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Abstract. In this paper we consider the problem of the distributed deadlock resolu­
tion. Starting from a high level specification of the problem and the resolution algorithm 

for a system with single request model, we provide successive levels of decreasing ab­

straction of the initial specification in order to achieve a solution in a complete distributed 

system. The successive refinements and the final distributed deadlock resolution algo­
rithm are formaly described and proved by using the Input-Output Automata Model. The 

proposed solution is a modification of the algorithms in Mitchell and Merritt (1984) and 

Gonzalez de Mendivil et al. (1993) and preserves a similar message traffic to resolve a 

deadlock. 
Key words: distributed systems, distributed deadlocks, deadlock resolution, input­

output automata model, single request model. 

1. Introduction. The problem of deadlock is crucial in the design of 

concurrent systems. This problem is well understood in shared-memory systems 

but it represents a very difficult problem in distributed systems (Singhal, 1989). 

In an intuitive way, the deadlock situation is achieved in a system when a group 

of processes are indefinitely blocked because they request access to resources 
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which are allocated to processes in the same group. The natural form for 

modelling the wait for relations between processes is by using a Wait-For-Graph 

(WFG). The nodes in the graph represent the actor (processes, resources) in the 

system and the arcs represent the situations: "actor p waits for actor q". The 

WFG is used for representing different models of recource allocation strategies 

and it is a comprehensive way to compare different solutions for handling 

deadlocks (Knapp, 1987). 

For the particular case of the single request model, the necessary and 
sufficient condition for the existence of a deadlock is that of a directed cycle 
in the WFG (Knapp, 1987). The traditional form of deadlock algorithms for 
distributed systems comprises two steps: 

(a) detection step, to find out cycles in the WFG, and 

(b) resolution step, to resolve the deadlock by selecting a unique victim 
in the cycle. 

Many of the algorithms in the distributed deadlock detection-resolution 
(DDD/R) topic for the single request model are probe-based algorithms (Knapp, 
1987). A first distinction can be done between those that use priority (solution 
that use...;; fewer messages to detect the deadlocks), and those which do not 

(they need no extra round to resolve the deadlocks). A second distinction can 

be done in the former class, depending whether the algorithm stores the probes 
or not. On one hand, storing algorithms, such as in Chady and Misra (1987); 
Mitchell and Merritt (1984), have a smaller cost, in message trafic, during 
the detection phase, but need cleaning rounds for the resolution; on the other 
hand, non-storing algorithms (Gonzalez de Mendivil, et al. 1992; Gonzalez de 
Mendivil et al., 1993) require a slightly higher trafic for the detection, but need 

no additional phase. Our algorithm is prioritY-based-without-storing. 

In general, the proof of the correctness of DDD/R algorithms is difficult 

because of the highly complex operations of such algorithms. This is why most 

proposals for distributed deadlock algorithms have either (Kshemkalyani and 
Singhal, 1991) (a) ignored the correctness proof (Sinha and Natarajan, 1985), 
(b) used simulation techniques to "show" correctness (Choundhary et al. 1989), 

or (c) given informal or intuitive arguments of correctness (Oberrnarck, 1982). 

Only recently attention has been paid to rigorous correctness proofs of 
the algorithms (Kshemkalyani and Singhal, 1991; Gonzalez de Mendi viI et 

al., 1992; Elmagarmid, 1988). However, due to the lack of an underlying 
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theory for DDD/R and the highly complex operations of the algorithms, most 

of these correctness proofs have used ad hoc methods (GonzaIez de Mendivil 

et al., 1992; Gonzalez de Mendivil et al., 1993; Elmagarmid, 1988). Other 

correctness proofs are based on formal methods, such a<; the use of invariant 
techniques (Kshemkalyani and Singhal, 1991), but at a low level of abstraction. 

We propose the use of the Input-Output Automata Model (lOA model) 

as the base of our formalism. This model was designed as a tool for modelling 

concurrent and distributed systems. We refer the reader to (Lynch and Thttle, 

1989; Tuttle, 1989) for a complete development of the model, motivation and 

examples. 

In the particular topic of deadlock resolution, a great number of papers 
examine separately deadlock detection and deadlock resolution (Singhal, 1989; 

Kshemkalyani and Singhal, 1991). These algorithms take into account correct­
ness criteria just based on deadlock detection: 

(a) detection of every existing deadlock; 

(b) no false deadlocks detected. 

As a consequence, algorithms which are correct under those criteria, may 

be incorrect after the resolution phase. The criteria of correctness based strictly 

on the resolution of deadlock has been recently proposed in Gonzalez de 
Mendivil et al. (1994) by using the lOA formalism. 

In Gonzalez de Mendivil et al. (1993), the authors have introduced a first 

refinement of the automaton specification in order to obtain an abstract solution 

for a distributed deadlock resolution algorithm. The algorithm is priory-based­

without-storing, and is based on a modification of the algorithm proposed in 

Mitchell and Merritt (1984) and (GonzaIez de Mendivil et aI., 1992). Such a 

solution verifies the criteria of correctness: 

(a) liveness condition: the resolution algorithm resolves every deadlock; 

(b) safety condition: the resolution algorithm does not resolve false 

deadlocks. 

Its performance (Gonzalez de Mendivil et al. (1994). is similar to the 

existing algorithms: a worst case O(N2 ) in messages for resolving a deadlock 

is achieved, being N the number of nodes involved in the deadlock. 

In this paper, we introduce a new refinement of the automaton which rep­

resents the abstract distributed solution in Gonzalez de Mendivil et al. (1994). 

The proposed automaton is designed in order to obtain a completely distributed 
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algorithm. This means that in every site there is a running instance of the al­

gorithm, and the whole of them, cooperating via the communication network, 

forms the complete deadlock resolution mechanism. We also prove that the 

distributed solution verifies the criteria of correctness given above. 

The rest of this paper is organized as follows. In Section 2 is briefly 

presented the specification of the problem of deadlock resolution and the ab­

stract solution proposed in Gonzalez de Mendivil et al. (1994). Section 3 is. 

devoted to introduce the deadlock resolution algorithm for a distributed system. 

In Section 4, we provide the formal proof of correctness. Finally, Section 5 is 

devoted to concluding remarks and future perspectives. 

2. Abstract solution of a deadlock resolution algorithm. Deadlock res­

olution algorithms are primary intended to perform some activity in order to 

solve a deadlock situation. In absence of such activity, deadlocks can indefi­
nitely stand in the system as a stable property. A deadlock resolution algorithm 

can be considered correct if the following criteria of correctness hold. 

