
INFORMATICA, 1995, Vol. 6, No.1, 35-60

A DEADLOCK RESOLUTION ALGORITHM*

Jose Ramon GONZALEZ DE MENDivIL

Carlos F. ALASTRUEY

Department of Electricity and Electronics
University of the Basque Country
Faculty of Sciences-Leioa, P.O.Box 644, 48080 Bilbao, Spain

Jose BERNABEU

Department of Information Systems and Computation
Polytechnic University of Valencia
Camino de Vera sn, P.O.Box 22012, 46020 Valencia, Spain

Akim DEMAILE

Telecom Paris
46 rue Barrault, 75013 Paris, France

Abstract. In this paper we consider the problem of the distributed deadlock resolu­
tion. Starting from a high level specification of the problem and the resolution algorithm

for a system with single request model, we provide successive levels of decreasing ab­

straction of the initial specification in order to achieve a solution in a complete distributed

system. The successive refinements and the final distributed deadlock resolution algo­
rithm are formaly described and proved by using the Input-Output Automata Model. The

proposed solution is a modification of the algorithms in Mitchell and Merritt (1984) and

Gonzalez de Mendivil et al. (1993) and preserves a similar message traffic to resolve a

deadlock.
Key words: distributed systems, distributed deadlocks, deadlock resolution, input­

output automata model, single request model.

1. Introduction. The problem of deadlock is crucial in the design of

concurrent systems. This problem is well understood in shared-memory systems

but it represents a very difficult problem in distributed systems (Singhal, 1989).

In an intuitive way, the deadlock situation is achieved in a system when a group

of processes are indefinitely blocked because they request access to resources

* This work has been supported by the research grant no. UPV 224.31O-EA061193 of

the University of the Basque Country and by CICYT grant TIC93-0304.

36 A deadlock resolution algorithm

which are allocated to processes in the same group. The natural form for

modelling the wait for relations between processes is by using a Wait-For-Graph

(WFG). The nodes in the graph represent the actor (processes, resources) in the

system and the arcs represent the situations: "actor p waits for actor q". The

WFG is used for representing different models of recource allocation strategies

and it is a comprehensive way to compare different solutions for handling

deadlocks (Knapp, 1987).

For the particular case of the single request model, the necessary and
sufficient condition for the existence of a deadlock is that of a directed cycle
in the WFG (Knapp, 1987). The traditional form of deadlock algorithms for
distributed systems comprises two steps:

(a) detection step, to find out cycles in the WFG, and

(b) resolution step, to resolve the deadlock by selecting a unique victim
in the cycle.

Many of the algorithms in the distributed deadlock detection-resolution
(DDD/R) topic for the single request model are probe-based algorithms (Knapp,
1987). A first distinction can be done between those that use priority (solution
that use...;; fewer messages to detect the deadlocks), and those which do not

(they need no extra round to resolve the deadlocks). A second distinction can

be done in the former class, depending whether the algorithm stores the probes
or not. On one hand, storing algorithms, such as in Chady and Misra (1987);
Mitchell and Merritt (1984), have a smaller cost, in message trafic, during
the detection phase, but need cleaning rounds for the resolution; on the other
hand, non-storing algorithms (Gonzalez de Mendivil, et al. 1992; Gonzalez de
Mendivil et al., 1993) require a slightly higher trafic for the detection, but need

no additional phase. Our algorithm is prioritY-based-without-storing.

In general, the proof of the correctness of DDD/R algorithms is difficult

because of the highly complex operations of such algorithms. This is why most

proposals for distributed deadlock algorithms have either (Kshemkalyani and
Singhal, 1991) (a) ignored the correctness proof (Sinha and Natarajan, 1985),
(b) used simulation techniques to "show" correctness (Choundhary et al. 1989),

or (c) given informal or intuitive arguments of correctness (Oberrnarck, 1982).

Only recently attention has been paid to rigorous correctness proofs of
the algorithms (Kshemkalyani and Singhal, 1991; Gonzalez de Mendi viI et

al., 1992; Elmagarmid, 1988). However, due to the lack of an underlying

l.R. Gonzalez de MendIvil et al. 37

theory for DDD/R and the highly complex operations of the algorithms, most

of these correctness proofs have used ad hoc methods (GonzaIez de Mendivil

et al., 1992; Gonzalez de Mendivil et al., 1993; Elmagarmid, 1988). Other

correctness proofs are based on formal methods, such a<; the use of invariant
techniques (Kshemkalyani and Singhal, 1991), but at a low level of abstraction.

We propose the use of the Input-Output Automata Model (lOA model)

as the base of our formalism. This model was designed as a tool for modelling

concurrent and distributed systems. We refer the reader to (Lynch and Thttle,

1989; Tuttle, 1989) for a complete development of the model, motivation and

examples.

In the particular topic of deadlock resolution, a great number of papers
examine separately deadlock detection and deadlock resolution (Singhal, 1989;

Kshemkalyani and Singhal, 1991). These algorithms take into account correct­
ness criteria just based on deadlock detection:

(a) detection of every existing deadlock;

(b) no false deadlocks detected.

As a consequence, algorithms which are correct under those criteria, may

be incorrect after the resolution phase. The criteria of correctness based strictly

on the resolution of deadlock has been recently proposed in Gonzalez de
Mendivil et al. (1994) by using the lOA formalism.

In Gonzalez de Mendivil et al. (1993), the authors have introduced a first

refinement of the automaton specification in order to obtain an abstract solution

for a distributed deadlock resolution algorithm. The algorithm is priory-based­

without-storing, and is based on a modification of the algorithm proposed in

Mitchell and Merritt (1984) and (GonzaIez de Mendivil et aI., 1992). Such a

solution verifies the criteria of correctness:

(a) liveness condition: the resolution algorithm resolves every deadlock;

(b) safety condition: the resolution algorithm does not resolve false

deadlocks.

Its performance (Gonzalez de Mendivil et al. (1994). is similar to the

existing algorithms: a worst case O(N2) in messages for resolving a deadlock

is achieved, being N the number of nodes involved in the deadlock.

In this paper, we introduce a new refinement of the automaton which rep­

resents the abstract distributed solution in Gonzalez de Mendivil et al. (1994).

The proposed automaton is designed in order to obtain a completely distributed

38 A deadlock resolution algorithm

algorithm. This means that in every site there is a running instance of the al­

gorithm, and the whole of them, cooperating via the communication network,

forms the complete deadlock resolution mechanism. We also prove that the

distributed solution verifies the criteria of correctness given above.

The rest of this paper is organized as follows. In Section 2 is briefly

presented the specification of the problem of deadlock resolution and the ab­

stract solution proposed in Gonzalez de Mendivil et al. (1994). Section 3 is.

devoted to introduce the deadlock resolution algorithm for a distributed system.

In Section 4, we provide the formal proof of correctness. Finally, Section 5 is

devoted to concluding remarks and future perspectives.

