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Abstract. This paper examines ranking reversal (RR) in Multiple Criteria Decision Making
(MCDM) using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).
Through a mathematical analysis of min-max and max normalization techniques and distance met-
rics (Euclidean, Manhattan, and Chebyshev), the study explores their impact on RR, particularly
when new, high-performing alternatives are introduced. This research provides insight into the
causes of RR, offering a framework that clarifies when and why RR occurs. The findings help
decision-makers select appropriate techniques, promoting more consistent and reliable outcomes
in real-world MCDM applications.
Key words: ranking reversal, TOPSIS, normalization, distance metric, extreme alternative.

1. Introduction

Multiple-Criteria Decision Making (MCDM) is a systematic approach used to make de-
cisions in complex scenarios where multiple conflicting criteria or objectives need to be
considered simultaneously. In many real-world situations, decisions cannot be made solely
based on a single criterion; instead, multiple factors with different levels of importance
and often incommensurable units need to be taken into account. MCDM provides a struc-
tured framework to evaluate and compare different alternatives in a way that reflects the
preferences and priorities of decision makers.

During the MCDM process, the data representing different criteria might come in var-
ious formats, units, and scales. These criteria could include quantitative measurements
like costs, benefits, or performance metrics, as well as qualitative factors like risk levels
or expert opinions. Due to these differences, directly comparing and combining these cri-
teria for decision-making purposes can be challenging and lead to misleading results. To
deal with the problem, normalization has become a fundamental process in MCDM that
enables decision makers to effectively compare and evaluate alternatives across multiple
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criteria (Pavličić, 2001). It generally supports the goal of making well-informed, objective,
and consistent decisions that accurately reflect the preferences and priorities of decision
makers.

Distance-based models in MCDM play a crucial role in quantifying the dissimilarity
between alternatives, and the issue of rank reversal (RR) has drawn significant attention
within this context. RR denotes a phenomenon where the rank order of alternatives un-
dergoes a change due to alterations in the evaluated alternatives or related parameters.
This phenomenon contradicts our intuitive expectations and is formally termed the axiom
of independence of irrelevant alternatives (IIA) in the multi-attribute utility theory (von
Winterfeldt and Edwards, 1986). Belton and Gear (1983) initially identified RR in the An-
alytic Hierarchy Process (AHP), attributing it to AHP’s relative measurement mode. Salo
and Hämäläinen (1997) extended this finding, linking RR to AHP’s mode of measure-
ment. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
applied to MCDM, was later reported to exhibit RR by Triantaphyllou (2000). Subsequent
debates in major operations research journals, including works by Saaty (1990a, 1990b,
1991), Saaty and Vargas (1984), Triantaphyllou (2001), and Kulakowski et al. (2019),
further underscored the significance of RR.

TOPSIS stands out as a straightforward and intuitive method that accommodates both
the positive and negative aspects of each alternative, making it a widely adopted approach
in decision-making processes dealing with multiple, conflicting criteria. It has been still
well received until recently, e.g. Biswas et al. (2024) and Kousar et al. (2024). Despite
its popularity, TOPSIS is not immune to RR, although its occurrence is notably less pro-
nounced compared to AHP (Zanakis et al., 1998). The RR phenomenon in TOPSIS arises
from the sensitivity of the distance metric to variations in the attribute values of alterna-
tives. The normalization process in TOPSIS involves dividing the performance values by
their respective weights. Furthermore, the choice of distance metrics and the determina-
tion of the positive-ideal solution (PIS) and negative-ideal or anti-negative solution (NIS)
can introduce subjectivity, influencing the final rankings. Therefore, careful consideration
of these factors is crucial to mitigate the RR problem and enhance the robustness of the
TOPSIS method in decision-making processes.

To address the issue of RR, previous researchers such as Senouci et al. (2016) and Yang
(2020) have suggested approaches like linear normalization and using absolute positive-
ideal and negative-ideal solutions. However, many studies have relied on simplistic, fab-
ricated examples or simulations to illustrate the RR phenomenon, leaving its real-world
impact and significance unclear (Shih and Olson, 2022). This research is motivated by the
need for a more comprehensive understanding of RR in the TOPSIS method, driving an
in-depth mathematical analysis of the underlying formulae to better quantify and explain
the occurrence of RR.

Distance metrics, such as Manhattan, Euclidean, and Chebyshev, measure the dissim-
ilarity or proximity between alternatives in different ways, each introducing variations in
rankings due to their sensitivity to the scale and distribution of data. These variations can
trigger RR by affecting the computed distances between alternatives. To mitigate RR, it
is crucial to examine how these distance metrics influence the final rankings, providing
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insight into the underlying mechanics of RR. This study aims to fill a gap in the literature
by exploring the role of these distance measures in the TOPSIS framework, offering a
more detailed understanding of their influence on ranking reversals.

While the Chebyshev distance in TOPSIS offers robust ranking results, it has limi-
tations in capturing subtle performance differences across multiple criteria. This lack of
sensitivity to nuanced variations can lead to less precise distinctions between alternatives.
Additionally, although Euclidean distance has been shown to outperform Manhattan dis-
tance in reducing RR, it may not fully eliminate the phenomenon. The study supports these
conclusions through a case example, providing empirical validation for the effectiveness
of different distance metrics in preventing RR, while acknowledging the limitations inher-
ent to each approach.

The rest of the paper runs as follows. Section 2 reviews the existing resolutions for
RR in TOPSIS. Section 3 delves into an examination of the ranking index of TOPSIS,
presenting a mathematical perspective on TOPSIS using different distance metric methods
for handling RR. Section 4 examines a case study. Section 5 offers concluding remarks on
RR solutions for TOPSIS.

2. Literature Review

RR can occur in an MCDM process when a new alternative is introduced or an existing one
is removed from the candidate list, all without any adjustments to the criteria weights. This
phenomenon is rooted in the intricate interactions between alternatives and their relative
positions in the ranking. With the addition of a new alternative, the dynamic relationships
among all options might shift, causing some alternatives to be reevaluated in the context
of the changed landscape. Similarly, the removal of an alternative can lead to redistribu-
tions in the ranking as the absence of that option could amplify the importance of others.
Rank reversal serves as a reminder of the delicate balance within decision frameworks,
highlights the non-intuitive nature of multi-criteria scenarios, and underscores the need
for a thoughtful and adaptable approach to decision-making.

