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Abstract. Seismic hazard analysis plays a vital role in evaluating the potential earthquake risk in a
given region. Northeast India is one of the most seismically active zones due to its tectonic posi-
tioning at the collision boundary of the Indian and Eurasian plates. This study aims to implement a
comprehensive Seismic Hazard Assessment (SHA) framework using Fuzzy Multi-Criteria Decision
Making (MCDM) techniques to improve the accuracy and reliability of Peak Ground Acceleration
(PGA) estimates in Northeast India. The methodology integrates Trapezoidal Fuzzy Full Consis-
tency Method (TrF-FUCOM) and Neutrosophic-TOPSIS under Single Valued Neutrosophic Set
(SVNS) environment (Neutrosophic-TOPSIS), effectively addressing the limitations of traditional
seismic hazard assessment methods, particularly in selecting and weighting Ground Motion Predic-
tion Equations (GMPEs). An extensive earthquake catalogue covering the period from 1762 to 2024
has been analysed, and after declustering, fault zones have been delineated based on earthquake den-
sity along active faults. The analysis provides a detailed spatial distribution of Peak Ground Accel-
eration (PGA) across the region, with the highest PGA value reaching 1.43g using the Deterministic
Seismic Hazard Assessment (DSHA) method. The findings of this study offer crucial insights for
disaster preparedness, urban planning, and the design of earthquake-resistant infrastructure, helping
to mitigate seismic risks and enhance the resilience of communities in Northeast India.
Key words: seismic hazard assessment, peak ground acceleration, ground motion prediction
equations, trapezoidal fuzzy FUCOM, neutrosophic-TOPSIS.

1. Introduction

India experiences numerous earthquakes across its expansive regions annually, highlight-
ing its status as a highly seismically active country due to diverse tectonic conditions.
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Globally, India is ranked as the sixth most earthquake-prone region, with its geological
and climatic factors significantly contributing to the country’s vulnerability to natural dis-
asters, particularly earthquakes. Approximately 56–60% of India’s geographical area is
exposed to high seismic hazards (Parvez, 2012). Historically, northeast India has faced
at least 17 major earthquakes with their Moment magnitudes (Mw) exceeding 7 during
1869–1988. Notable earthquakes in Assam during this period include the 1869 Cachar
earthquake (Mw 7.8), the 1923 southwest Assam earthquake (Mw 7.0), the 1930 Dhubri
earthquake (Mw 7.1), the 1931 Assam earthquake (Mw 7.6), the 1943 northeast Assam
earthquake (Mw 7.2), and the 1950 Upper Assam earthquake (Mw 8.4) (Parvez, 2012).
This history underscores northeast India as a tectonically active region with a predisposi-
tion to large-magnitude seismic events.

Previous earthquakes have revealed that structural damage to buildings is primarily
due to poor design, substandard construction practices, and inferior materials. Population
growth and lifestyle changes in the region have led to a shift from traditional earthquake-
resistant Assam-style homes to multi-storied buildings, amplifying vulnerability to seis-
mic risks. The northeast is recognized as one of the world’s most active tectonic regions,
and the Bureau of Indian Standards (BIS) places it in Seismic Zone V, indicating a high
likelihood of major earthquakes.

Seismic hazard assessment and zonation in India were pioneered by the Geological
Survey of India. The country’s first seismic zoning map, created by Tandon in 1956, cate-
gorized the region into three zones based on spatiotemporal seismicity statistics (Parvez,
2012). BIS, responsible for developing India’s seismic hazard maps, has periodically up-
dated these maps following significant earthquakes. The seismic map in BIS-1893 (2002)
was revised after the 2001 Bhuj earthquake. Earlier versions of the map published in 1962
included six zones, increased to seven in 1966, and later reduced to five in 1970 and 1984.
Post-2001, Zone I was merged with Zone II. Furthermore, the Global Seismic Hazard As-
sessment Program (GSHAP) classifies this region as a high-risk area, with peak ground
accelerations ranging between 0.35 g and 0.4 g (Bhatia et al., 1999; Thingbaijam et al.,
2008).