2. Abstract solution of a deadlock resolution algorithm. Deadlock res­

olution algorithms are primary intended to perform some activity in order to

solve a deadlock situation. In absence of such activity, deadlocks can indefi­
nitely stand in the system as a stable property. A deadlock resolution algorithm

can be considered correct if the following criteria of correctness hold.

Liveness Condition. If there exists a deadlock in the system then it will be

eventually resolved by the resolution algorithm.

Safety Condition. The resolution algorithm does not resolve false dead­

locks.

Where in condition (2), resolution of a false deadlock is considered to be

the resolution of a non-existing deadlock.

In this paper, as the algorithm is presented using the IDA formalism, the
mathematical objects used will be in the first parts quite general, and by the

end, will become more restrictive. As an illustration, all the content of this

section is devoted to abstract graphs. Their nodes can be interpreted as the

actors defined preiously (this is why we keep on writing WFG), however they

represent a situation much more general, only based on some properties of

those graphs. Note that the generality will be used in the following sections,

where we introduce a new kind of nodes. We will use standard definitions on

graphs; predA(i) is the set of predecessors of a node i in a given set of arcs

A; SUCCA (i) is the set of its successors; incomA (i) is the set of incoming arcs;

and d!(i) is its outdegree (number of successors).

In order to characterize the deadlock situation, it is convenient to use the
WFG (Knapp, 1987). WFG is a pair (N, A) where N is the (countable) set of

nodes, and A ~ N x N. Their elements will be denoted, respectively, i, j, k, r, I

I.R. Gonzalez de Mendivil et aL 39

or n; and {i, j}, (1, r) We assume nodes in the system are distinguishable
and ordered: (N, <) is a totally ordered set (i < j iff j has higher priority
than i).

An arc(i, j} E A means that i waits for j. Since we restrain our work
to the single request model, a deadlock corresponds with the existence of a

directed cycle C = {{i, (i + 1) mod k) E A I 0 ~ i < k -I} in the WFG. For
sake of clearance, we shall now simply write C = {(i, i + 1) E A}. Let N(C)
be the set of nodes in the arcs of C. H there exists a cycle C, a node n E N(C)
must be selected as victim in order to resolve the deadlock. The deadlock is
resolved by aborting the victim.

The system under considerati.on comprises the following components
(Fig. 1):

add arc --del arc ... Resolution
Manager Algorithm

... abort

Fig. 1. System components and actions.

(a) a Manager of the active elements of the system, which provides the
actions addJJrc(.) and deLarc(.) respectively to create a new wait-for relation
or to delete it;

(b) a Resolution Algorithm which provides to the Manager the action
abort(.) when it resolves a cycle. We assume that the effective resolution of a
deadlock for the Manager is properly made.

In the following subsection, we give an automaton, denoted Ro, which
represents the resolution algorithm, and a set of well fonned histories which
represents the fair behaviours of the automaton of the manager, Mo. We do not
develop Mo in order to simplify the discussion.

2.1. Specification of a deadlock resolution algorithm. The single request
model is characterized by the conditions:

(a) a node cannot directly wait for itself;
(b) a node cannot be waiting for more than one node;
(c) spontaneous abortions of nodes are not allowed: all the abortions are

caused by the deadlock resolution algorithm;

40 A deadlock resolution algorithm

(d) an aborted node does not take part in the system operations, the pre­

vious dependencies of the victim with another nodes will be cancelled by the

manager.

A manager satisfying the previous assumptions provides to the resolution

algorithm a set of well formed histories, denoted H 0, as it formalized in the

following Definition 2.1.

In the following definition, we introduce the abuses of notation 1I"kO •• • 1I"k1

as the set {1I"k I ko ~ k ~ kdi 1I"kO ••• as 1I"kO • •• 11"00' Finally, the set B =
({ i, j) I i i= j} ~ N x N, is a fixed set indicating the possible arcs to be
performed by the Manager.

DEFINITION 2.1. Let :E be the signature of actions:

:E = (in(:E), 0, out(:E»:
in(:E) = {add_arc({i,j),deLarc({i,j) I V{i,j) E B},
out(:E) = {abort(i) I Vi EN}.

Let {3 be a sequence of actions in :E. The behaviour {3 = 11"111"2 •• • 1I"k •.• is a

well formed history, {3 E H 0, iff the following conditions hold:

(i) 1I"k = add..arc((i, r}) 1\ 1I"k' = /I No node has more

add..arc((i, j}) 1\ k < k' =} /I than one outgoing arc

1I"k •• • 1I"k' n {deLarc((i, r}), aborter)} i= 0;

(iia) 1I"k' = deLarc((i, j) => /IAn arc can be deleted only when

3k < k': 1I"k = add..arc({i,j}) /I it actually exists

1\1I"k •• • 1I"k' n {deLarc((i, j}), abort(j)} = 0;

(iib) 1I"k' = del..arc({i,j}) =>
(3k < k': 1I"k = abort(i»

V(3k < k': 1I"k = a dd..arc((j, r}) =>

/I and when it has no

/I successor or its origin

/I is a victim

11"/ •• • 1I"k' n {deLarc((j, r}), aborter)} i= 0);

(iii) 1I"k = abort(i) => /I Once a node has been aborted,

1I"k ••• n /I it no longer participates

{add..arc((i, r}), add..arc((r, i)} == 0.

In the following, we introduce the automaton of the resolution algorithm,
Ro, at highest level of abstraction.

l.R. Gonzalez de Mendivil et al. 41

- States of Ro. A state of Ro is defined by a snapshot of the set of

arcs A of the WFG and the set of victims in the system. A particular state

s E states(Ro) is defined as a record (s.A, s.victims).

- Start States of Ro. The start states of Ro, start(Ro) ~ states(Ro), are

the possible initial configurations for the system: So E start(Ro) if and only

if so.A = 0 and so.victims = 0.
- Actions signature of Ro. Its external signature is E (of Definition 2.1),

and it has no internal action.

-~ of Ro. The set of steps for the automaton Ro, steps(Ro), is de­

fined by the transition graph steps(Ro) ~ states(Ro) x acts(Ro) x states(Ro).
The steps of Ro, (s, 7r, s') E steps(Ro), are specified in Fig. 2 with the precon­
ditions/effects formalism. An action 7r is enabled from any state s satisfying its

preconditions, and 7r takes s to the state s' if s' can be obtained by modifying s
as indicated by the effects 7r (the components of the state that are not modified

are simply not mentionned). Since by definition (Lynch and Tuttle, 1989), an

lOA has to be input enabled, no input action has precondition.

INPUT ACTIONS

add_arc((i, j)
eff s'.A .- s.A + {(i, j)}

del_arc((i, j)
eff s'.A'- s.A - {(i,j)}

OUTPUT ACTIONS

abort (i)
ill!: i f/. victims, 3C ~ A,

i E N(C)
eff s'.A .- s.A - incom$.A (i)

s'.victims.- s.victims + {i}

Fig. 2. The automaton Ro.