Building on the observations of the RR phenomenon in TOPSIS, Ren et al. (2007)
presented pioneering research in addressing RR within TOPSIS. They introduced a novel
modified synthetic evaluation method wherein two separation measures are transformed
into a two-dimensional plane, and the ranking index is determined by the distance to PIS
minus the minimum of all alternatives to PIS. However, it appears that their proposal lacks
a systematic approach to avoiding the RR phenomenon, and the examples presented, such
as those in the public health system and student evaluation, serve primarily for illustrative
purposes.

Wang and Luo (2009) contributed to the literature by showcasing an example high-
lighting the occurrence of RR in the TOPSIS algorithm. However, they did not specifically
identify the impact arising from non-dominated alternatives.

Zavadskas et al. (2006) studied the impact of vector and max-min normalization on
TOPSIS ranking accuracy. Chakraborty and Yeh (2009) simulated comparisons of one



840 H.J. Shyur, H.S. Shih

vector and three linear normalization methods for TOPSIS, advocating for vector normal-
ization based on ranking consistency and weight sensitivity. Çelen (2014) compared four
normalization methods from Chakraborty and Yeh (2009) in evaluating the Turkish de-
posit banking market, affirming vector normalization’s reliability and noting that max-min
and max normalization also produced consistent results. Kong (2011) aimed to mitigate
RR by introducing linear normalization and incorporating extreme fictitious alternatives
to stabilize PIS and NIS. However, Kong’s example was limited to five alternatives with
two criteria.

García-Cascale and Lamata (2012) similarly considered the approaches introduced by
Kong (2011). They further elaborated on numerous situations, presenting an example with
four alternatives and two criteria.

İç (2014) explored the integration of design of experiments (DoE) into TOPSIS for
the financial performance evaluation of companies. The study concluded with a five-
alternative case involving five criteria to illustrate the DoE-TOPSIS method, aiming to
preserve ranking. However, despite the belief that this combination could avoid RR, the
method did not demonstrate improvement in the steps of TOPSIS.

Cables et al. (2016) proposed a reference ideal method, redefining the distance to the
reference ideal as an interval and linearly normalizing performance data into a value. They
also modified the separation measures, making the reference ideal as the vector of weights.
The method was illustrated using a personnel selection case with five candidates and six
criteria, claiming independence from the type of data. However, verification of this illus-
tration is challenging due to the assumed interval values and reliance on a single example.

Senouci et al. (2016) suggested a modified TOPSIS for selecting a mobile network
interface, incorporating linear normalization with four types and dynamically setting
max/min values against RR. Their case involved seven alternatives and was evaluated
by five criteria through simulation. Despite achieving a zero RR ratio with two types of
normalization, we will later demonstrate that their case is unable to avert the RR phe-
nomenon.

In addition to the developments above, Kuo (2017) investigated weighting on the el-
ements of the TOPSIS ranking index, showing that the proposed modified ranking in-
dex outperforms the traditional TOPSIS in ranking consistency. Mufazzal and Muzakkir
(2018) proposed a proximity index to overcome RR, utilizing Manhattan distance to count
separation measures and using the sum of distances as the ranking index. Although they
provided seven historical cases as evidence for the proposed approach, they were unable
to clarify the ranking differences observed in their outcomes or elucidate the properties
of the index.

Authors de Farias Aires and Ferreira (2019) introduced two forms of linear normaliza-
tion to modify the traditional TOPSIS. They demonstrated the robustness of their approach
through a student selection case involving twenty alternatives with three criteria and their
subsets.

Yang (2020) made modifications to the approach proposed by de Farias Aires and Fer-
reira (2019), incorporating linear normalization of historical extreme values and assigning
weights only to PIS. The study used Wang and Luo’s questionable example (Wang and
Luo, 2009) to showcase the rank stability achieved by their approach.
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Table 1
Classification of proposed solutions for mitigating RR in TOPSIS.

Category Author(s) (year)

I Li (2009); Kong (2011); García-Cascale and Lamata (2012); Cables et al.
(2016); Senouci et al. (2016); de Farias Aires and Ferreira (2019); Yang
(2020); Tiwari and Kumar (2021); Yang et al. (2022); Ciardiello and
Genovese (2023)

II Kong (2011); García-Cascale and Lamata (2012); İç (2014); Cables et al.
(2016); Senouci et al. (2016); de Farias Aires and Ferreira (2019); Yang
(2020); Tiwari and Kumar (2021); Yang et al. (2022)

III Mufazzal and Muzakkir (2018)
IV Ren et al. (2007); Li (2009); Kuo (2017); Mufazzal and Muzakkir (2018);

Yang et al. (2022)
V Ren et al. (2007); İç (2014); Shen (2021)

Note: Some studies have proposed solutions involving more than one category.

Based on the studies mentioned above, the proposed solutions to mitigate RR are clas-
sified into the following five main categories.

• Category I: Alteration of normalization formulae, which include approaches such as
linear normalization that deviate from the traditional TOPSIS method.

• Category II: Modification of the determination of PIS and/or NIS, departing from the
conventional approach of maximizing and minimizing performance values on each cri-
terion of all existing alternatives.

• Category III: Change in the calculation formulae of separation measures, aiming to re-
fine the metrics used to assess the distance between alternatives and the ideal solutions.

• Category IV: Reconstruction of the components of relative closeness, which involves
redefining the parameters used to evaluate the proximity of alternatives to the ideal
solutions.

• Category V: Deviation from or addition of extra steps to the traditional TOPSIS pro-
cedure, introducing new methodologies or steps to mitigate the occurrence of RR and
enhance the robustness of the decision-making process.