The past few decades have seen rapid infrastructure expansion and unregulated urban-
ization in the NER. According to the Census of India (2011), the region now includes 14
towns and urban agglomerations, each with a population exceeding 100 000. This pop-
ulation growth has increased vulnerability to earthquakes compared to earlier events. To
minimize the effects of future seismic disasters and enhance disaster risk management, it is
vital to assess seismic hazards and vulnerabilities at both regional and sub-regional levels.
Such assessments can guide authorities in implementing appropriate mitigation and pre-
paredness measures. Seismic risk, which quantifies the potential impacts of earthquakes,
is mathematically defined as the product of seismic hazard and vulnerability (D’Amato et
al., 2022; Frigerio et al., 2016).

Seismic hazard assessment (SHA) focuses on estimating ground motion levels at spe-
cific sites over defined time periods using deterministic or probabilistic methods. Ground
motion is often represented as peak ground acceleration (PGA), spectral acceleration,
or other parameters (Dixit et al., 2012; Kramer, 1996; Mase et al., 2021). Probabilis-
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tic seismic hazard assessment (PSHA), grounded in the total probability theorem, ac-
counts for uncertainties related to earthquake magnitude, location, timing, and predictive
models—factors often overlooked in deterministic methods (Cornell, 1968; Mase, 2022;
McGuire, 2008). Numerous researchers, including Bhatia et al. (1999), Nath and Thing-
baijam (2012), NDMA (2010), Parvez et al. (2003), and Sitharam and Kolathayar (2013),
have conducted SHA at a national scale using both probabilistic and deterministic tech-
niques. Regional studies have also been undertaken, such as those by Das et al. (2006,
2016), Ghosh and Chakraborty (2017), Sharma and Malik (2006), and Ghione et al. (2021)
for the NER; Sitharam and Sil (2014) for Tripura; and Baro et al. (2018, 2020) for the Shil-
long Plateau and Meghalaya. Bahuguna and Sil (2018) explored seismic hazards specific
to Assam.

Ground Motion Prediction Equations (GMPEs) provide empirical models that relate
earthquake characteristics to ground motion parameters, such as peak ground acceleration
(PGA) and spectral acceleration (Sa). In Northeast India, research on GMPE development
has been relatively limited, with most equations either based on regional seismic data or
derived from simulation-based seismic hazard databases. Key contributions in this area
include works by Anbazhagan et al. (2013), Bajaj and Anbazhagan (2019), Gupta (2010),
Singh et al. (2016), Nath et al. (2012), and NDMA (2010).

Several studies have applied multiple GMPEs using the logic tree methodology to eval-
uate seismic hazards in various regions. For instance, Shukla and Choudhury (2012) fo-
cused on Gujarat, examined Goa, Anbazhagan et al. (2019) analysed Patna, Borah and Ku-
mar (2022) worked on Northeast India, and Zahoor et al. (2023) investigated the Kashmir
region. Despite their significance, these studies often overlooked critical aspects, such as
the suitability of selected GMPEs for local geological conditions, their reliability for large-
magnitude events, or their applicability over extended distances. Moreover, the weighting
schemes used in these approaches generally failed to adequately incorporate the uncer-
tainties associated with PGA estimation.

1.1. Research Gap and Objective of the Study

Northeast India is characterized by a unique and complex tectonic framework, making it
one of the most seismically active regions in the world. This region’s tectonic setting, com-
prising thrusts such as the Main Frontal Thrust (MFT), Main Boundary Thrust (MBT),
Main Central Thrust (MCT), (Gupta et al., 2022; Kayal, 2008) and faults like the Dauki
(Kayal et al., 2006), Kopili, and Oldham Faults (England and Bilham, 2015), highlights
the necessity for advanced Seismic Hazard Assessment (SHA) techniques. The existing
methods, such as the conventional logic tree approach for selecting and weighting Ground
Motion Prediction Equations (GMPEs), present significant limitations in addressing the
region’s distinctive geological and seismological characteristics.