The input actions of the automaton Ro are add-O.rc(.), and deLarc(.) and

their effects are obvious. Its output actions are abort(.). An abort(.) has as

precondition the existence of a non-(being)-resolved cycle C in the system. The

effect is the choise of a node i E N (C) as victim and the break of the cycle.

- Partition of Ro. Finally, a partition of the locally controlled actions (the

actions under control of the automaton, local(Ro) = int(Ro) U out(Ro», must

be defined in order to complete the description of Ro. Classes of the partition

can be interpreted as the different tasks locally controlled by the automaton. The

lOA model suppose a weak fairness notion among the tasks, that is, fair turns are

42 A deadlock resolution algorithm

provided for each class in order to perform an action if it is enabled. Guided by

the previous interpretation, we define the partition as pa rt (Ro) = {Cb liE N},
being C~ = {abort(i)} to ensure that every enabled abort(.) will be eventually

executed.

The automaton Ro preserves the well formedness of H 0 and also captures

the desired resource allocation model:

Va E execs{Ro): beh(a) E Ho, Vi E N, Vs E states(Ro)

in a, 0 ~ d;'A(i) ~ 1;

Va E execs(Ro): beh(o:) E Ho: if there are two different

cycles C1 , C2 in a state s of a then C1 and C2 are disjoints -

N(Cd n N(C2) = 0.
In order to define in our system the concept of deadlocked execution (an

execution where a cycle is never resolved and stands forever), we first define

the persistent cycles. C is a persistant cycle of the execution a iff 3k such

that Vk' ~ k: C E sk,.A.

DEFINITION 2.2. Let a E execs(Ro). a is a deadlocked execution iff

there exist a persistent cycle in a.

In Gonz31ez de Mendivil et ai. (1994) is proved the following Lemma,

specifying that every fair execution of Ro such that its behaviour is well formed,

is a non-deadlocked execution.

Lemma2.3. Let a E fairexecs(Ro), if beh(a) E Ho then a is a non­

deadlocked execution.

The liveness condition of the criteria of correctness provided at the begin­

ing of this Section is explicitly included in the Lemma 2.3 and the safety con­

dition is implicitly included in the preconditions of the action abort(.). Further­

more, the following simple property holds: if a E fairexecs(Ro): beh(a) E
H 0 then any deadlock is resolved exactly once. This property, which has been

traditionally introduced in the literature as a condition of correctness (Singhal,

1989), is a direct consequence of our specification.

As a conclusion, fairbehs(Ro) n Ho represent"! the specification of a

deadlock resolution algorithm for the single request model.

2.2. A first approach to the resolution algorithm. In this first approx­

imation the system is still seen as a whole and not as a distributed system.

l.R. Gonzalez de Mendivil et al. 43

However, since the proposed solution is designed to be distributed, that solu­
tion cannot be based on the knowledge of the whole WFG. We need a solution

which could be distributed upon the sites of the distributed system in such a

way that each part contributes to the global algorithm. The asynchrony due to

the communications is capture in this abstract solution because the information

which is handled by the algorithm, is based on information sending and receiv­

ing through the paths defined by the arcs. 1b maintain consistency of the vision

of the WFG, each arc will now have a version, thanks to which the algorithm
will be able to distinguish obsolete and valid information. The information

shared by the different sites is sent under the form of a mark.

A mark m is a tuple m=(j, (i,j), version((i,j))), where j is the node
which originaly generated the mark (called the initiator of the mark), (i, j) is

the arc where m had been first created, and version((i, j)) is the version of
(i, j) when m had been created. The set of marks m is denoted M, and M*
is the set of the finite strigs Jl built on M (including c the empty string). The
marks which are travelling through an arc at a particular instant are called the
marks of this arc; these marks form a string which represents the sending order.
The marks generated by the algorithm are transmitted backwardly through the

arcs of the WFG, that is, if m is a mark of (i, j) E A, then goes from j to i.

The automaton which represents the proposed solution at this level is
denoted R 1 and is specified in the following paragraphs.

- States of R1 • A state of the automaton Rl is an extension of a state of

Ro. Its new components are marks((i,j)), the string of marks of (i,j); and
for each node j the set create(j) = {i E predA (j) I i must create the mark

(j, (i, j), version((i, j}) n.
A particular state s of automaton Rl is then defined by: s.A; s.victims;

't/(i,j} E B, s.version((i,j)), s.marks((i,j)); and 'Vi EN, s.create(i).

- Start States of Rl. So E start(Rd iff so.A = 0; so.victims =
0; 't/(i,j) E B:so.version((i,j)) = 0, so.marks((i,j)) = c, and 'Vi E

N, So .create(i) = 0.

- Actions signature of R 1. Its external signature is the same as Ro, and its

internal actions are int(Rt) = {create_mark((i,j)), trans_mark(m, (i,j)),
elim_mark(m, (i,j)), lose_mark(m, (i,j)n, where (i,j) E B, mE M.

- States of R 1 • Informally the algorithm runs as follows: when a node
detects the possibility of a cycle, it generates a mark (create_mark(.)). This

44 A deadlock resolution algorithm

mark is transmitted in the backward directions of the graph. Transmission is

performed if the priority of the initiator of the mark is higer than the priority

of the nodes through which the mark is travelling (trans_mark(.)); otherwise

the mark is eliminated (elim_mark(.)) and the arc which eliminated it may

create a new higer priority mark. If no path traversed by a mark is a cycle

then eventually the mark will be lost (lose_mark(.))~ If a mark reaches the arc

which originated it and if they have same version, then the algorithm concludes

to the existance of a cycle and breaks it by aborting the chosen node (abort (.)).
Fig. 3 shows the actions and steps of the automaton Rl' Well formed histories

of automaton Rl are the same as those of automaton Ro, that is, Ho.

INPUT ACTIONS

add_arc((i, j))
eff s'.A .- s.A + {(i, j)}
s' .create(j) .- s.create(j) + {i}
s'.version((i,j)) .- s.version((i,j)) + 1

deCarc«(i, j)
eff s'.A .- s.A - {(i, j)}
s'.create(j) .- s.create(j) - {i}
s'.marks((i,j)) .- €

OUTPUT ACTIONS

abort(i)

~ i <I. victims
3(i,k) E A: marks((i,k)) = meJ.l,

m = (i, (j, i), v),
(j, i) E A 1\ v = version((j, i})

eff s'.A .- s.A - incomsoA (i)
s'.victims f-- s.victims + {i}
Vj E predsoA(i) :

s'.marks((j, i}) .- €

s'.create(i) f-- 0

Fig. 3. The automaton Rl (to be continued).

J.R. Gonzalez de Mendfvil et al.