It is observed that the five categories mentioned above are arranged according to the steps
of the TOPSIS procedure. Table 1 summarizes other research efforts, and the proposed
strategies aimed at alleviating RR in TOPSIS. The majority of proposed solutions are con-
centrated in Categories I and II, while fewer solutions are found in the other categories.
Categories I, II, and III primarily revolve around the selection of suitable normalization
methods and modifications to the original separation measure formulae. The choice of a
distance measurements plays a crucial role in assessing the relative proximity of alterna-
tives to PIS and NIS, aside from modifying the determination of PIS and/or NIS. How-
ever, there is a lack of literature that explicitly address the relationship between RR and
the specific method used for distance measures. As a result, our focus is directed towards
exploring the effects of different normalization methods and distance metrics, particularly
the Minkowski metric.
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3. A Mathematical Exploration of Normalization and Distance Measurements in
TOPSIS

This section provides a comprehensive mathematical explanation of how normalization
and distance measurements contribute to the phenomenon of RR. This investigation aims
to understand the factors that give rise to RR in MCDM, with a particular focus on TOP-
SIS. The goal is to enhance decision-making by addressing the occurrences of rank rever-
sal, which are comparatively less frequent in TOPSIS. The common algorithm of TOPSIS
for ranking and selection includes the following seven steps (Hwang and Yoon, 1981).

• Step 1: Create a decision or evaluation matrix D = {xij }. The matrix refers to m alter-
natives and n criteria, with its performance element xij , i = 1, . . . , m, j = 1, . . . , n.

• Step 2: Construct the normalized decision matrix R = {rij }. Matrix D is normalized
to matrix R with

rij = φ(xij ), i = 1, . . . , m, j = 1, . . . , n, (1)

φ represents a specific type of normalization operation.
• Step 3: Construct the weighted normalized decision matrix V. The matrix V = {vij } =

{wjrij } is calculated by multiplying the elements at each column of the matrix R by
their associated weights wj , j = 1, . . . , n.

• Step 4: Determine the positive-ideal and negative-ideal solutions V + (PIS) and V −
(NIS), respectively.

V + = [
v+

1 , . . . , v+
n

] =
[(

max
i

vij

∣∣j ∈ J
)
,
(

min
i

vij

∣∣j ∈ J ∗)]
,

V − = [
v−

1 , . . . , v−
n

] =
[(

min
i

vij

∣∣j ∈ J
)
,
(

max
i

vij

∣∣j ∈ J ∗)]
.

(2)

J is associated with the benefit criteria (the properties whose higher values are desir-
able), and J ∗ is associated with the cost criteria.

• Step 5: For each alternative i = 1, . . . , m, calculate the separation measures S+
i and

S−
i . The separation measures can be quantified using the n-dimensional distance func-

tion, denoted as d:

S+
i = d

({vij }, V +)
, S−

i = d
({vij }, V −)

. (3)

• Step 6: For each alternative i = 1, . . . , m, calculate its relative closeness C∗
i :

C∗
i = S−

i

/(
S+

i + S−
i

)
, (4)

where 0 � C∗
i � 1. The larger the index value is, the better is the performance of the

alternative.
• Step 7: Rank the preference order of all alternatives with the descending order of the

value of C∗
i .
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In the TOPSIS methodology, when comparing two alternatives, Ap and Aq , their re-
spective relative closeness values are calculated as follows: C∗

p = S−
p /(S+

p + S−
p ) for

alternative Ap and C∗
q = S−

q /(S+
q + S−

q ) for alternative Aq . If alternative Ap is preferred
over alternative Aq in TOPSIS, then C∗

p must be greater than C∗
q . This can be expressed

as:

S−
p

/(
S+

p + S−
p

)
> S−

q

/(
S+

q + S−
q

)
. (5)

After transposing the terms, the inequation can be rewritten as:

S−
p S+

q − S+
p S−

q > 0. (6)

The mentioned expression is the fundamental formula employed to determine the prefer-
ence relationship between alternatives Ap and Aq in TOPSIS. By assessing the result of
S−

p S+
q −S+

p S−
q , it is possible to establish whether Ap is preferable to Aq . A positive value

indicates that Ap is preferred over Aq .
The mathematical models are based on a scenario in which a new alternative with

the highest performance in a specific criterion, referred to as criterion k, is added to the
candidate list. All criteria are considered as benefit criteria. Benefit criteria represent the
positive attributes or qualities that decision-makers are trying to optimize or maximize in
their decision-making process.

Similar to many MCDM methods, TOPSIS utilizes criteria weights in its aggregation
process. These weights, assigned to criteria, play a crucial role in measuring the overall
preferences of alternatives. Different sets of weights can significantly impact the ranks
of alternatives (Kaliszewski et al., 2018). However, this study solely focuses on the dis-
tance measurements and normalization methods, thereby disregarding the weighting ef-
fect. Hence, all criteria weights are assumed to be identical and unchanged. Consequently,
we assume wj = 1/n for all criteria j. Figure 1 outlines the scope of this mathematical
evaluation. The forthcoming exploration will delve into the mathematical aspects to iden-
tify the fundamental causes of RR in TOPSIS, particularly focusing on the impact of the
normalization process and the use of different distance metrics. Initially, the max-min
normalization method will be employed as a basis for analysis. The study will examine
how different distance metrics—namely Euclidean, Manhattan, and Chebyshev—affect
the ranking of alternatives, driving a detailed mathematical investigation into the under-
lying formulae to better quantify and explain the occurrence of RR. In the subsequent
section, the analysis will extend to explore the effects of the max normalization method.

3.1. Max-Min Normalization

The normalization process is designed to allow fair comparison of alternatives across di-
verse criteria. It is a crucial step in the MCDM process, because it helps ensure fair and
meaningful comparisons among different criteria or alternatives. Pena et al. (2022) ex-
plored normalization techniques for both quantitative and qualitative criteria in MCDM.
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Fig. 1. Scope of the study.

They particularly focused on normalizing qualitative data using fuzzy concepts. How-
ever, when a new alternative is added, its performance on existing criteria can disrupt the
normalization balance. If the new alternative performs exceptionally well on certain cri-
teria compared to the existing alternatives, then the new alternative is disproportionately
favoured in the ranking, possibly leading to a reversal in the original ranking order.