In recent studies, various methodologies have been applied to assess seismic hazards in
Northeast India. Mishra et al. (2024) and Kumar et al. (2023a) conducted a comprehensive
seismic hazard assessment for Guwahati and Silchar city, employing both probabilistic and
deterministic approaches to estimate ground motion parameters such as peak ground ac-
celeration (PGA) and spectral acceleration at various probabilities of exceedance. Both
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studies employed equal weightage to each Ground Motion Prediction Equation (GMPE)
to estimate ground motion parameters. Lallawmawma et al. (2023) used different areal
sources along with multilayer logic tree approach for the computation seismic hazard in
Mizoram. Ghione et al. (2021) used a hybrid model to compute hazard for Bhutan and
Northeast India considering shallow and subduction zone. Kumar et al. (2023b) employed
a probabilistic approach for the evaluation of seismic hazard for all the capital city of
Northeast India. Here, also equal weightage has been given to the two used GMPE with-
out considering the tectonic importance of the different study region of Northeast India.
Agrawal et al. (2023) added a key factor social vulnerability for the evaluation of risk as-
sessment of Northeast India. In this study, two different GMPE were used for two different
focal depths of source zone for the determination of PGA. As factors affecting GMPE are
not limited to only focal depth, so the use of GMPE based on focal depth does not lead to
accurate measurement of PGA. All the above recent literature puts a serious question on
the assigned weights for each of the GMPEs used in various studies.

The traditional logic tree method relies heavily on subjective expert judgment to assign
weights to GMPEs, leading to inconsistencies and potential biases. Additionally, it over-
simplifies the intricate relationships between key seismic parameters like magnitude, dis-
tance, site conditions, and tectonic settings, failing to adequately account for uncertainties
(epistemic and aleatory) in peak ground acceleration (PGA) predictions. This gap is par-
ticularly critical for Northeast India, where plate interactions at the tri-junction of the
Indian, Eurasian, and Burmese plates result in a high degree of crustal deformation and
frequent large-magnitude earthquakes along with shallow intra-slab Bengal basin earth-
quakes. The inability of existing approaches to account for these uncertainties undermines
the reliability of seismic hazard models, which are crucial for infrastructure planning and
disaster risk mitigation.

The primary objective of this study is to develop and implement a Seismic Hazard
Assessment (SHA) framework using Fuzzy Multi-Criteria Decision Making (MCDM)
techniques to enhance the accuracy and reliability of Peak Ground Acceleration (PGA)
estimates in Northeast India. The study aims to minimize subjectivity in GMPE selection
and weighting through a systematic Fuzzy MCDM approach, integrate uncertainties re-
lated to site conditions, tectonic settings, magnitude scaling, and distance attenuation, and
improve PGA estimation accuracy in the seismotectonically complex region. It tailors the
framework to account for the high seismicity of the Indo-Burma Range, Shillong Plateau,
Eastern Himalayas, Mishmi Thrust, Naga Thrust, and Bengal Basin while generating ro-
bust seismic hazard maps for better infrastructure design, urban planning, and disaster
preparedness. Additionally, the study demonstrates the superiority of Fuzzy MCDM over
conventional methods in handling uncertainties and providing more reliable hazard esti-
mates, ultimately contributing to a deeper understanding of seismic hazards and improving
seismic risk mitigation in Northeast India.