INTERNAL ACTIONS

create_mark((i, j))
~ j f/:. victims, SUCCA(j) f. 0, (i,j) E A,
i E create(j)

eff m = (j, {i,j), version({i,j)))
s'.marks«(i,j) s.marks({i,j) e m

s' .create(j) s.create(j) - {i}
trans_mark(m, (i, j))
~ i f/:. victims, predA(i) f. 0, {i,j) E A,
marks({i, i) = mel'

m=(r(/,r},v), r>i
eff s'.marks«(i,j}) <- I'

Vk E preds.A(i) :
s' .marks((k, i) s.marks({k, i) em

elim_mark(m, (i,j})
~ i f/:. victims, predA(i) f. 0, (i,j) E A,
marks«(i,j) = mel'

m=(r(/,r},v), r<i
eff s'.marks({i,j) I'
s'.create(i) s.create(i) + preds.A (i)

lose_mark(m, (i, j)
~ marks({i,j) = mel'

m = (r(/, r), v)
predA (i) = 0 ViE victimsV

(r = i A (I, r) E A A version({/, r» f. v)
eff s'.marks«(i,j) I'

Fig. 3. The automaton RI.

45

- Partition of RI.part(RI) = {ct, Vi E N} U {D;i, V(i,j} E B} U

{E;i, V(i,j) E B}, where ct = {abort(i)}j D;i = {create_mark({i,j))}
and Efi = {trans_mark(m, (i,j), lose_mark(m, (i,j}), elim_mark(m,
{i,j}) I Vm EO}.

In Gonzalez de Mendivil et al. (1994), we formally proved that (fairbehs
(Rd n Ho) ~ (fairbehs(Ro) n Ho), and therefore, RI under the well fonned

46 A deadlock resolution algorithm

histories Ho verifies the criteria of correctness of the specification (Jairbehs

(Ro) n Ho).

3. Towards a distributed deadlock resolution algorithm. In this Section,

we proposed a distribution of the algorithm presented in the Section 2.2. In
order to achieve this goal, it is necessary to introduce a first approach to the

distributed Manager. The approach is based on the definition of a set of in­

tennediate nodes which indicates the relation between a blocked node and the
node which blocks it. A new set of well formed histories is defined as a subset

of the histories for the single request model, to model the formation of the
arcs by the Manager. A simple modification of the automaton Rl is exposed,
based on the properties which are obtained from the new histories and the set

of nodes. Finally, it is developed an automaton which includes the concepts of
communication channel and site of the distributed system.

3.1. The intermediate nodes and the distributed manager. We now in­
troduce a new topography of the system, in order to capture the distributed
aspect. P will denote the set of the previously defined actors, and E will be
the set of the intermediate nodes, introduced in order to capture the commu­
nication sequences between two actors. Then, we define N as the set of both
sets of node, and B the set of the possible arcs, what makes us able to reuse
any previous result on N and B (the reader can easily check that care had been

taken in the previous sections to allow such a mathematical trick). Henceforth,
we will distinguish the two kinds of node (by notation Pi or eii' and P or E)
only when necessary; otherwise, set N and its nodes n, i ... are freely used.
Given as an example to help the reader, in the following Definition 3.1, in(E)
and out(E) are rigourously the ones given in Definition 2.1, with new Nand B.

Moreformaly, we have: letP = {pi, i E I}, E = {(Pi ,Pi) I i,j E I, i #
j} (a pair (pi, Pi) will be denoted eij); N = P U E; B = {(pi, eij), (eij, pj) I
Pi, Pi E P, eii E E}. (N, » is ~upposed to be totally ordered, and with the
property: 'rip E P, e E E: P > e.

Using the set of intermediate nodes the situation node Pi waits for node Pi

is represented by two arcs (pi, eii) and (eii' Pi), so a new set of well formed
histories H 1 is needed in order to take into account this new interpretation
(Fig. 4 helps in understanding the follwing statements). Since our Manager

is of the single request model, it has a certain behaviour: it represents the

I.R. Gonzalez de Mend(vil et aL 47

Fig. 4. Behaviour of adjacent arcs in R2 •

wait-for relations by two edges that will be added and deleted in a determined
order. This behaviour is similar to that considered by a great part of published
DDDIR algorithms that use the WFQ (Knapp, 1987); its interpretation is quite

simple: both arcs of R2 must behave rigourously like the single one of Rl they
represent. We restate this in order to find the mathematical expression of these
properties:

(a) an arc (eij, pj) cannot be added if previously the arc {Pi, eij} has not
been added and remains;

(b) an arc (pi, eij) cannot be deleted if previously the arc (eij, Pi) has not
been deleted.

Definition 3.1. Let ~ be the signature of actions: ~ = (in(~), 0,
out(~»:

in(~) = {add...arc((Pi, eij}), add...arc({eij, Pj}),

deLarc((pi, eij}), del...arc((eii' Pi» I
V(Pi,eij}, {eij,pj} E B}

out(~) = {abort(Pi), abort(eii) I VPi E P, Veii E E}.

Let 13 be a sequence of actions in ~. 'The behaviour 13 = 1rl1r2 ••• 1rk • • • is a
well formed history (13 E H 1). iff the following conditions hold:

(i) 13 E H 0 /I f3 is a single request behaviour
(ii) 1rk' = add-arc«eij, Pi}) ::} I/1\\'o adjacent arcs behave like

3k < k', 1rk = add...arc((pi, eii)) 1/ a single one when created

l\1rk •• • 1rk' n {del...arc(eij, Pi}), deLarc((pi, eii})} = 0;

48 A deadlock resolution algorithm

(iii) 'Irk' = deLarc((Pi, eij)) ::} 1/ and when deleted

3k < k', 'Irk = add_arc((Pi, eij))

"'Irk . .. 'Irk' n {del....arc(eij, pj)), abort(pj)} = 0.

It is trivial to prove that HI C Ho; therefore, (fairbehs(RI) n Jh) C

(fairbehs(RI)nHo) and RI under the well formed histories HI ~ntains the

criteria of correctness. We will now prove some properties of RI under the well

formed histories HI that will enable us to simplificate this automaton, which

will then be denoted Rle ' First we claim that abort(eij) is never enabled,

and therefore, can be omitted in Rle (in order to stay consistent with the lOA

model, an omitted action is in fact an action renamed to null). The following

property will help us.

Property 3.2. Let a E execs(Rd. Hmis a mark of (e,p) E Sk.A then
its initiator has a higher priority than e.

Proof. Since m = (r(.),.) stands in sk.marks«(eij,pj)), one of the fol­

lowing actions had been performed in k' ~ k: 'Irk' = create_mark((eij, pj)) or

'Irk' = trans_mark(m, (Pj, eij))' In the last case m has to be (n, (.), .) with

r > Pj > eij' In both cases r> eij'

Due to the Property 3.2 the preconditions of elim_mark(m, (e;j, pj)) are

always false, so there will be disabled in every state of automaton RI' Thus

they can be transformed in null actions without effects by renaming. Such

actions will not be taken into account. The checking of r > eij in precondition

of trans_mark(m, (eij, pj)) can also be eliminated as it is always true.

Property 3.3. 'ria E execs(RI), 'rIe E E: abort(e) is disabled in every

state of a.