Chen (2019) investigated the influence of three normalization methods (sum, max-
min, and vector) on entropy-based TOPSIS. Results indicated normalization notably im-
pacted outcomes by shaping criteria data diversity. Chen advised against normalization in
entropy weight computation and suggested vector normalization for TOPSIS. This study
conducts max-min normalization. Among the normalization methods discussed, the max-
min normalization method exhibits a certain behaviour. When a new alternative is intro-
duced, only the normalized values associated with the specified kth criterion are adjusted,
while the normalized values of all original alternatives under other criteria remain un-
changed. This simplifies the complexity of our further analysis on the impact of distance
measures on rank reversal. Before the new alternative with its performance element xnew,j ,
j = 1, . . . , n is added, the normalized performance rij of alternative i on criterion j can
be calculated as:

rij = (xij − min x.j )/(max x.j − min x.j ), (7)

where max x.j and min x.j are the maximum and minimum values of all alternatives’
performances on criterion j, respectively.

Attention is now directed to criterion k, where the new alternative exhibits the highest
performance. Upon the introduction of the new alternative, its normalized performance
rnew,k is 1, as it possesses the highest performance. At the same time, the normalized
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performances rik of other alternatives might be influenced by the new range of values. Let
�k = xnew,k/ max x.k , and the original rik is transformed into:

r ′
ik = xik − min x.k

max x.k�k − min x.k

= δkrik, (8)

where 0 � δk = (max x.k − min x.k)/(max x.k − min x.k) � 1. Since the new normalized
values in criterion k are computed by multiplying the original normalized values by δk ,
the successive calculation in TOPSIS to determine the final ranking significantly depends
on the value of δk . It is important to note that if max normalization is employed as a
replacement for max-min normalization, then parameter δk can be adjusted to 1/�k .

Since it is already established that �k > 1, it follows that r ′
ik < rik . Accordingly,

due to the normalization process, all other alternatives, excluding the new one, experience
decreased scores. However, the positive-ideal and negative-ideal solutions, denoted as V +
(PIS) and V − (NIS), respectively, remain unchanged, given that V + = [v+

1 , . . . , v+
n ] =

[1/n, . . . , 1/n] and V − = [v−
1 , . . . , v−

n ] = [0, . . . , 0].
The next step is to explore how different distance measurements impact the ranking

results when using max-min normalization scores. This study specifically considers three
distance measures used in TOPSIS: Euclidean, Manhattan, and Chebyshev distances.

3.2. Euclidean Distance

The Euclidean distance is a straightforward and widely used measurement that calculates
the straight-line distance between two points in a multi-dimensional space. In this case,
following the TOPSIS method and utilizing Euclidean distance for separation measures,
the initial two separation measures, S+

i and S−
i , before introducing the new alternative are

as follows:

S+
i = 1

n

√√√√ n∑
j=1

(rij − 1)2, S−
i = 1

n

√√√√ n∑
j=1

(rij )2. (9)

Within the candidate list, select any two alternatives, Ap and Aq , where Ap is pre-
ferred over Aq according to the TOPSIS method. It can then be observed that the expres-
sion S−

p S+
q − S+

p S−
q > 0, or equivalently, S−

p S+
q > S+

p S−
q , holds true. Representing this

expression using the Euclidean metric, the following result is derived:

√√√√ n∑
j=1

(rpj )2 ·
√√√√ n∑

j=1

(rqj − 1)2 >

√√√√ n∑
j=1

(rpj − 1)2 ·
√√√√ n∑

j=1

(rqj )2. (10)

However, upon introducing the new alternative in this case, the separation measures are
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modified to:

S+′
i = 1

n

√√√√ n∑
j=1

(rij−)2 + (
r ′
ik − 1

)2 − (rik − 1)2,

S−′
i = 1

n

√√√√ n∑
j=1

r2
ij + r ′ 2

ik − r2
ik.

(11)

Given that alternative Ap is initially preferred to Aq according to the TOPSIS method,
when the new alternative is introduced to the list of candidates, it is imperative to uphold
the following formula to avoid alterations in the ranking order.

S−
p

′
S+

q
′
> S+

p
′
S−

q
′ or S−

p
′
S+

q
′ − S+

p
′
S−

q
′
> 0. (12)

In mathematical terms, this relationship is expressed as:
√√√√ n∑

j=1

(
(rpj )2 − r2

pk

(
1 − δ2

k

))√√√√ n∑
j=1

(
(rqj − 1)2 + (δkrqk − 1)2 − (rqk − 1)2

)

>

√√√√ n∑
j=1

(
(rpj − 1)2 + (δkrpk − 1)2 − (rpk − 1)2

)√√√√ n∑
j=1

(
(rqj )2 − r2

qk

(
1 − δ2

k

))
,

(13)

where it is observed that r2
ik(1−δ2

k ) > 0 and (δkrik −1)2 −(rik −1)2 > 0. To comprehend
how the introduction of a new alternative, excelling in criterion k, to the candidate list
influences the likelihood of RR, two distinct scenarios covering various conditions are
explored.

Scenario 1: xpk > xqk . In the given scenario, it is apparent that rpk > rqk and r ′
pk > r ′

qk .
Furthermore, the following inequalities are valid:

r2
pk

(
1 − δ2

k

)
> r2

qk

(
1 − δ2

k

)
> 0. (14)

Moreover, it is ensured that if rpk + rqk < 2/(δk + 1), then

(δkrpk − 1)2 − (rpk − 1)2 > (δkrqk − 1)2 − (rqk − 1)2 > 0; (15)

otherwise,

(δkrqk − 1)2 − (rqk − 1)2 > (δkrpk − 1)2 − (rpk − 1)2 > 0. (16)

It is noted that rpk + rqk < 1 and 1 � 2(δk + 1) � 2. Therefore, rpk + rqk < 2(δk + 1),
which implies that (δkrpk −1)2 −(rpk −1)2 is always larger than (δkrqk −1)2 −(rqk −1)2.
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Fig. 2. The gap G1 as a function of rpk and �k .