Liveness Condition. If there exists a deadlock in the system then it will be 

eventually resolved by the resolution algorithm. 

Safety Condition. The resolution algorithm does not resolve false dead­

locks. 

Where in condition (2), resolution of a false deadlock is considered to be 

the resolution of a non-existing deadlock. 

In this paper, as the algorithm is presented using the IDA formalism, the 
mathematical objects used will be in the first parts quite general, and by the 

end, will become more restrictive. As an illustration, all the content of this 

section is devoted to abstract graphs. Their nodes can be interpreted as the 

actors defined preiously (this is why we keep on writing WFG), however they 

represent a situation much more general, only based on some properties of 

those graphs. Note that the generality will be used in the following sections, 

where we introduce a new kind of nodes. We will use standard definitions on 

graphs; predA(i) is the set of predecessors of a node i in a given set of arcs 

A; SUCCA (i) is the set of its successors; incomA (i) is the set of incoming arcs; 

and d!(i) is its outdegree (number of successors). 

In order to characterize the deadlock situation, it is convenient to use the 
WFG (Knapp, 1987). WFG is a pair (N, A) where N is the (countable) set of 

nodes, and A ~ N x N. Their elements will be denoted, respectively, i, j, k, r, I 
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or n; and {i, j}, (1, r) . . .. We assume nodes in the system are distinguishable 
and ordered: (N, <) is a totally ordered set (i < j iff j has higher priority 
than i). 

An arc(i, j} E A means that i waits for j. Since we restrain our work 
to the single request model, a deadlock corresponds with the existence of a 

directed cycle C = {{i, (i + 1) mod k) E A I 0 ~ i < k -I} in the WFG. For 
sake of clearance, we shall now simply write C = {(i, i + 1) E A}. Let N(C) 
be the set of nodes in the arcs of C. H there exists a cycle C, a node n E N( C) 
must be selected as victim in order to resolve the deadlock. The deadlock is 
resolved by aborting the victim. 

The system under considerati.on comprises the following components 
(Fig. 1): 

add arc --del arc ... Resolution 
Manager Algorithm 

... abort 

Fig. 1. System components and actions. 

(a) a Manager of the active elements of the system, which provides the 
actions addJJrc(.) and deLarc(.) respectively to create a new wait-for relation 
or to delete it; 

(b) a Resolution Algorithm which provides to the Manager the action 
abort(.) when it resolves a cycle. We assume that the effective resolution of a 
deadlock for the Manager is properly made. 

In the following subsection, we give an automaton, denoted Ro, which 
represents the resolution algorithm, and a set of well fonned histories which 
represents the fair behaviours of the automaton of the manager, Mo. We do not 
develop Mo in order to simplify the discussion. 

2.1. Specification of a deadlock resolution algorithm. The single request 
model is characterized by the conditions: 

(a) a node cannot directly wait for itself; 
(b) a node cannot be waiting for more than one node; 
(c) spontaneous abortions of nodes are not allowed: all the abortions are 

caused by the deadlock resolution algorithm; 
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(d) an aborted node does not take part in the system operations, the pre­

vious dependencies of the victim with another nodes will be cancelled by the 

manager. 

A manager satisfying the previous assumptions provides to the resolution 

algorithm a set of well formed histories, denoted H 0, as it formalized in the 

following Definition 2.1. 

In the following definition, we introduce the abuses of notation 1I"kO •• • 1I"k1 

as the set {1I"k I ko ~ k ~ kdi 1I"kO ••• as 1I"kO • •• 11"00' Finally, the set B = 
({ i, j) I i i= j} ~ N x N, is a fixed set indicating the possible arcs to be 
performed by the Manager. 

DEFINITION 2.1. Let :E be the signature of actions: 

:E = (in(:E), 0, out(:E»: 
in(:E) = {add_arc({i,j),deLarc({i,j) I V{i,j) E B}, 
out(:E) = {abort(i) I Vi EN}. 

Let {3 be a sequence of actions in :E. The behaviour {3 = 11"111"2 •• • 1I"k •.• is a 

well formed history, {3 E H 0, iff the following conditions hold: 

(i) 1I"k = add..arc( (i, r}) 1\ 1I"k' = /I No node has more 

add..arc( (i, j}) 1\ k < k' =} /I than one outgoing arc 

1I"k •• • 1I"k' n {deLarc( (i, r}), aborter)} i= 0; 

(iia) 1I"k' = deLarc( (i, j) => /IAn arc can be deleted only when 

3k < k': 1I"k = add..arc({i,j}) /I it actually exists 

1\1I"k •• • 1I"k' n {deLarc( (i, j}), abort(j)} = 0; 

(iib) 1I"k' = del..arc({i,j}) => 
(3k < k': 1I"k = abort(i» 

V(3k < k': 1I"k = a dd..arc( (j, r}) => 

/I and when it has no 

/I successor or its origin 

/I is a victim 

11"/ •• • 1I"k' n {deLarc( (j, r}), aborter)} i= 0); 

(iii) 1I"k = abort( i) => /I Once a node has been aborted, 

1I"k ••• n /I it no longer participates 

{add..arc( (i, r}), add..arc( (r, i)} == 0. 

In the following, we introduce the automaton of the resolution algorithm, 
Ro, at highest level of abstraction. 
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- States of Ro. A state of Ro is defined by a snapshot of the set of 

arcs A of the WFG and the set of victims in the system. A particular state 

s E states(Ro) is defined as a record (s.A, s.victims). 

- Start States of Ro. The start states of Ro, start(Ro) ~ states(Ro), are 

the possible initial configurations for the system: So E start(Ro) if and only 

if so.A = 0 and so.victims = 0. 
- Actions signature of Ro. Its external signature is E (of Definition 2.1), 

and it has no internal action. 

-~ of Ro. The set of steps for the automaton Ro, steps(Ro), is de­

fined by the transition graph steps(Ro) ~ states(Ro) x acts(Ro) x states(Ro). 
The steps of Ro, (s, 7r, s') E steps(Ro), are specified in Fig. 2 with the precon­
ditions/effects formalism. An action 7r is enabled from any state s satisfying its 

preconditions, and 7r takes s to the state s' if s' can be obtained by modifying s 
as indicated by the effects 7r (the components of the state that are not modified 

are simply not mentionned). Since by definition (Lynch and Tuttle, 1989), an 

lOA has to be input enabled, no input action has precondition. 