Proof. Property 3.2 assures that if there exists a mark m such that m

stands in s.marks«(eij,pj)), being m = (r, (.), .), it is verified that r > eij'
Therefore r '" eij and the preconditions of abort(eij) actions are never verified
in any state of any execution of the automatn R i •

By Property 3.3 abort(e) actions could be transformed in null actions,

however, we do not rename such actions in order to maintain ext(Rt} =
ext(R1e). Note that internal actions can be renamed because it does not affects

the external signature.

J.R. Gonzalez de MendIvil et al. 49

Furthermore, 'Veij E E and in every state of the executions of the automa­

ton R I , eij f/. victims. Consequently, the preconditions of create_mark((pi,

eij) and trans_mark(m, (eij,pj) actions can be simplified.

Property 3.4. Let a E execs(RI): beh(a) E HI, let Sk be a state

of a such that (eij, Pi) E Sk .A, then (pi, eii) E sk.A and consequently

predSk.A(eij) = {pd.

Proof The proof is a direct consequence of Definition 3.1 of the well

formed histories.

Due to Property 3.4, it is sufficient to check the existence of (eij , pj) arc in

create_mark((pi, eij) and trans_mark(m, (eij, pj) actions. The checking

of the existence of (Pi, eij) arc can be omitted. Previous properties imply that

if (eij, pj) E s.A then preds .A (eij) =F 0, eij f/. victims and the initiator of a

mark of (eij,pj) is always in P. Therefore lose_mark(m, (e,p) actions are

disabled in every execution on the automaton, and they can be renaming as null

actions.

The particular action create_mark((p, e) requieres further work.

Lemma3.5. Let a E fairexecs(Rt}, such that beh(a) E HI. If there

exists a persistant cycle C then there exists a state Ski in a with k' > k

and an arc (ei,i+I,Pi+l) EC, such that mark m = (Pi+1,(ei,i+1,Pi+l),V)

with v = Sk .version((ei,i+l ,Pi+I) is a mark of (ei,i+l, Pi+I).

Proof Without loss of generaliy, let Sk be the state of a when the cycle

CC sk.A has just been formed. Let trk = add_arc«.) be the last action

which closes the cycle. By the well formed histories HI such arc(.) is of

type (ei,i+I,Pi+I). So trk = add_arc«(ei,i+l,Pi+1), and this implies that

since Sk createJnark((ei,i+l, Pi+1) will be enabled. Fairness then ensures

its execution.

The Lemma 3.5 ensures that at least, when a cycle has been formed, one

action create_mark((e, p) had been executed. In Gonzalez de Mendivil et al.

(1994) is proved that this guarantees that an action abort(.) will eventually be
enabled in order to resolve the cycle. Therefore, the actions create_mark((p, e)

are unecessary in Rle •

Finally, the automaton R le is obtained from RI by the transformations

presented above.

50 A deadlock resolution algorithm

- States of R1e.states(Rle) = {s E states(Rl) I s is reachable state by

a behaviour f3 E H d.
- Start States of Rle.start(R1e) = start(R1).
- Action signature of Rle• Its external signature is the same as Rl and its

internal actions are int(Rle) = {create_mark((e, p)), trans_mark(m, (p; e)),
trans_mark(m, (e,p)), elim_mark(m, (p, e)), losf-mark(m, (p, e)), null},
where (p,e), (e,p) E Band mE M.

- Steps of R1e.steps(Rle) = {s, 7r, S') E steps(Rdj7r E acts(Rle)}.
- Partition of R1e.part(R1e) = part(Rl) with the renaming of the actions.

The automaton R 1e may be interpreted as the execution module (Tuttle,

1987) of the fairexecs(R1) such that their behaviours are included in H1. Un­

der this consideration is trivial that (fairbehs(R1e) n Hd = (fairbehs(Rd n
Hd. The criteria of correctness are maintained for the automaton R1e .

3.2. Distributed deadlock resolution algorithm. In this subsection, the

concept of site and communication channel is introduced in order to obtain the

distributed deadlock resolution algorithm. Moreover the global knowledge is

no longer used: any variable of state is explicitely local. However some global

concepts are kept, such as a persistant cycle, defined to be a cycle whose arcs

are locally persistant.

Given P = {pi, i E I}, a function Site: P -l- I associates its site to a

node. From now on, we consider that each site has an unique process, and

therefore indices are characteristic of the site. As a consequence, we will

now simplficate Site(Pi) by i, being i the i-th site of the system. The nodes

eij E E, belong to both sites i and j. Between two different sites there is

always a reliable FIFO communication channel, denoted channelj,i by which

the messages may travel form site j to site i.

The new automaton, denoted R2, is similar to R 1e but with the additional

renaming of actions trans_mark(m, (e, p)) by trans_probe(m, (e,p)). We

use such names without confusion. The algorithm is edge-chasing and uses

probes as the special messages for the resolution. A probe s is a pair (m, (pi,
eij)), being (pi, eij) the arc that should receive the mark m EM. The set of

probes is denoted S, and S* is the set of the finite strings (1' built on S.
- States of R2• The WFG is composed by the local graphs of the sites,

denoted WFGi = (Ni,Ai)beingNi = PjUEj, Pi = {p;} andEi = {eij,ej;}.
Similar consideration is made for createi(.), marksi(.), victimsi. Parameters

J.R. Gonzalez de Mend{vil et al.

INPUT ACTIONS

add_arc((pi, eij))

eff s'.A; ~ s.A; + {(pi, eij)}

S'. versioni «(pi, eij)) +- s. versioni «(pi, eij)) + 1
s'.createi(eij) +- s.createi(eij) + {p;}

add_arc((eij ,Pj))

eff s'Aj +- s.Aj + {(eij,pj)}

s'.versiOnj«(eij,pj)) +- s.versiOnj«(eij,pj)) + 1
s'.createj(pj) +- s.createj(pj) + {eij}

deCarc((pi, eij))
eff S'.Ai +- s.A; - {(pi, eij)}
s'.marksi((pi, eij)) +- e
s'.creaiei(eij) +- s.creaiei(eij) - {Pi}

deCarc((eij ,Pj))

eff s'.Aj +- s.Aj - {(eij, pj)}

s'.marksj«(eij,pj}) +- C

s'.createj(pj) +- s.createj{pj) - {eij}

OUTPUT ACTIONS

abort(Pi)
P!!! Pi ¢ victimsi

3 (Pi ,eik} E Ai : marksi((pi, eik)) = m. p,
m = (pi, (eij ,Pi), v)

(eji,Pi) E Ai 1\ v = versioni«(eij,Pi))

eff S'.Ai +- s.Ai - incom,.A; (i)

s'.victimsi +- s.victimsi + {Pi}

'Veji E pred,.A; (Pi) :
s'.marksi«(eji,Pi)) +- C

s'.createi(Pi) +- 0

Fig. 5. The automaton R2 (to be continued).