Fig. 3. The gap G2 as a function of rpk and �k .

The sum of squared values
∑n

j=1(rij )
2 in essence significantly surpasses r2

ik −r ′ 2
ik , and∑n

j=1(rij −1)2 is notably larger than (δkrik −1)2 −(rik −1)2. In most cases, the condition
S−

p
′
S+

q
′
> S+

p
′
S−

q
′ can be maintained when the new alternative is introduced. However,

if S−
p S+

q
∼= S−

q S+
p , then the final ranking between alternatives p and q can be altered

especially when r2
pk(1−δ2

k ) >> r2
qk(1−δ2

k ) and (δkrpk−1)2−(rpk−1)2 � (δkqik−1)2−
(rqk −1)2. Let G1 represent the gap between r2

pk(1−δ2
k ) and r2

qk(1−δ2
k ), and G2 represent

the gap between (δkrpk −1)2 − (rpk −1)2 and (δkrqk −1)2 − (rqk −1)2. It is obvious that
�k amplifies the difference between r2

pk(1 − δ2
k ) and r2

qk(1 − δ2
k ), leading to an increased

gap. Similarly, the disparity between (δkrpk−1)2−(rpk −1)2 and (δkrqk −1)2−(rqk −1)2

also widens. Figures 2 and 3 illustrate the values of G1 and G2 for varying rpk − rqk and
�k , with rqk is fixed at 0.1. The parameter �k plays a critical role in amplifying both gap
measures. The impact is particularly strong at higher rpk − rqk values. For example, when
rpk = 0.9, increasing �k from 1 to 10 results in a substantial growth in both G1 and G2.
At lower rpk − rqk , the effect of �k is less pronounced but still present.
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Scenario 2: xpk � xqk . Given rqk > rpk , r ′
qk > r ′

pk , it can be demonstrated that:

r2
qk

(
1 − δ2

k

)
> r2

pk

(
1 − δ2

k

)
> 0 and

(δkrqk − 1)2 − (rqk − 1)2 > (δkrpk − 1)2 − (rpk − 1)2 > 0.
(17)

As a result, the inequality S−
p

′
S+

q
′
> S+

p
′
S−

q
′ still upholds. The possibility of RR occurring

is negligible.

3.3. Manhattan Distance

Manhattan distance, also known as city block distance, calculates the sum of the absolute
differences between the coordinates of two points. When applied to determine the relative
closeness of alternatives to PIS and NIS in this case, the initial separation measures for
S+

i and S−
i are as follows:

S+
i = 1

n

n∑
j=1

(1 − rij ), S−
i = 1

n

n∑
j=1

rij . (18)

Assuming that Ap is initially preferred over Aq as per the TOPSIS method, a result
arises: S−

p S+
q > S+

p S−
q . This inequality holds significance and can be expressed more

explicitly as:

n∑
j=1

rpj

n∑
j=1

(1 − rqj ) >

n∑
j=1

(1 − rpj )

n∑
j=1

rqj . (19)

However, upon the introduction of the new alternative, the separation measures undergo
adjustments:

S+
i

′ = 1

n

( n∑
j=1

(1 − rij ) + rik(1 − δk)

)
,

S−
i

′ = 1

n

( n∑
j=1

rij − rik(1 − δk)

)
.

(20)

To maintain the existing ranking order when introducing a new alternative, the follow-
ing formula must be satisfied:

S−
p

′
S+

q
′
> S+

p
′
S−

q
′ or S−

p
′
S+

q
′ − S+

p
′
S−

q
′
> 0. (21)
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In mathematical terms, this relationship can be expressed as:

( n∑
j=1

rpj − rpk(1 − δk)

)( n∑
j=1

(1 − rqj ) + rqk(1 − δk)

)

>

( n∑
j=1

(1 − rpj ) + rpk(1 − δk)

)( n∑
j=1

rqj − rqk(1 − δk)

)
. (22)

If xpk > xqk , then it follows that rpk > rqk . In cases where S−
p S+

q
∼= S−

q S+
p , the

outcomes of rpk(1 − δk) and rqk(1 − δk) can have a notable impact on the final ranking
between alternatives p and q. The final ranking between alternatives p and q can be altered
when rpk(1−δk) � rqk(1−δk). This can occur when rpk > rqk and �k is a substantially
larger value (with δk representing a small value). It is worth noting that the impact of
changes in δk in Eq. (22) is more pronounced compared to Eq. (13). This observation
underscores the fact that employing Euclidean distance can be more effective in reducing
the occurrence of the RR scenario when compared to using Manhattan distance.

3.4. Chebyshev Distance

Chebyshev distance calculates the maximum absolute difference between corresponding
attributes. It is suitable for scenarios where only the most extreme differences are of in-
terest. When using Chebyshev distance, the initial separation measures for S+

i and S−
i are

computed as follows:

S+
i = max

j

1

n
(1 − rij ), S−

i = max
j

1

n
rij . (23)

After introduction of the new alternative, the updated separation measures are given by:

S+
i

′ = max

{
1

n
(1 − ri1),

1

n
(1 − ri2), . . . ,

1

n
(1 − δkrik), . . . ,

1

n
(1 − rim)

}
,

S−
i

′ = max

{
1

n
ri1,

1

n
ri2, . . . ,

1

n
δkrik, . . . ,

1

n
rim

}
.

(24)

If the maximum value does not exist in the kth criterion before and after the introduction
of the new alternative, then the separation measures remain unchanged, and no RR occurs;
otherwise, assuming xpk > xqk , the following six extreme conditions should be explored
to assess the potential occurrence of the RR phenomenon. These conditions are detailed in
Table 2. The symbol “*” denotes the separation measures with the maximum value in the
kth criterion. Table 3 illustrates the outcomes, indicating whether S−

p
′
S+

q
′ is greater than

S+
p

′
S−

q
′ or not, given the condition S−

p S+
q > S+

p S−
q , where l, m, and j represent criteria

other than the kth criterion.
As δk decreases, 1

n
(1 − δkrpk) and 1

n
(1 − δkrqk) increase, while 1

n
δkrpk and 1

n
δkrqk

decrease. The significance of δk in determining the inequality is evident. Under conditions
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Table 2
Conditions for assessing RR phenomenon under various scenarios.