INPUT ACTIONS 

add_arc( (i, j) 
eff s'.A .- s.A + {(i, j)} 

del_arc( (i, j) 
eff s'.A'- s.A - {(i,j)} 

OUTPUT ACTIONS 

abort (i) 
ill!: i f/. victims, 3C ~ A, 

i E N(C) 
eff s'.A .- s.A - incom$.A (i) 

s'.victims.- s.victims + {i} 

Fig. 2. The automaton Ro. 

The input actions of the automaton Ro are add-O.rc(.), and deLarc(.) and 

their effects are obvious. Its output actions are abort(.). An abort(.) has as 

precondition the existence of a non-(being)-resolved cycle C in the system. The 

effect is the choise of a node i E N (C) as victim and the break of the cycle. 

- Partition of Ro. Finally, a partition of the locally controlled actions (the 

actions under control of the automaton, local(Ro) = int(Ro) U out(Ro», must 

be defined in order to complete the description of Ro. Classes of the partition 

can be interpreted as the different tasks locally controlled by the automaton. The 

lOA model suppose a weak fairness notion among the tasks, that is, fair turns are 
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provided for each class in order to perform an action if it is enabled. Guided by 

the previous interpretation, we define the partition as pa rt ( Ro) = {Cb liE N}, 
being C~ = {abort(i)} to ensure that every enabled abort(.) will be eventually 

executed. 

The automaton Ro preserves the well formedness of H 0 and also captures 

the desired resource allocation model: 

Va E execs{Ro): beh(a) E Ho, Vi E N, Vs E states(Ro) 

in a, 0 ~ d;'A(i) ~ 1; 

Va E execs(Ro): beh(o:) E Ho: if there are two different 

cycles C1 , C2 in a state s of a then C1 and C2 are disjoints -

N(Cd n N(C2 ) = 0. 
In order to define in our system the concept of deadlocked execution (an 

execution where a cycle is never resolved and stands forever), we first define 

the persistent cycles. C is a persistant cycle of the execution a iff 3k such 

that Vk' ~ k: C E sk,.A. 

DEFINITION 2.2. Let a E execs(Ro). a is a deadlocked execution iff 

there exist a persistent cycle in a. 

In Gonz31ez de Mendivil et ai. (1994) is proved the following Lemma, 

specifying that every fair execution of Ro such that its behaviour is well formed, 

is a non-deadlocked execution. 

Lemma2.3. Let a E fairexecs(Ro), if beh(a) E Ho then a is a non­

deadlocked execution. 

The liveness condition of the criteria of correctness provided at the begin­

ing of this Section is explicitly included in the Lemma 2.3 and the safety con­

dition is implicitly included in the preconditions of the action abort(.). Further­

more, the following simple property holds: if a E fairexecs(Ro): beh(a) E 
H 0 then any deadlock is resolved exactly once. This property, which has been 

traditionally introduced in the literature as a condition of correctness (Singhal, 

1989), is a direct consequence of our specification. 

As a conclusion, fairbehs(Ro) n Ho represent"! the specification of a 

deadlock resolution algorithm for the single request model. 

2.2. A first approach to the resolution algorithm. In this first approx­

imation the system is still seen as a whole and not as a distributed system. 
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However, since the proposed solution is designed to be distributed, that solu­
tion cannot be based on the knowledge of the whole WFG. We need a solution 

which could be distributed upon the sites of the distributed system in such a 

way that each part contributes to the global algorithm. The asynchrony due to 

the communications is capture in this abstract solution because the information 

which is handled by the algorithm, is based on information sending and receiv­

ing through the paths defined by the arcs. 1b maintain consistency of the vision 

of the WFG, each arc will now have a version, thanks to which the algorithm 
will be able to distinguish obsolete and valid information. The information 

shared by the different sites is sent under the form of a mark. 

A mark m is a tuple m=(j, (i,j), version((i,j))), where j is the node 
which originaly generated the mark (called the initiator of the mark), (i, j) is 

the arc where m had been first created, and version( (i, j)) is the version of 
(i, j) when m had been created. The set of marks m is denoted M, and M* 
is the set of the finite strigs Jl built on M (including c the empty string). The 
marks which are travelling through an arc at a particular instant are called the 
marks of this arc; these marks form a string which represents the sending order. 
The marks generated by the algorithm are transmitted backwardly through the 

arcs of the WFG, that is, if m is a mark of (i, j) E A, then goes from j to i. 

The automaton which represents the proposed solution at this level is 
denoted R 1 and is specified in the following paragraphs. 

- States of R1 • A state of the automaton Rl is an extension of a state of 

Ro. Its new components are marks((i,j)), the string of marks of (i,j); and 
for each node j the set create(j) = {i E predA (j) I i must create the mark 

(j, (i, j), version( (i, j}) n. 
A particular state s of automaton Rl is then defined by: s.A; s.victims; 

't/(i,j} E B, s.version((i,j)), s.marks((i,j)); and 'Vi EN, s.create(i). 

- Start States of Rl. So E start(Rd iff so.A = 0; so.victims = 
0; 't/(i,j) E B:so.version((i,j)) = 0, so.marks((i,j)) = c, and 'Vi E 

N, So .create( i) = 0. 

- Actions signature of R 1. Its external signature is the same as Ro, and its 

internal actions are int(Rt) = {create_mark((i,j)), trans_mark(m, (i,j)), 
elim_mark(m, (i,j)), lose_mark(m, (i,j)n, where (i,j) E B, mE M. 

- States of R 1 • Informally the algorithm runs as follows: when a node 
detects the possibility of a cycle, it generates a mark (create_mark(.)). This 
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mark is transmitted in the backward directions of the graph. Transmission is 

performed if the priority of the initiator of the mark is higer than the priority 

of the nodes through which the mark is travelling (trans_mark(.)); otherwise 

the mark is eliminated (elim_mark(.)) and the arc which eliminated it may 

create a new higer priority mark. If no path traversed by a mark is a cycle 

then eventually the mark will be lost (lose_mark(.))~ If a mark reaches the arc 

which originated it and if they have same version, then the algorithm concludes 

to the existance of a cycle and breaks it by aborting the chosen node (abort ( .)). 
Fig. 3 shows the actions and steps of the automaton Rl' Well formed histories 

of automaton Rl are the same as those of automaton Ro, that is, Ho. 