51

52 A deadlock resolution algorithm

INTERNAL ACTIONS

create_mark((eij ,Pj))
~Pj rt victimsj, SUCCAj(Pj) f. 0, (eij,pj) E Aj,
eij E createj (pj)

eff m = (Pj, (eij, Pj), versionj ((eij, pj)))
s'.marksj((eij,pj)) +- s.marksj((eij,pj)) e m

s'.createj (pj) +- s.createj(pj) - {eij}
trans_mark(m, (pi, eij))

~Pi rt victimsi, (Pi,eij) E Ai, predAi(Pi) f. 0

marksi((Pi,eij)) = meJ.l

m = (r(l, r), v), r > Pi

eff s' .markSi ((pi, eij)) +- J.l

'Ve,d E pred •. A (p;) :
s'.markSi((eki,Pi)) +- s.markSi((eki,Pi)) e m

e1im_mark(m, (pi, eij))

~Pi rt victimsi, (Pi,eij) E Ai, predAi(Pi) f. 0
marksi((Pi,ejj)) = meJ.l

m = (r(/, r), v}, r < Pi.
eff s'. ma1'ksi((Pi,eij)) +- J.l

s'.createi(Pi) +- s.createi(Pi) + pred •. Ai(Pi)
lose_mark(m, (pi, eij))

~ markSi((Pi, eij)) = me J.l

m = (r(/, r), v)
predA(Pi) = 0 V Pi E victimsiV

(r = Pi A. (I, r) E Ai A. v f. versioni((I, r)))

eff s'.marksi((Pi,eij)) +- J.l

trans_probe(m, (eij ,Pj))

~ (eij,pj) E Aj
marksj((eij,pj)) = me J.l

eff s'.marksj ((eij, pj)) +- J.l

s = (m, (pi, eij))
s'.channelj,i +- s.channelj,i e s

Fig. 5. The automaton H"!. (to be continued).

J.R. Gonzalez de Mend£vil et al.

receive_probe(m, (Pi, eij})
~ channelj,i = s. (1

s = (m, (pi, eij})
eff s'.channelj ,; f- (1

s'.markSi ({Pi , eij) f- s.marksi«(Pi, eij}). m

Fig. 5. The automaton R2 •

53

are excluded for clearance. The channelj,i with i :j:. i, is the new part of the
state; it contains the probes travelling from i to i.

- States of R2.s0 E start(R2) if Vi E I: SO.Ai = 0; so.victimsi =
0; so.versioni(.) = 0; so.marks;(.) = C; so.create;(n) = 0; and Vi E

I: so.channelj,i = c.

- Actions signature of R2. Its external signature is the same as Rle and its

internal actions are int(R2) = int(Rle) U {receive_probe(m, (p, e})}, where
int(Rle) is taken after its action renaming.

- States of R2. The steps of R2 are defined in Fig. 5.

- Partition of R2. Its classes are the same as Rle, plus aditional classes

F~j being V(p;, e;j} E B, F~j = {receive_probe(m, (pi, eij}) I Vm EM}.

By inspecting the automaton R2 , it is clear that it's simple exercise to

find out the automata, denoted R2i for each site, such that the composition

for every site (ITi € I R2;)' itself composed by the communication automata S is
equal to R2 • For example, the Fig. 6 shows an lOA, denoted S, satisfying the

specification of the communication net. One can note that the partition of such

automaton corresponds with the classes F~j.

By hiding the actions due to the communication of probes among the

automata cP = {trans_probe(.), receive_probe(.)}, it is simple to show that

R2 = Hide4]«ITi€IR2i).S). It is also obvious that ext(R2) = ext(Hide4]
«ITi€I R2i).S», then we only need to prove that (fairbehs(R2) n Hd ~
(fairbehs(Rle)nHI). If the property holds then it is assured that the proposed

distributed solution is correct for the resolution of deadlocks.

4. Proof of correctness. In order to prove that the automaton R2 satisfies

R 1 e under the well formed histories HI, it is necessary to show the existence of

a possibilities mapping (Tuttle, 1987). Such mapping is a function defined as

h: states(R2) - P(states(R1e »1. The existence of the possibilities mapping

54 A deadlock resolution algorithm

INPUT ACTIONS OUTPUT ACTIONS

trans-probe(m, (eij ,Pj))

eff s = (m, (pi, eij))

s'.channelj,i ~ s.channelj,i • s

Fig. 6. The automaton S.

receive_probe(m, (Pi, eij))

~ channelj,i = s. E
s = (m, (pi, eij})

eff s'.channelj,i ~ E

guarantees that the preconditions of the actions in R2 implies the preconditions

of the actions in R 1e• In the following null actions and the actions abort(eij)

are not taken into account as it was indicated in the Subsection 3.1.

DEFINITION 4.1. If s E states(R2) then h(s) = {t E states(R1e)/

Ph(S, t) property holds}. Ph(S, t). is defined by the following conditions:

(la) (Pi,eij) E t.A {::::} (Pi,eij) E s.Ai;

(lb) (eij,pj) E t.A {::::} (eij,pj) E s.Aj ;

(2) Pi E t.victims {::::} Pi E s.victimsi;

(3a) t.version«(pi,eij}) = v ¢:::> s.versioni«(Pi,eij}) = v;

(3b) t.version«(ejj,pj) = v ¢:::> s.versiOnj«(eij,pj) = v;

(4a) t.«(Pi,eij) = Ii. p; p,p' E M* being p = mI·· .mk··· {::::}

s.marksi«(Pi,eij}) = p' /I. s.channelj,i = S1 ... sk ... beeing sk

(mk' (Pi, eij});
(4b) min t.marks«(eij,pj) ¢:::> min s.markSj«(eij,pj);

(Sa) Pi E t.create(eij) {::::} Pi E s.createi(eij);

(5b) eij E t.create(pj) {::::} eij E s.createj(pj).

ASSUMPTION 4.2. The communication channels are reliable, that is,

messages arrive in finite time and messages between two sites are received in

the same order as they were sent (FIFO). It is supposed that the manager and the

resolution algorithm share the same communication channel between two sites,

if the algorithm transmits information as a result of an action over an arc (for

1 To define a possibilities mapping h:otate.(R2)-'P(.tate.(R1e» under the restric­

tion imposed by the behaviours in Hl is equivalent to define a possibilities mapping

h:otate.(R2.M1)-'P(.tate.(R1e.Mt}) being Ml the automaton which represents the man­

ager whose Jairbeh.(Mt}=Hto and where R2.Ml is the composition of the manager and

the resolution algorithm in order to form a non-deadlocked system.

l.R. Gonzalez de Mend£vil et al. 55

example, send a probe) and later the manager transmits information as a result
of an operation over that arc (for example, delete the arc), that information will

be received and processed in that order in the destination site. Thus, in the

proposed example, this assumption assures that a certain arc still remains when

it has received a probe.

Theorem 4.3. The mapping h (Definition 4.1) is a possibilities map­

ping under the well formed histories H l .