Conditions S−
p S+

p S−
q S+

q S−′
p S+′

p S−′
q S+′

q

1 * * * *
2 * * * *
3 * *
4 * *
5 * *
6 * *

Table 3
Assessment of RR conditions considering different scenarios.

Conditions S−
p

′
S+
q

′
S+
p

′
S−
q

′ RR status

1 1
n2 δkrpk(1 − rql )

1
n2 δkrqk(1 − rpm) No

2 1
n2 rpm(1 − δkrqk) 1

n2 rql (1 − δkrpk) Potential

3 1
n2 δkrpk(1 − rql )

1
n2 rql (1 − rpm) Potential

4 1
n2 rpm(1 − rql )

1
n2 δkrqk(1 − rpj ) No

5 1
n2 rpm(1 − rql )

1
n2 rql (1 − δkrpk) Potential

6 1
n2 rpm(1 − δkrqk) 1

n2 rql (1 − rpj ) No

1, 4, and 6, it is readily demonstrated that S−
p

′
S+

q
′ remains larger than S+

p
′
S−

q
′, precluding

the occurrence of RR. However, under conditions 2, 3, and 5, the possibility of RR arises.
Condition 2 states that both alternatives Ap and Aq exhibit the maximum distance from
the PIS value in the kth criterion, both before and after the introduction of the new alterna-
tive. In Condition 3, alternative Ap is specified to maintain the maximum distance from
the NIS value in the kth criterion, both before and after the introduction of the new al-
ternative. Condition 5 underscores the focus on alternative Ap, consistently revealing the
longest distance to the PIS value in the kth criterion, both preceding and succeeding the
introduction of the new alternative. It is crucial to note that RR is not a common outcome
in the majority of conditions.

4. Illustrative Case

Hwang and Yoon’s fighter selection problem is modified to consider only the first three
benefit criteria for interpretation (Hwang and Yoon, 1981). Table 4 shows the decision
matrix. Criterion X1 corresponds to maximum speed, X2 pertains to ferry range, and X3

relates to maximum payload. Table 5 shows the normalized decision matrix using the min-
max normalization method. Utilizing the TOPSIS method, Tables 6, 7, and 8 showcases
the ranking outcomes obtained by employing Manhattan distance, Euclidean distance, and
Chebyshev distance to calculate separation measures, respectively, without taking criteria
weights into account.
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Table 4
Decision matrix of the four alternatives evaluated by

three criteria.

Alternatives Criteria

X1 X2 X3

A1 2.0 1.500 20.000
A2 2.5 2.700 18.000
A3 1.8 2.000 21.000
A4 2.2 1.800 20.000

Table 5
Normalized decision matrix.

Alternatives Criteria

X1 X2 X3

A1 0.2857 0 0.6667
A2 1 1 0
A3 0 0.4167 1
A4 0.5714 0.25 0.6667

Table 6
Results of ranking based on Manhattan distance.

Alternatives Separation measures Rank

S+ S− C∗

A1 2.0476 0.9524 0.3175 4
A2 1 2 0.6667 1
A3 1.5833 1.4167 0.4722 3
A4 1.5119 1.4881 0.4960 2

Table 7
Results of ranking based on Euclidean distance.

Alternatives Separation measures Rank

S+ S− C∗

A1 1.2733 0.7253 0.3629 4
A2 1 1.4142 0.5858 1
A3 1.1577 1.0833 0.4834 3
A4 0.9259 0.9129 0.4965 2

Table 8
Results of ranking based on Chebyshev distance.

Alternatives Separation measures Rank

S+ S− C∗

A1 1 0.6667 0.4000 4
A2 1 1 0.5000 1
A3 1 1 0.5000 1
A4 0.7500 0.6667 0.4706 3
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According to Tables 6 and 7, using Manhattan and Euclidean distances yields identical
ranking results. The initial ranking result shows A2 � A4 � A3 � A1. However, when
employing Chebyshev distance, the separation measures calculate the distance between
the alternative and PIS/NIS, considering only the maximum absolute difference among
the three criteria. Under such circumstances, the outcomes are determined solely by the
performance of the alternative in a single criterion. Therefore, when an alternative excels
in a particular criterion, it secures the optimal ranking. For example, A3 outperforms in
criterion X3, resulting in a priority 1 ranking, or the same as A2. Because using Cheby-
shev distance in calculating separation measures does not simultaneously consider the
influence of all criteria, the resulting ranking may be biased. Evaluating the performance
of alternatives neglects other criteria and focuses solely on one criterion with extreme
values. Therefore, adopting Chebyshev distance to compute separation measures in most
MCDM problems might not be entirely appropriate. It could be challenging to differenti-
ate rankings in the performance assessment of many candidate solutions.

To simulate a scenario where RR might arise, alternative A5 is introduced for evalu-
ation based on the criteria [X1 = 2, X2 = 2, 700, X3 = 21, 000]. Despite the addition
of A5, PIS remains unchanged. The new rankings, using Manhattan and Euclidean dis-
tances, are A5 � A2 � A4 � A3 � A1., However, when employing Chebyshev distance,
the rankings are A5 � A2 = A3 � A4 � A1. Importantly, the order of A1, A2, A3, and
A4 remains consistent by using the same distance measurement, indicating the absence
of RR. The achievement rating of alternative A5 on criterion X2 is gradually increased,
leading to a change in PIS. In the current scenario, when the achievement rating of alter-
native A5 on criterion X2 continues to increase, the ratio of change �X2 is greater than 1
and increases synchronously. Tables 9, 10, and 11 illustrate the effect of increasing �X2

on alternatives A2 and A4 by using various distance measurements.
The results indicate that, initially, A2 is preferred over A4 when �X2 = 1, regardless

of the distance measurements employed. The preference order remains consistent with
the situation before the introduction of A5 to the candidate list. As �X2 increases to 2.0,
signifying a twofold improvement in A5’s performance in criterion X2, RR occurs when
Manhattan distance is employed to calculate separation measures (see Table 9). Interest-
ingly, A4 outperforms A2 in this scenario, although A2 is the superior solution before the
introduction of A5. If Euclidean distance is utilized, then RR emerges when �X2 increases
to 2.6 (see Table 10).