INPUT ACTIONS 

add_arc( ( i, j) ) 
eff s'.A .- s.A + {(i, j)} 
s' .create(j) .- s.create(j) + {i} 
s'.version((i,j)) .- s.version((i,j)) + 1 

deCarc«(i, j) 
eff s'.A .- s.A - {(i, j)} 
s'.create(j) .- s.create(j) - {i} 
s'.marks((i,j)) .- € 

OUTPUT ACTIONS 

abort(i) 

~ i <I. victims 
3(i,k) E A: marks((i,k)) = meJ.l, 

m = (i, (j, i), v), 
(j, i) E A 1\ v = version( (j, i}) 

eff s'.A .- s.A - incomsoA (i) 
s'.victims f-- s.victims + {i} 
Vj E predsoA(i) : 

s'.marks( (j, i}) .- € 

s'.create( i) f-- 0 

Fig. 3. The automaton Rl (to be continued). 
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INTERNAL ACTIONS 

create_mark( (i, j) ) 
~ j f/:. victims, SUCCA(j) f. 0, (i,j) E A, 
i E create(j) 

eff m = (j, {i,j), version({i,j))) 
s'.marks«(i,j) ..... s.marks({i,j) e m 

s' .create(j) ..... s.create(j) - {i} 
trans_mark( m, (i, j) ) 
~ i f/:. victims, predA(i) f. 0, {i,j) E A, 
marks({i, i) = mel' 

m=(r(/,r},v), r>i 
eff s'.marks«(i,j}) <- I' 

Vk E preds.A(i) : 
s' .marks( (k, i) ..... s.marks( {k, i) em 

elim_mark(m, (i,j}) 
~ i f/:. victims, predA(i) f. 0, (i,j) E A, 
marks«(i,j) = mel' 

m=(r(/,r},v), r<i 
eff s'.marks({i,j) ..... I' 
s'.create( i) ..... s.create( i) + preds.A (i) 

lose_mark(m, (i, j) 
~ marks({i,j) = mel' 

m = (r(/, r), v) 
predA (i) = 0 ViE victimsV 

(r = i A (I, r) E A A version({/, r» f. v) 
eff s'.marks«(i,j) ..... I' 

Fig. 3. The automaton RI. 

45 

- Partition of RI.part(RI) = {ct, Vi E N} U {D;i, V(i,j} E B} U 

{E;i, V(i,j) E B}, where ct = {abort(i)}j D;i = {create_mark({i,j))} 
and Efi = {trans_mark(m, (i,j), lose_mark(m, (i,j}), elim_mark(m, 
{i,j}) I Vm EO}. 

In Gonzalez de Mendivil et al. (1994), we formally proved that (fairbehs 
(Rd n Ho) ~ (fairbehs(Ro) n Ho), and therefore, RI under the well fonned 
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histories Ho verifies the criteria of correctness of the specification (Jairbehs 

(Ro) n Ho). 

3. Towards a distributed deadlock resolution algorithm. In this Section, 

we proposed a distribution of the algorithm presented in the Section 2.2. In 
order to achieve this goal, it is necessary to introduce a first approach to the 

distributed Manager. The approach is based on the definition of a set of in­

tennediate nodes which indicates the relation between a blocked node and the 
node which blocks it. A new set of well formed histories is defined as a subset 

of the histories for the single request model, to model the formation of the 
arcs by the Manager. A simple modification of the automaton Rl is exposed, 
based on the properties which are obtained from the new histories and the set 

of nodes. Finally, it is developed an automaton which includes the concepts of 
communication channel and site of the distributed system. 

3.1. The intermediate nodes and the distributed manager. We now in­
troduce a new topography of the system, in order to capture the distributed 
aspect. P will denote the set of the previously defined actors, and E will be 
the set of the intermediate nodes, introduced in order to capture the commu­
nication sequences between two actors. Then, we define N as the set of both 
sets of node, and B the set of the possible arcs, what makes us able to reuse 
any previous result on N and B (the reader can easily check that care had been 

taken in the previous sections to allow such a mathematical trick). Henceforth, 
we will distinguish the two kinds of node (by notation Pi or eii' and P or E) 
only when necessary; otherwise, set N and its nodes n, i ... are freely used. 
Given as an example to help the reader, in the following Definition 3.1, in(E) 
and out(E) are rigourously the ones given in Definition 2.1, with new Nand B. 

Moreformaly, we have: letP = {pi, i E I}, E = {(Pi ,Pi) I i,j E I, i # 
j} (a pair (pi, Pi) will be denoted eij); N = P U E; B = {(pi, eij), (eij, pj) I 
Pi, Pi E P, eii E E}. (N, » is ~upposed to be totally ordered, and with the 
property: 'rip E P, e E E: P > e. 

Using the set of intermediate nodes the situation node Pi waits for node Pi 

is represented by two arcs (pi, eii) and (eii' Pi), so a new set of well formed 
histories H 1 is needed in order to take into account this new interpretation 
(Fig. 4 helps in understanding the follwing statements). Since our Manager 

is of the single request model, it has a certain behaviour: it represents the 
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Fig. 4. Behaviour of adjacent arcs in R2 • 

wait-for relations by two edges that will be added and deleted in a determined 
order. This behaviour is similar to that considered by a great part of published 
DDDIR algorithms that use the WFQ (Knapp, 1987); its interpretation is quite 

simple: both arcs of R2 must behave rigourously like the single one of Rl they 
represent. We restate this in order to find the mathematical expression of these 
properties: 

(a) an arc (eij, pj) cannot be added if previously the arc {Pi, eij} has not 
been added and remains; 

(b) an arc (pi, eij) cannot be deleted if previously the arc (eij, Pi) has not 
been deleted. 

Definition 3.1. Let ~ be the signature of actions: ~ = (in(~), 0, 
out(~»: 

in(~) = {add...arc( (Pi, eij}), add...arc({eij, Pj}), 

deLarc( (pi, eij}), del...arc( (eii' Pi» I 
V(Pi,eij}, {eij,pj} E B} 

out(~) = {abort(Pi), abort(eii) I VPi E P, Veii E E}. 

Let 13 be a sequence of actions in ~. 'The behaviour 13 = 1rl1r2 ••• 1rk • • • is a 
well formed history (13 E H 1). iff the following conditions hold: 

(i) 13 E H 0 /I f3 is a single request behaviour 
(ii) 1rk' = add-arc«eij, Pi}) ::} I/1\\'o adjacent arcs behave like 

3k < k', 1rk = add...arc( (pi, eii ) ) 1/ a single one when created 

l\1rk •• • 1rk' n {del...arc(eij, Pi}), deLarc( (pi, eii})} = 0; 
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(iii) 'Irk' = deLarc( (Pi, eij)) ::} 1/ and when deleted 

3k < k', 'Irk = add_arc( (Pi, eij)) 

"'Irk . .. 'Irk' n {del....arc(eij, pj)), abort(pj)} = 0. 