Proof. (I) ext(R2) = ext(Rle) by definition of the automata.
(2) It is obvious observing the definitions of starting state of R2 and Rle

that the mapping h verifies "Iso E start(R2), 3tostart(Rle:tO E h(so).
(3) Let s be a reachable state of R2, t E h(s) a reachable state of R 1e ,

and (s, 7r, s') E steps(R2). We claim that (i) if 7r E acts(Rle) then (t, 7r, t') E
steps(Rle with t' E h(s'), and (ii) if 7r ¢ acts(Rle) then t E h(s'). The proof
is obvious from the preconditions and effects of the actions of R2 and R 1e .
However the actions deLarc((pi, eij) and receive_probe(m, (pi, eij) require
further work.

Case 1. 7r = deLarc((pi, eij), 7r E acts(R1e). s'.Ai = s.Ai - {(Pi, eij)}
== t'.A = t.A - {(Pi,eij)}, by (1 a). s'.marki((Pi,eij) = c, due to the
well formed histories HI, the arc (eij, pj) has been deleted and no probe
s = (m, (Pi, eij) created by the arc (eij, pj) can have been sent after the arc
had been deleted, if sin s.channelji == t'.marks((Pi,eij) =1= c, due to (4b),
which is a contradiction. The Assumption 4.2 assures the arc (pi, eij) is not

spontaneously deleted and therefore, only it can be deleted if s.channelj,i = c.

So t E h(s), t' E h(s') and (t, 7r, t') E steps(Rle).

Case 2. 7r = receive_probe(m, (pi, eij), 7r ¢ acts(R1e). s = (m, (pi,
eij), s in the head of s.channelj,i == m in the head of t.marks((pi, eij), due
to (4a). In addition by Assumption 4.2, the arc (pi, eij) there exists. By the

execution of 7r.m E s'.marki((Pi, eij) == m E t.marks((Pi, eij), due to (4a).

Therefore, tE h(s), t E h(s').
In the following Theorem 4.4, we use the generic classes:

C1 = {abort(Pi)};
Dl = {create_mark((eii>pj)}j
El = {trans_mark(m, (pi, eij}), lose_mark(m, (pi, eij}),

elim_mark(m, (pi, eij})};
El = {trans_mark(m, (eij,pj})

56 A deadlock resolution algorithm

(or trans_probe(m, (eij, pj)) by renaming)};

F2 = {receivLprobe(m, (Pi, eij))}.
The four initial classes are in part(R1e), and part(R2) = part(R1e)

U {F2 }.

Theorem 4.4. Let R2 and R1e be the automata previously defined

and let h be the possibilities mapping from R2 to R 1e (Definition 4.1). If
well formed histories HI (Definition 3.1) are verified then (fairbehs(R2) n
HI) ~ (fairbehs(R1e) n HI).

Proof. Let 0: E fairexecs(R2), such that beh(o:) E HI. Due to the

results2 in Thttle (1987) 3/3 E execs(R1e): /3GhO:. We claim that it is enough

to prove that /3 is a fair execution of R1e . In that case, since there exists a

possibilities mapping from R2 to R Ie , sched(0:)Jacts(R1e) = sched(/3) (Tuttle,
1987); moreover, since ext(R2) = ext(R1e), it can be shown that beh(o:) =
beh(/3) and beh(/3) E HI. Therefore, (fairbehs(R2)nH l ~ (fairbehs(R1e)n
HI).

Let 0: E fairexecs(R2): beh(o:) E HI, and /3 E execs(R1e): /3GhO:. We

claim /3 E fairexecs(R1e).
Case 1. /3 is finite. Assume /3 is not fair. Let be /3 = to ... 11" rtr. A prefix

of /3 is denoted /3r if its endstate is t r, so /3 = /3r. As /3 is not a fair, a locally
controlled action 11" must be enabled in the state· t r , that is, there is a class

Gl,D1' or E1 such that 11" E G (G is one of such classes).

Case 1.1. Let 0: be a finite execution, 0: = S01l"181 ... 1I"kSk, that is 0: = O:k.

Let O:r be the first prefix such that tr E h(8r). Then Vr :::;; q :::;; k, tr E
h(sq). For an action 11" in the classes E1 or D1 if 11" is enabled in tr is also

enabled in Sk, and then 0: is not fair, contradicting the hypothesis. For the

action 11" in the class G1, 11" = abort(Pi), as it is enabled in t r , there is a cycle

2 From Tuttle (1987): Let h be a possibilities mapping from automaton A to automaton

B. Let a and (3 be finite executions of A and B respectively. It is said that (a) (3

Jinitecorresponds to 0 under h, denoted (3FC" a, if sched«(3)=sched(a)IB and the final

state of (3 is a possibility for the final state of 0; (b) (3 corresponds to 0 under h, denoted

(3C,.o, if for every finite prefix 0; of 0 there is a finite prefix (3; of (3 such that (3;FC"o;

and (3 is the limit of the (3;; (c) Let h be a possibilities mapping from automaton A to

automaton B. If 0 is an execution of A then there is an execution (3 of B such that (3C"o.

l.R. Gonzalez de Mendivil et al. 57

c ~ tr.A, and by h(.), C ~ Uj sq.Aj.tr.marks((Pi, ei,i+1) = m.1-' where
m is the mark to enable the abort action. By h(.), sk.marksi((Pi, ei,i+1) =
m.1-' or sk.marksi((Pi,ei,i+1) = c and slc.channeli+l,i = s ... being S =
(m, (pi, ei,i+l). By the preconditions of receive_probe(m, (p, e), such action
is enabled in Sic and then 0: is not fait, contradicting the hypothesis.

Case 1.2. Let 0: be an infinite execution, O:r its first prefix such that

tr E h(sr). Then 'rIq ~ r, t r. E h(sq). For every action 7r in the classes
El or Dl if 7r is enabled in t r , it is also enabled in Sq, otherwise this ac­
tion must appear in /3, what is impossible. l1terefore, 0: is not fair because
there exists a class infinitely enabled whose actions are never performed. For

the action 7r in the class C l ,7r = abort (Pi) , as it is enabled in t r , a cycle

C ~ tr.A, and by h(.), 'rIq ~ r, C ~ Ui sq.Ai . tr.marks((pi, ei,i+1) = m ...
and by h(.), sq.marksi((Pi, ei,i+l) = m ... or sq.marksi((Pi, ei,i+l) = c
and Sq .channeli+l,i = s . .. , being S = (m, (pi, ei,i+l). By the preconditions
of receive_probe(m, (pi, ej,i+l), and the fairness assumption of 0:, there exists

q' > r being 7rql = receive_probe(m, (pi, ei,i+l). In Sql, abort(Pi) is hence­
forth enabled (it can not be executed, otherwise it would appear in /3) and, 0:

is not fair, contradicting the hypothesis.

Case 2. /3 E execs(Rle) is infinite (0: is necessarily infinite). A<; 0: is fair,
due to the fairness definition that is assumed in the lOA model (Tuttle, 1987)

there are two possible cases:

Case 2.1. Action 7r E Cl, D l , E l , or F2 appear infinitely often in 0:.

Action 7r E Cl, Dl , or El appear infinitely often in /3; therefore, /3 is a fair
execution.

