these features for product design, and the dependencies between features and
building blocks for their implementation. We identified such building blocks for the phys-
ical products and prepared future work in this direction addressing the product class level
and the data-driven service level. The current research design mainly focuses on qual-
itative research by investigating the phenomenon of quantitative products in real-world
cases.

The biggest limitation of our work is the empirical basis in only three case studies.
Although the case studies were carefully selected to represent the construct under investi-
gation, QP features and design, we cannot assume completeness or general applicability
of our results. Future research will have to address this shortcoming by conducting more
case studies and empirical research.

Future work will also extend the scope of our research to building blocks of services,
features of ecosystems and integration of the QP building blocks with more traditional
building blocks of physical products. In this paper, we identified features on service level
but did not investigate the building blocks required to realize these features in service
architecture. This topic has been excluded from this work, as the empirical basis will
have to be the enterprise architecture and IT-service management of an enterprise. This
aspect has only been covered in one of the case studies, i.e. we will need to extend the
data collection in the other two cases. Furthermore, features of ecosystems have not been
addressed in our work at all. Future work in this area will have to include an analysis of
differences and commonalities of QP-oriented ecosystems with the general structures of
digital ecosystems, for example, when it comes to ecosystem roles, value creation and
business models.

Most physical products have some kind of architecture, component structure, or sys-
tem/sub-system structure. The identification of building blocks in this paper focused on
the QP-specific building blocks. For products without any connectivity and digital con-
trol units, these building block are explicit “add-ons” in the architecture, but for smart
connected products they can be implemented as extension in the functionality of exist-
ing building blocks. A more systematic investigation of the impact of QP on traditional
product architectures is required in future work.
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