It is trivial to prove that HI C Ho; therefore, (fairbehs(RI) n Jh) C 

(fairbehs(RI)nHo) and RI under the well formed histories HI ~ntains the 

criteria of correctness. We will now prove some properties of RI under the well 

formed histories HI that will enable us to simplificate this automaton, which 

will then be denoted Rle ' First we claim that abort( eij) is never enabled, 

and therefore, can be omitted in Rle (in order to stay consistent with the lOA 

model, an omitted action is in fact an action renamed to null). The following 

property will help us. 

Property 3.2. Let a E execs(Rd. Hmis a mark of (e,p) E Sk.A then 
its initiator has a higher priority than e. 

Proof. Since m = (r(.),.) stands in sk.marks«(eij,pj)), one of the fol­

lowing actions had been performed in k' ~ k: 'Irk' = create_mark( (eij, pj)) or 

'Irk' = trans_mark( m, (Pj, eij))' In the last case m has to be (n, (.), .) with 

r > Pj > eij' In both cases r> eij' 

Due to the Property 3.2 the preconditions of elim_mark( m, (e;j, pj)) are 

always false, so there will be disabled in every state of automaton RI' Thus 

they can be transformed in null actions without effects by renaming. Such 

actions will not be taken into account. The checking of r > eij in precondition 

of trans_mark( m, (eij, pj)) can also be eliminated as it is always true. 

Property 3.3. 'ria E execs(RI), 'rIe E E: abort(e) is disabled in every 

state of a. 

Proof. Property 3.2 assures that if there exists a mark m such that m 

stands in s.marks«(eij,pj)), being m = (r, (.), .), it is verified that r > eij' 
Therefore r '" eij and the preconditions of abort( eij) actions are never verified 
in any state of any execution of the automatn R i • 

By Property 3.3 abort( e) actions could be transformed in null actions, 

however, we do not rename such actions in order to maintain ext(Rt} = 
ext(R1e ). Note that internal actions can be renamed because it does not affects 

the external signature. 
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Furthermore, 'Veij E E and in every state of the executions of the automa­

ton R I , eij f/. victims. Consequently, the preconditions of create_mark( (pi, 

eij) and trans_mark(m, (eij,pj) actions can be simplified. 

Property 3.4. Let a E execs(RI ): beh(a) E HI, let Sk be a state 

of a such that (eij, Pi) E Sk .A, then (pi, eii) E sk.A and consequently 

predSk.A(eij) = {pd. 

Proof The proof is a direct consequence of Definition 3.1 of the well 

formed histories. 

Due to Property 3.4, it is sufficient to check the existence of (eij , pj) arc in 

create_mark( (pi, eij) and trans_mark( m, (eij, pj) actions. The checking 

of the existence of (Pi, eij) arc can be omitted. Previous properties imply that 

if (eij, pj) E s.A then preds .A (eij) =F 0, eij f/. victims and the initiator of a 

mark of (eij,pj) is always in P. Therefore lose_mark(m, (e,p) actions are 

disabled in every execution on the automaton, and they can be renaming as null 

actions. 

The particular action create_mark( (p, e) requieres further work. 

Lemma3.5. Let a E fairexecs(Rt}, such that beh(a) E HI. If there 

exists a persistant cycle C then there exists a state Ski in a with k' > k 

and an arc (ei,i+I,Pi+l) EC, such that mark m = (Pi+1,(ei,i+1,Pi+l),V) 

with v = Sk .version( (ei,i+l ,Pi+I) is a mark of (ei,i+l, Pi+I). 

Proof Without loss of generaliy, let Sk be the state of a when the cycle 

CC sk.A has just been formed. Let trk = add_arc«.) be the last action 

which closes the cycle. By the well formed histories HI such arc(.) is of 

type (ei,i+I,Pi+I). So trk = add_arc«(ei,i+l,Pi+1), and this implies that 

since Sk createJnark( (ei,i+l, Pi+1) will be enabled. Fairness then ensures 

its execution. 

The Lemma 3.5 ensures that at least, when a cycle has been formed, one 

action create_mark( (e, p) had been executed. In Gonzalez de Mendivil et al. 

(1994) is proved that this guarantees that an action abort(.) will eventually be 
enabled in order to resolve the cycle. Therefore, the actions create_mark( (p, e) 

are unecessary in Rle • 

Finally, the automaton R le is obtained from RI by the transformations 

presented above. 



50 A deadlock resolution algorithm 

- States of R1e.states(Rle ) = {s E states(Rl) I s is reachable state by 

a behaviour f3 E H d. 
- Start States of Rle.start(R1e) = start(R1). 
- Action signature of Rle• Its external signature is the same as Rl and its 

internal actions are int(Rle) = {create_mark( (e, p)), trans_mark(m, (p; e)), 
trans_mark(m, (e,p)), elim_mark(m, (p, e)), losf-mark(m, (p, e)), null}, 
where (p,e), (e,p) E Band mE M. 

- Steps of R1e.steps(Rle) = {s, 7r, S') E steps(Rdj7r E acts(Rle)}. 
- Partition of R1e.part(R1e ) = part(Rl) with the renaming of the actions. 

The automaton R 1e may be interpreted as the execution module (Tuttle, 

1987) of the fairexecs(R1) such that their behaviours are included in H1. Un­

der this consideration is trivial that (fairbehs(R1e ) n Hd = (fairbehs(Rd n 
Hd. The criteria of correctness are maintained for the automaton R1e . 

3.2. Distributed deadlock resolution algorithm. In this subsection, the 

concept of site and communication channel is introduced in order to obtain the 

distributed deadlock resolution algorithm. Moreover the global knowledge is 

no longer used: any variable of state is explicitely local. However some global 

concepts are kept, such as a persistant cycle, defined to be a cycle whose arcs 

are locally persistant. 

Given P = {pi, i E I}, a function Site: P -l- I associates its site to a 

node. From now on, we consider that each site has an unique process, and 

therefore indices are characteristic of the site. As a consequence, we will 

now simplficate Site(Pi) by i, being i the i-th site of the system. The nodes 

eij E E, belong to both sites i and j. Between two different sites there is 

always a reliable FIFO communication channel, denoted channelj,i by which 

the messages may travel form site j to site i. 