As discussed in Section 3, it is highlighted that Euclidean distance has the potential
to decrease the likelihood of RR compared to using Manhattan distance. In this case, the
results are consistent with the previously stated expectations. In Table 10, it is evident
that A2 consistently outperforms A4, irrespective of the increasing values of �X2 . This
consistent superiority indicates the absence of RR. A2 excels in X1 and has the poorest
performance in X3, but not in X2, while A4 does not exhibit the best or worst performance
in any criteria. Notably, A4 has the longest distance to PIS in criterion X2 both before and
after the introduction of A5. Additionally, Table 4 confirms that A2 performs better than
A4 in criterion X2, aligning with condition 6 in Table 11. Hence, using Chebyshev distance
to calculate separation measures in this case ensures the absence of RR.
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Table 9
Effect of the change ratio �X2 in PIS on rank reversal via Manhattan distance.

�X2 S+
2

′
S−

2
′

C∗
2 S+

4
′

S−
4

′
C∗

4 Ranking

1.0 1.0000 2.0000 0.6667 1.5119 1.4881 0.4960 A2 � A4
1.1 1.1837 1.8163 0.6054 1.5578 1.4422 0.4807 A2 � A4
1.2 1.3103 1.6897 0.5632 1.5895 1.4105 0.4702 A2 � A4
1.3 1.4030 1.5970 0.5323 1.6127 1.3873 0.4624 A2 � A4
1.4 1.4737 1.5263 0.5088 1.6303 1.3697 0.4566 A2 � A4
1.5 1.5294 1.4706 0.4902 1.6443 1.3557 0.4519 A2 � A4
1.6 1.5745 1.4255 0.4752 1.6555 1.3445 0.4482 A2 � A4
1.7 1.6117 1.3883 0.4628 1.6648 1.3352 0.4451 A2 � A4
1.8 1.6429 1.3571 0.4524 1.6726 1.3274 0.4425 A2 � A4
1.9 1.6694 1.3306 0.4435 1.6793 1.3207 0.4402 A2 � A4
2.0 1.6923 1.3077 0.4359 1.6850 1.3150 0.4383 A4 � A2
2.1 1.7122 1.2878 0.4293 1.6900 1.3100 0.4367 A4 � A2
2.2 1.7297 1.2703 0.4234 1.6943 1.3057 0.4352 A4 � A2
2.3 1.7452 1.2548 0.4183 1.6982 1.3018 0.4339 A4 � A2
2.4 1.7590 1.2410 0.4137 1.7017 1.2983 0.4328 A4 � A2
2.5 1.7714 1.2286 0.4095 1.7048 1.2952 0.4317 A4 � A2
2.6 1.7826 1.2174 0.4058 1.7076 1.2924 0.4308 A4 � A2
2.7 1.7927 1.2073 0.4024 1.7101 1.2899 0.4300 A4 � A2
2.8 1.8020 1.1980 0.3993 1.7124 1.2876 0.4292 A4 � A2
2.9 1.8104 1.1896 0.3965 1.7145 1.2855 0.4285 A4 � A2
3.0 1.8182 1.1818 0.3939 1.7165 1.2835 0.4278 A4 � A2

Table 10
Effect of the change ratio �X2 in PIS on rank reversal via Euclidean distance.

�X2 S+
2

′
S−

2
′

C∗
2 S+

4
′

S−
4

′
C∗

4 Ranking

1.0 1.0000 1.4142 0.5858 0.9259 0.9129 0.4965 A2 � A4
1.1 1.0167 1.2909 0.5594 0.9635 0.9015 0.4834 A2 � A4
1.2 1.0471 1.2148 0.5371 0.9898 0.8948 0.4748 A2 � A4
1.3 1.0781 1.1647 0.5193 1.0092 0.8906 0.4688 A2 � A4
1.4 1.1065 1.1300 0.5053 1.0242 0.8879 0.4644 A2 � A4
1.5 1.1315 1.1052 0.4941 1.0360 0.8859 0.4609 A2 � A4
1.5 1.1315 1.1052 0.4941 1.0360 0.8859 0.4609 A2 � A4
1.6 1.1533 1.0868 0.4852 1.0456 0.8845 0.4583 A2 � A4
1.7 1.1722 1.0728 0.4778 1.0536 0.8834 0.4561 A2 � A4
1.8 1.1888 1.0619 0.4718 1.0603 0.8826 0.4543 A2 � A4
1.9 1.2034 1.0532 0.4667 1.0660 0.8819 0.4528 A2 � A4
2.0 1.2163 1.0463 0.4624 1.0709 0.8814 0.4515 A2 � A4
2.1 1.2277 1.0406 0.4588 1.0752 0.8810 0.4504 A2 � A4
2.2 1.2379 1.0359 0.4556 1.0790 0.8806 0.4494 A2 � A4
2.3 1.2471 1.0319 0.4528 1.0823 0.8804 0.4485 A2 � A4
2.4 1.2554 1.0286 0.4503 1.0853 0.8801 0.4478 A2 � A4
2.5 1.2630 1.0258 0.4482 1.0880 0.8799 0.4471 A2 � A4
2.6 1.2698 1.0234 0.4463 1.0904 0.8797 0.4465 A4 � A2
2.7 1.2761 1.0213 0.4445 1.0926 0.8796 0.4460 A4 � A2
2.8 1.2819 1.0194 0.4430 1.0946 0.8794 0.4455 A4 � A2
2.9 1.2872 1.0178 0.4416 1.0965 0.8793 0.4451 A4 � A2
3.0 1.2921 1.0164 0.4403 1.0982 0.8792 0.4446 A4 � A2
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Table 11
Effect of the change ratio �X2 in PIS on rank reversal via Chebyshev distance.