Case 2.2. States in which no action of C l , D l , El, or F2 , is enabled
appear infinitely often in 0:. The proof for the actions of Cl, D l , E l , is trivial

because if there exists a state in 0: in which an action of the those classes

is not enabled, then it is also disabled in a state in /3, by definition if the

mapping h. Suppose /3 is not fair due to the fact that an action abort(pi) is

enabled since t r , and never performed. As /3Ch 0:, there exists a pprefix O:r

such that tr E h(sr). As abort(Pi) is not executed in /3, the same happens in

0:, and therefore, there is a persistant cycle C in 0: since Sr. Let q > r, by

the preconditions of abort(Pi) in R le , m is the head of ir.marks((pi, ei+1);

by using h(.), sq.marksi ((pi, ei,i+1) = m.1-' or Sq .marksi((pi, ei,i+l) =
c and sq.channeli+l,i = S ... , being S = (m'(Pi,ei,i+l). Since 0: is fair

58 A deadlock resolution algorithm

recezvt probe(m, (Pi, ei,i+l}) will be executed for some q' > r. The action

abort (Pi) is enabled for all q" ~ q' in the states of 0:. Therefore, 0: is not fair

execution, what contradicts the hypothesis.

5. Conclusions. In this work, we have presented the first attempt in the

literature to provide a hierarchical correctness proof for a distributed deadlock

resolution algorithm. The proposed method for approach to the deadlock reso­

lution problem based on the Input-Output Automata Model (Lynch and Tuttle,
1989; Tuttle, 1987) allows the development of the solution in a natural way

of successive levels of abstraction (correctness is proven by level satisfaction).
This approach is in contrast with the invariant technique of proof given in
Kshemkalyani and Singhal (1991) for a deadlock resolution algorithm where
the gap between the specification of the problem and the final solution is large.

An interesting contribution of our work is the specification of the deadlock
resolution from the natural point of view of the resolution, and not from that
the (intermediate) detection, which has induced the deVelopment of erroneous
algorithms. In the question of the use the Wait-For-Graph (WFG) or the use of
the Resource-Allocation-Graph (RAG) (Singhal, 1989), we can say that both
of them are suitable for the problem of deadlock in the single request model
but authors which uses the RAG also needs an implicity WFG in the proof
of correctness (Knapp, 1987; Kshemkalyani and Singhal, 1991; Elmagarmid,
1988). In our work, RAG may be used without additional complexity.

Finally, this work provides an adequate methodology for the study and
development of another deadlock resolution algorithms for different resource
allocation models as the AND model. In a future work, we intend the appli­

cation of the hierarchical methodology to prove the correction of a resolution
algorithm for the AND model which is an extension of the detection algorithm
in Gonzalez de Mendivil et al. (1992).

REFERENCES

Chandy, K.M, and J.Misra (1982). A distributed algorithm for detecting resource dead­
locks in distributed systems. In Proceedings of the ACM Symposium on Principles
of Distributed Computing. pp. 157-164.

Choudhary, A.L, W.H.Kohler, J.A.Stankovic and D.Towsley (1989). A modified priority­
based probe algorithm for distributed deadlock detection and resolution. IEEE Trans-

J.R. Gonzalez dl! MendIvil et al. 59

actions on Software Engineering, 15, 10-17.

Elmagannid, A.K. (1988). A distributed deadlock detection and resolution algorithm and
its correctness. IEEE Transactions on Software Engineering, 1443-1452.

Gonzalez de Mendivil, J.R., J.R.Garitagoitia and A.Cordoba (1992). A simple distributed
deadlock detection algorithm. In Proceedings of the 6-th Annual European Com­
puter Conference, The CompEuro92. Hague, pp. 497-502.

Gonzalez de Mendivil, J.R., C.F.Alastruey and J.R.Garitagoitia (1993). A distributed
deadlock detection algorithm for the AND model. Microprocessing and Micropro­
gramming, 38, 385-392.

Gonzalez de Mendivil, J.R., J.Bemabeu, J.R.Garitagoitia and Federico Farina (1994). A
Deadlock Resolution Algorithm Based on the Input-Output Automata Model. Poly­
technic University of Valencia, DSIC-II19194.

Knapp, E. (1987). Deadlock detection in distributed databases. ACM Computing Sur­
veys, 3(4), 303-328.

Kshemkalyani, A.D., and M.Singhal (1991). Invariant-based verification of a distributed
deadlock detection algorithm . .JEEE Transactions on Software Engineering, 17(8),
789-799.

Lynch, N., and M.Tuttle (1989). An introduction to input/output automata. CWI Quar­
terly, 2(3), 219-246.

Mitchell, D.P., and M.J.Merritt (1984). A distributed algorithm for deadlock detection
and resolution. In Proceedings of ACM Conference on Principles of Distributed
Computing. Vol. 8. pp. 282-284.

Obermarck, R.L. (1982). Distributed deadlock detection algorithm. ACM Transactions
on Database Systems, 6, 187-210.

Singhal, M. (1989). Deadlock detection in distributed systems. IEEE Computer, 1,
37-48.

Sinha, M.K., and N.Natarajan (1985). A priority based distributed deadlock detection
algorithm. IEEE Transactions on Software Engineering, SE-ll(l), 67-80.

Tuttle, M.R. (1987). Hierarchical Correctness proofs for distributed algorithms. MIT, 8.

Received November 1994

Jose R. Gonzalez de Mendivil was born in the Basque Country in 1963.

He received the degree of Physicist (area: Electronics and Control) from the

University of the Basque Country in 1987, and the degree of Doctor in Physics

from the same university in 1993. He is professor in the Department of Elec­

tricity and Electronics in the University of the Basque Country. His research

60 A deadlock resolution algorithm

interests are mathematical and computing modelling of functional differential

equations, control and identification of delay-differential systems and control

of industrial processes.

Jose Bernabeu received his Master in Physics from the University of

Valencia and his MS in computer science and PhD from the Georgia Institute

of Technology (USA) in 1988. He has been a research scientist at Georgia

Tech., and currently is a professor at the Polytechnic University of Valencia

(Spain), and senior staff engineer at Sun Microsystems Laboratories (USA).

His research interest cover the area of distributed computing, coherency of

shared memory as well as operating system design.

Akim Demaile was born in France in 1970. After having been graduated

from the Polytechnic school, he has been admitted in Telecom Paris. He has
been admitted as visit student in the Department of the Electricity and Elec­

tronics (University of the Basque Country) during 1994. His research interest
cover the area of distributed systems.

PADECIl} BE ISEITmS ISSKYRIMO
ALGORITMAS

Jose Ram6n GONZALEZ DE MENDivIL, Jose BERNABEU,

Carlos F. ALASTRUEY, Akim DEMAlLE

Nagrinejama padecill be i~eities ibkyrimo problema sistemose su vienos parai~kos
modeliu. Pasiiilyta naujas algoritmas problemai spr~sti ir hierarchinis ~io algoritmo
korekti~kumo irodymo metodas.