The new automaton, denoted R2, is similar to R 1e but with the additional 

renaming of actions trans_mark(m, (e, p)) by trans_probe(m, (e,p)). We 

use such names without confusion. The algorithm is edge-chasing and uses 

probes as the special messages for the resolution. A probe s is a pair (m, (pi, 
eij )), being (pi, eij) the arc that should receive the mark m EM. The set of 

probes is denoted S, and S* is the set of the finite strings (1' built on S. 
- States of R2• The WFG is composed by the local graphs of the sites, 

denoted WFGi = (Ni,Ai)beingNi = PjUEj, Pi = {p;} andEi = {eij,ej;}. 
Similar consideration is made for createi(.), marksi(.), victimsi. Parameters 
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INPUT ACTIONS 

add_arc( (pi, eij ) ) 

eff s'.A; ~ s.A; + {(pi, eij)} 

S'. versioni «(pi, eij)) +- s. versioni «(pi, eij)) + 1 
s'.createi(eij) +- s.createi(eij) + {p;} 

add_arc( (eij ,Pj ) ) 

eff s'Aj +- s.Aj + {(eij,pj)} 

s'.versiOnj«(eij,pj)) +- s.versiOnj«(eij,pj)) + 1 
s'.createj(pj) +- s.createj(pj) + {eij} 

deCarc( (pi, eij ) ) 
eff S'.Ai +- s.A; - {(pi, eij)} 
s'.marksi( (pi, eij)) +- e 
s'.creaiei(eij) +- s.creaiei(eij) - {Pi} 

deCarc( (eij ,Pj) ) 

eff s'.Aj +- s.Aj - {(eij, pj)} 

s'.marksj«(eij,pj}) +- C 

s'.createj(pj) +- s.createj{pj) - {eij} 

OUTPUT ACTIONS 

abort(Pi) 
P!!! Pi ¢ victimsi 

3 (Pi ,eik} E Ai : marksi( (pi, eik)) = m. p, 
m = (pi, (eij ,Pi), v) 

(eji,Pi) E Ai 1\ v = versioni«(eij,Pi)) 

eff S'.Ai +- s.Ai - incom,.A; (i) 

s'.victimsi +- s.victimsi + {Pi} 

'Veji E pred,.A; (Pi) : 
s'.marksi«(eji,Pi)) +- C 

s'.createi(Pi) +- 0 

Fig. 5. The automaton R2 (to be continued). 
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INTERNAL ACTIONS 

create_mark( (eij ,Pj ) ) 
~Pj rt victimsj, SUCCAj(Pj) f. 0, (eij,pj) E Aj, 
eij E createj (pj) 

eff m = (Pj, (eij, Pj), versionj ((eij, pj))) 
s'.marksj((eij,pj)) +- s.marksj((eij,pj)) e m 

s'.createj (pj) +- s.createj(pj) - {eij} 
trans_mark( m, (pi, eij)) 

~Pi rt victimsi, (Pi,eij) E Ai, predAi(Pi) f. 0 

marksi((Pi,eij)) = meJ.l 

m = (r(l, r), v), r > Pi 

eff s' .markSi ((pi, eij)) +- J.l 

'Ve,d E pred •. A (p;) : 
s'.markSi((eki,Pi)) +- s.markSi((eki,Pi)) e m 

e1im_mark( m, (pi, eij)) 

~Pi rt victimsi, (Pi,eij) E Ai, predAi(Pi) f. 0 
marksi((Pi,ejj)) = meJ.l 

m = (r(/, r), v}, r < Pi. 
eff s'. ma1'ksi((Pi,eij)) +- J.l 

s'.createi(Pi) +- s.createi(Pi) + pred •. Ai(Pi) 
lose_mark( m, (pi, eij) ) 

~ markSi((Pi, eij)) = me J.l 

m = (r(/, r), v) 
predA(Pi) = 0 V Pi E victimsiV 

(r = Pi A. (I, r) E Ai A. v f. versioni( (I, r))) 

eff s'.marksi((Pi,eij)) +- J.l 

trans_probe( m, (eij ,Pj)) 

~ (eij,pj) E Aj 
marksj((eij,pj)) = me J.l 

eff s'.marksj ((eij, pj)) +- J.l 

s = (m, (pi, eij)) 
s'.channelj,i +- s.channelj,i e s 

Fig. 5. The automaton H"!. (to be continued). 
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receive_probe( m, (Pi, eij}) 
~ channelj,i = s. (1 

s = (m, (pi, eij}) 
eff s'.channelj ,; f- (1 

s'.markSi ({Pi , eij) f- s.marksi«(Pi, eij}). m 

Fig. 5. The automaton R2 • 
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are excluded for clearance. The channelj,i with i :j:. i, is the new part of the 
state; it contains the probes travelling from i to i. 

- States of R2.s0 E start(R2) if Vi E I: SO.Ai = 0; so.victimsi = 
0; so.versioni(.) = 0; so.marks;(.) = C; so.create;(n) = 0; and Vi E 

I: so.channelj,i = c. 

- Actions signature of R2. Its external signature is the same as Rle and its 

internal actions are int(R2) = int(Rle) U {receive_probe(m, (p, e})}, where 
int(Rle) is taken after its action renaming. 

- States of R2. The steps of R2 are defined in Fig. 5. 

- Partition of R2. Its classes are the same as Rle, plus aditional classes 

F~j being V(p;, e;j} E B, F~j = {receive_probe(m, (pi, eij}) I Vm EM}. 

By inspecting the automaton R2 , it is clear that it's simple exercise to 

find out the automata, denoted R2i for each site, such that the composition 

for every site (ITi € I R2;)' itself composed by the communication automata S is 
equal to R2 • For example, the Fig. 6 shows an lOA, denoted S, satisfying the 

specification of the communication net. One can note that the partition of such 

automaton corresponds with the classes F~j. 

By hiding the actions due to the communication of probes among the 

automata cP = {trans_probe(.), receive_probe(.)}, it is simple to show that 

R2 = Hide4]«ITi€IR2i).S). It is also obvious that ext(R2) = ext(Hide4] 
«ITi€I R2i).S», then we only need to prove that (fairbehs(R2 ) n Hd ~ 
(fairbehs(Rle)nHI). If the property holds then it is assured that the proposed 

distributed solution is correct for the resolution of deadlocks. 

4. Proof of correctness. In order to prove that the automaton R2 satisfies 

R 1 e under the well formed histories HI, it is necessary to show the existence of 

a possibilities mapping (Tuttle, 1987). Such mapping is a function defined as 

h: states(R2) - P(states(R1e »1. The existence of the possibilities mapping 
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INPUT ACTIONS OUTPUT ACTIONS 

trans-probe( m, (eij ,Pj ) ) 

eff s = (m, (pi, eij ) ) 

s'.channelj,i ~ s.channelj,i • s 

Fig. 6. The automaton S. 

receive_probe( m, (Pi, eij ) ) 

~ channelj,i = s. E 
s = (m, (pi, eij}) 

eff s'.channelj,i ~ E 

guarantees that the preconditions of the actions in R2 implies the preconditions 

of the actions in R 1e• In the following null actions and the actions abort( eij ) 

are not taken into account as it was indicated in the Subsection 3.1. 