�X2 S+
2

′
S−

2
′

C∗
2 S+

4
′

S−
4

′
C∗

4 Ranking

1.0 1.0000 1.0000 0.5000 0.7500 0.6667 0.4706 A2 � A4
1.1 1.0000 1.0000 0.5000 0.7959 0.6667 0.4558 A2 � A4
1.2 1.0000 1.0000 0.5000 0.8276 0.6667 0.4462 A2 � A4
1.3 1.0000 1.0000 0.5000 0.8507 0.6667 0.4393 A2 � A4
1.4 1.0000 1.0000 0.5000 0.8684 0.6667 0.4343 A2 � A4
1.5 1.0000 1.0000 0.5000 0.8824 0.6667 0.4304 A2 � A4
1.6 1.0000 1.0000 0.5000 0.8936 0.6667 0.4273 A2 � A4
1.7 1.0000 1.0000 0.5000 0.9029 0.6667 0.4247 A2 � A4
1.8 1.0000 1.0000 0.5000 0.9107 0.6667 0.4226 A2 � A4
1.9 1.0000 1.0000 0.5000 0.9174 0.6667 0.4209 A2 � A4
2.0 1.0000 1.0000 0.5000 0.9231 0.6667 0.4194 A2 � A4
2.1 1.0000 1.0000 0.5000 0.9281 0.6667 0.4180 A2 � A4
2.2 1.0000 1.0000 0.5000 0.9324 0.6667 0.4169 A2 � A4
2.3 1.0000 1.0000 0.5000 0.9363 0.6667 0.4159 A2 � A4
2.4 1.0000 1.0000 0.5000 0.9398 0.6667 0.4150 A2 � A4
2.5 1.0000 1.0000 0.5000 0.9429 0.6667 0.4142 A2 � A4
2.6 1.0000 1.0000 0.5000 0.9457 0.6667 0.4135 A2 � A4
2.7 1.0000 1.0000 0.5000 0.9482 0.6667 0.4128 A2 � A4
2.8 1.0000 1.0000 0.5000 0.9505 0.6667 0.4122 A2 � A4
2.9 1.0000 1.0000 0.5000 0.9526 0.6667 0.4117 A2 � A4
3.0 1.0000 1.0000 0.5000 0.9545 0.6667 0.4112 A2 � A4

Figure 4 illustrates the variations in the functions of S−
2

′
S+

4
′ − S+

2
′
S−

4
′ in response to

changes in �X2 using different distance measurements. When the values of these func-
tions decrease below 0, it indicates a shift in the preference order between A2 and A4,
transitioning from A2 � A4 to A4 � A2. When utilizing Manhattan distance, it is evident
that the decreasing slope of the function is steeper compared to using Euclidean distance.
This suggests that using Manhattan distance can make it more susceptible to the occur-
rence of RR. If the primary concern is to avoid RR, then opting for Chebyshev distance
can be the best solution.

For comparison, max normalization is now employed in this example, utilizing a fixed
NIS in the process, denoted as V − = [v−

1 , . . . , v−
n ] = [0, . . . , 0]. Figure 5 depicts the

fluctuations in the functions of S−
2

′
S+

4
′ − S+

2
′
S−

4
′ in response to variations in �X2 , em-

ploying different distance measurements. It is evident that employing max normalization
appears to yield a more resilient ranking result compared to using max-min normaliza-
tion. No instances of RR occurred even after increasing �X2 to 10. Notably, when utilizing
Manhattan distance, the decreasing slope of the function is steeper compared to using Eu-
clidean distance. However, the utilization of Chebyshev distance still yields highly robust
results.

Max-min normalization scales the performance scores based on the range of values
for each criterion. It is sensitive to outliers and can be influenced by extreme values.
For instance, consider alternative A5, which exhibits an extreme performance score in
X2 as �X2 continues to increase. This situation emphasizes the sensitivity of max-min
normalization to outliers, potentially leading to a more pronounced impact on the rank-
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Fig. 4. Effect of the change ratio �X2 on alternatives A2 and A4 via Max-Min normalization.

Fig. 5. Effect of the change ratio �X2 on alternatives A2 and A4 via Max normalization.

ing outcomes, especially when certain alternatives demonstrate extreme performance in a
particular criterion.

5. Conclusion and Remarks

This paper presents a detailed mathematical analysis of the RR phenomenon in the context
of TOPSIS, with a focus on its distance metrics and normalization. The objective is to
enhance the TOPSIS process by understanding and addressing the occurrence of RR.

The exploration focused on how the introduction of a new alternative excelling in a
specific criterion could disrupt the normalization balance and potentially lead to RR. The
study analysed the impact of min-max normalization scores on ranking outcomes using
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Euclidean, Manhattan, and Chebyshev distance measures. Mathematical expressions were
examined for separation measures before and after the introduction of a new alternative.
Euclidean distance showed scenarios where RR might occur, particularly when the intro-
duced alternative performed well in a specific criterion. Manhattan distance revealed sim-
ilar trends, while Chebyshev distance highlighted conditions for RR under extreme differ-
ences. Overall, Euclidean distance appeared to outperform Manhattan in preventing RR.

Despite offering valuable insights into RR in MCDM processes within the TOPSIS
framework, the study is limited to min-max and max normalization and three distance
measures, with other normalization methods and dynamic criteria weights left unexplored.
Managers should carefully select distance measures and normalization techniques based
on the decision-making context, particularly when introducing strong alternatives could
alter rankings. Future research could explore additional normalization techniques, dis-
tance metrics, dynamic criteria weighting, and hybrid approaches, providing further prac-
tical insights and enhancing the robustness of MCDM tools across industries.

In conclusion, the mathematical analysis provides valuable insights into the condi-
tions and factors contributing to the phenomenon of RR in MCDM processes, specifically
within the TOPSIS framework. By exploring different normalization methods and dis-
tance measures, we contribute to a deeper understanding of decision-making challenges
and improve the robustness of MCDM methodologies in practical applications. The find-
ings underscore the importance of careful consideration and customization of methods
based on specific decision contexts to mitigate the risk of RR and to enhance the reliabil-
ity of decision outcomes.
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