DEFINITION 4.1. If s E states(R2 ) then h(s) = {t E states(R1e )/ 

Ph(S, t) property holds}. Ph(S, t). is defined by the following conditions: 

(la) (Pi,eij) E t.A {::::} (Pi,eij) E s.Ai; 

(lb) (eij,pj) E t.A {::::} (eij,pj) E s.Aj ; 

(2) Pi E t.victims {::::} Pi E s.victimsi; 

(3a) t.version«(pi,eij}) = v ¢:::> s.versioni«(Pi,eij}) = v; 

(3b) t.version«(ejj,pj) = v ¢:::> s.versiOnj«(eij,pj) = v; 

(4a) t.«(Pi,eij) = Ii. p; p,p' E M* being p = mI·· .mk··· {::::} 

s.marksi«(Pi,eij}) = p' /I. s.channelj,i = S1 ... sk ... beeing sk 

(mk' (Pi, eij}); 
(4b) min t.marks«(eij,pj) ¢:::> min s.markSj«(eij,pj); 

(Sa) Pi E t.create(eij) {::::} Pi E s.createi(eij); 

(5b) eij E t.create(pj) {::::} eij E s.createj(pj). 

ASSUMPTION 4.2. The communication channels are reliable, that is, 

messages arrive in finite time and messages between two sites are received in 

the same order as they were sent (FIFO). It is supposed that the manager and the 

resolution algorithm share the same communication channel between two sites, 

if the algorithm transmits information as a result of an action over an arc (for 

1 To define a possibilities mapping h:otate.(R2)-'P(.tate.(R1e» under the restric­

tion imposed by the behaviours in Hl is equivalent to define a possibilities mapping 

h:otate.(R2.M1 )-'P(.tate.(R1e.Mt}) being Ml the automaton which represents the man­

ager whose Jairbeh.(Mt}=Hto and where R2.Ml is the composition of the manager and 

the resolution algorithm in order to form a non-deadlocked system. 
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example, send a probe) and later the manager transmits information as a result 
of an operation over that arc (for example, delete the arc), that information will 

be received and processed in that order in the destination site. Thus, in the 

proposed example, this assumption assures that a certain arc still remains when 

it has received a probe. 

Theorem 4.3. The mapping h (Definition 4.1) is a possibilities map­

ping under the well formed histories H l . 

Proof. (I) ext(R2) = ext(Rle ) by definition of the automata. 
(2) It is obvious observing the definitions of starting state of R2 and Rle 

that the mapping h verifies "Iso E start(R2), 3tostart(Rle:tO E h(so). 
(3) Let s be a reachable state of R2, t E h(s) a reachable state of R 1e , 

and (s, 7r, s') E steps(R2). We claim that (i) if 7r E acts(Rle) then (t, 7r, t') E 
steps(Rle with t' E h(s'), and (ii) if 7r ¢ acts(Rle) then t E h(s'). The proof 
is obvious from the preconditions and effects of the actions of R2 and R 1e . 
However the actions deLarc( (pi, eij) and receive_probe( m, (pi, eij) require 
further work. 

Case 1. 7r = deLarc( (pi, eij), 7r E acts(R1e ). s'.Ai = s.Ai - {(Pi, eij)} 
== t'.A = t.A - {(Pi,eij)}, by (1 a). s'.marki((Pi,eij) = c, due to the 
well formed histories HI, the arc (eij, pj) has been deleted and no probe 
s = (m, (Pi, eij) created by the arc (eij, pj) can have been sent after the arc 
had been deleted, if sin s.channelji == t'.marks((Pi,eij) =1= c, due to (4b), 
which is a contradiction. The Assumption 4.2 assures the arc (pi, eij) is not 

spontaneously deleted and therefore, only it can be deleted if s.channelj,i = c. 

So t E h(s), t' E h(s') and (t, 7r, t') E steps(Rle ). 

Case 2. 7r = receive_probe(m, (pi, eij), 7r ¢ acts(R1e ). s = (m, (pi, 
eij), s in the head of s.channelj,i == m in the head of t.marks( (pi, eij), due 
to (4a). In addition by Assumption 4.2, the arc (pi, eij) there exists. By the 

execution of 7r.m E s'.marki((Pi, eij) == m E t.marks((Pi, eij), due to (4a). 

Therefore, tE h(s), t E h(s'). 
In the following Theorem 4.4, we use the generic classes: 

C1 = {abort(Pi)}; 
Dl = {create_mark((eii>pj)}j 
El = {trans_mark(m, (pi, eij}), lose_mark(m, (pi, eij}), 

elim_mark(m, (pi, eij})}; 
El = {trans_mark(m, (eij,pj}) 
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(or trans_probe(m, (eij, pj)) by renaming)}; 

F2 = {receivLprobe( m, (Pi, eij))}. 
The four initial classes are in part(R1e), and part(R2) = part(R1e) 

U {F2 }. 

Theorem 4.4. Let R2 and R1e be the automata previously defined 

and let h be the possibilities mapping from R2 to R 1e (Definition 4.1). If 
well formed histories HI (Definition 3.1) are verified then (fairbehs(R2) n 
HI) ~ (fairbehs(R1e) n HI). 

Proof. Let 0: E fairexecs(R2), such that beh(o:) E HI. Due to the 

results2 in Thttle (1987) 3/3 E execs(R1e ): /3GhO:. We claim that it is enough 

to prove that /3 is a fair execution of R1e . In that case, since there exists a 

possibilities mapping from R2 to R Ie , sched(0:)Jacts(R1e ) = sched(/3) (Tuttle, 
1987); moreover, since ext(R2) = ext(R1e), it can be shown that beh(o:) = 
beh(/3) and beh(/3) E HI. Therefore, (fairbehs(R2)nH l ~ (fairbehs(R1e )n 
HI). 

Let 0: E fairexecs(R2): beh(o:) E HI, and /3 E execs(R1e ): /3GhO:. We 

claim /3 E fairexecs(R1e ). 
Case 1. /3 is finite. Assume /3 is not fair. Let be /3 = to ... 11" rtr. A prefix 

of /3 is denoted /3r if its endstate is t r, so /3 = /3r. As /3 is not a fair, a locally 
controlled action 11" must be enabled in the state· t r , that is, there is a class 

Gl,D1' or E1 such that 11" E G (G is one of such classes). 

Case 1.1. Let 0: be a finite execution, 0: = S01l"181 ... 1I"kSk, that is 0: = O:k. 

Let O:r be the first prefix such that tr E h(8r). Then Vr :::;; q :::;; k, tr E 
h(sq). For an action 11" in the classes E1 or D1 if 11" is enabled in tr is also 

enabled in Sk, and then 0: is not fair, contradicting the hypothesis. For the 

action 11" in the class G1, 11" = abort(Pi), as it is enabled in t r , there is a cycle 

2 From Tuttle (1987): Let h be a possibilities mapping from automaton A to automaton 

B. Let a and (3 be finite executions of A and B respectively. It is said that (a) (3 

Jinitecorresponds to 0 under h, denoted (3FC" a, if sched«(3)=sched(a)IB and the final 

state of (3 is a possibility for the final state of 0; (b) (3 corresponds to 0 under h, denoted 

(3C,.o, if for every finite prefix 0; of 0 there is a finite prefix (3; of (3 such that (3;FC"o; 

and (3 is the limit of the (3;; (c) Let h be a possibilities mapping from automaton A to 

automaton B. If 0 is an execution of A then there is an execution (3 of B such that (3C"o. 
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c ~ tr.A, and by h(.), C ~ Uj sq.Aj.tr.marks((Pi, ei,i+1) = m.1-' where 
m is the mark to enable the abort action. By h(.), sk.marksi((Pi, ei,i+1) = 
m.1-' or sk.marksi((Pi,ei,i+1) = c and slc.channeli+l,i = s ... being S = 
(m, (pi, ei,i+l). By the preconditions of receive_probe(m, (p, e), such action 
is enabled in Sic and then 0: is not fait, contradicting the hypothesis. 

Case 1.2. Let 0: be an infinite execution, O:r its first prefix such that 

tr E h(sr). Then 'rIq ~ r, t r. E h(sq). For every action 7r in the classes 
El or Dl if 7r is enabled in t r , it is also enabled in Sq, otherwise this ac­
tion must appear in /3, what is impossible. l1terefore, 0: is not fair because 
there exists a class infinitely enabled whose actions are never performed. For 

the action 7r in the class C l ,7r = abort (Pi) , as it is enabled in t r , a cycle 

C ~ tr.A, and by h(.), 'rIq ~ r, C ~ Ui sq.Ai . tr.marks( (pi, ei,i+1) = m ... 
and by h(.), sq.marksi((Pi, ei,i+l) = m ... or sq.marksi((Pi, ei,i+l) = c 
and Sq .channeli+l,i = s . .. , being S = (m, (pi, ei,i+l). By the preconditions 
of receive_probe( m, (pi, ej,i+l), and the fairness assumption of 0:, there exists 

q' > r being 7rql = receive_probe(m, (pi, ei,i+l). In Sql, abort(Pi) is hence­
forth enabled (it can not be executed, otherwise it would appear in /3) and, 0: 

is not fair, contradicting the hypothesis. 

Case 2. /3 E execs(Rle) is infinite (0: is necessarily infinite). A<; 0: is fair, 
due to the fairness definition that is assumed in the lOA model (Tuttle, 1987) 

there are two possible cases: 

Case 2.1. Action 7r E Cl, D l , E l , or F2 appear infinitely often in 0:. 

Action 7r E Cl, Dl , or El appear infinitely often in /3; therefore, /3 is a fair 
execution. 

Case 2.2. States in which no action of C l , D l , El, or F2 , is enabled 
appear infinitely often in 0:. The proof for the actions of Cl, D l , E l , is trivial 

because if there exists a state in 0: in which an action of the those classes 

is not enabled, then it is also disabled in a state in /3, by definition if the 

mapping h. Suppose /3 is not fair due to the fact that an action abort(pi) is 

enabled since t r , and never performed. As /3Ch 0:, there exists a pprefix O:r 

such that tr E h(sr). As abort(Pi) is not executed in /3, the same happens in 

0:, and therefore, there is a persistant cycle C in 0: since Sr. Let q > r, by 

the preconditions of abort(Pi) in R le , m is the head of ir.marks( (pi, ei+1); 

by using h(.), sq.marksi ( (pi, ei,i+1) = m.1-' or Sq .marksi( (pi, ei,i+l) = 
c and sq.channeli+l,i = S ... , being S = (m'(Pi,ei,i+l). Since 0: is fair 
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recezvt probe( m, (Pi, ei,i+l}) will be executed for some q' > r. The action 

abort (Pi) is enabled for all q" ~ q' in the states of 0:. Therefore, 0: is not fair 

execution, what contradicts the hypothesis. 

5. Conclusions. In this work, we have presented the first attempt in the 

literature to provide a hierarchical correctness proof for a distributed deadlock 

resolution algorithm. The proposed method for approach to the deadlock reso­

lution problem based on the Input-Output Automata Model (Lynch and Tuttle, 
1989; Tuttle, 1987) allows the development of the solution in a natural way 

of successive levels of abstraction (correctness is proven by level satisfaction). 
This approach is in contrast with the invariant technique of proof given in 
Kshemkalyani and Singhal (1991) for a deadlock resolution algorithm where 
the gap between the specification of the problem and the final solution is large. 

An interesting contribution of our work is the specification of the deadlock 
resolution from the natural point of view of the resolution, and not from that 
the (intermediate) detection, which has induced the deVelopment of erroneous 
algorithms. In the question of the use the Wait-For-Graph (WFG) or the use of 
the Resource-Allocation-Graph (RAG) (Singhal, 1989), we can say that both 
of them are suitable for the problem of deadlock in the single request model 
but authors which uses the RAG also needs an implicity WFG in the proof 
of correctness (Knapp, 1987; Kshemkalyani and Singhal, 1991; Elmagarmid, 
1988). In our work, RAG may be used without additional complexity. 

Finally, this work provides an adequate methodology for the study and 
development of another deadlock resolution algorithms for different resource 
allocation models as the AND model. In a future work, we intend the appli­

cation of the hierarchical methodology to prove the correction of a resolution 
algorithm for the AND model which is an extension of the detection algorithm 
in Gonzalez de Mendivil et al. (1992). 
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Jose Ram6n GONZALEZ DE MENDivIL, Jose BERNABEU, 

Carlos F. ALASTRUEY, Akim DEMAlLE 

Nagrinejama padecill be i~eities ibkyrimo problema sistemose su vienos parai~kos 
modeliu. Pasiiilyta naujas algoritmas problemai spr~sti ir hierarchinis ~io algoritmo 
korekti~kumo irodymo metodas. 