The TrF-FUCOM- Neutrosophic-TOPSIS method is a hybrid MCDM technique used
in this work. The TrF-FUCOM approach was first presented by Majumder (2023a). Saaty
created the Analytic Hierarchy Process (AHP), a popular MCDM method, earlier in 1980.
AHP assigns suitable weights to several criteria using a defined technique and pairwise
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comparisons. To address this challenge, Saaty extended the AHP into the Analytic Net-
work Process (ANP) in 1996, with a revised version published in 2001. ANP is particularly
effective for complex multi-criteria decision-making (MCDM) problems, as it incorpo-
rates feedback and interactions both within and between clusters. This method enables a
systematic approach to handling interdependencies in decision-making systems, making it
a more generalized form of AHP that accounts for intricate relationships among attributes
and decision levels. One of the MCDM methods, Simple Additive Weighting (SAW), was
proposed by Zionts and Wallenius (1983). The Step-wise Weight Assessment Ratio Anal-
ysis (SWARA) method, introduced by Keršuliene et al. (2010), is a relatively recent and
efficient approach for determining subjective weights in multi-criteria decision-making
(MCDM) problems. Compared to methods like AHP, SWARA offers a lower computa-
tional complexity, making it a more straightforward alternative in certain applications.
The weights of alternatives are usually determined via n(n − 1)/2 comparisons. Rezaei
introduced the Best-Worst Method (BWM), another MCDM technique, in 2015. Rezaei
(2015) claims that BWM overcomes several of AHP’s drawbacks. Because BWM only re-
quires 2n − 3 comparisons, it is more efficient and consistent than AHP, which requires a
greater number of pairwise comparisons. Furthermore, because fewer comparisons are re-
quired to produce trustworthy findings, BWM provides more flexibility by getting beyond
the restriction of comparing a maximum of nine criteria.

By using vectors like “best-to-others” and “others-to-worst”, the BWM improves re-
liability and produces more reliable findings than the AHP, which mostly uses pairwise
comparisons. However, BWM could have trouble figuring out precise weight coefficient
values when large swings affect the consistency level. Interval values should be calculated
in these situations, and the average of these intervals should be used to determine the final
weight coefficient (Rezaei, 2015). The core region of the interval may or may not con-
tain the required weight coefficients. Interval weight values might not accurately reflect
ideal weight coefficients in situations of inconsistency, according research by Pamučar et
al. (2018a). Pamučar et al. (2018b) presented the Full Consistency Method (FUCOM),
a technique for establishing criteria weights, in order to overcome these issues. FUCOM
tackles the shortcomings of the AHP and BWM models. Pairwise comparisons are made
easier while maintaining a balanced number of comparisons (n − 1) that are neither too
few nor too many. When determining criteria weights, the FUCOM technique incorpo-
rates the subjective preferences of the decision-maker, especially in the first steps where
criteria are assessed and compared pairwise. FUCOM is effective, however its criteria
weight values vary slightly (Pamučar et al., 2018b). By eliminating the requirement for
repeated pairwise comparisons of criteria, FUCOM offers a major advantage (Božanic
et al., 2019; Božanić et al., 2020). Linguistic variables are frequently chosen over exact
numerical values in circumstances when decision-makers lack information or expertise.
Zadeh (1965) proposed the idea that linguistic variables offer a mathematical framework
for dealing with imperfect information. Under ambiguous or imprecise circumstances,
fuzzy sets (FSs) have shown themselves to be a useful tool for representing MCDM prob-
lems. Triangular or trapezoidal fuzzy numbers can be used to assess the possible results
for each criterion (Guha and Chakraborty, 2011). Trapezoidal fuzzy numbers can also be
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triangular fuzzy numbers, according to Zheng et al. (2012). A trapezoidal fuzzy number
must take on at least one of its extreme values in order to produce a triangular fuzzy num-
ber. In the development of methodologies, researchers have found that trapezoidal fuzzy
numbers (TrFNs) provide notable advantages over triangular fuzzy numbers (Majumder,
2023a, 2023b; Majumder et al., 2023a). Majumder (2023a) presented the TrF-FUCOM
methodology in light of these discoveries.

Hwang and Yoon first proposed OPSIS, or Technique for Order Preference by Simi-
larity to Ideal Solution, in 1981. Yoon then refined the technique in 1987. Hwang et al.
made more improvements in 1993. The chosen alternative should have the largest dis-
tance from the Negative Ideal Solution (NIS) and the shortest distance from the Positive
Ideal Solution (PIS), according to the fundamental tenet of TOPSIS. In the year 2023,
Neutrosophic-TOPSIS under Single Valued Neutrosophic Set (SVNS) environment was
developed by Pramanik et al. (2023) to ascertain the ranking of alternatives. In order to
facilitate efficient determination, the TrF-FUCOM technique directs the process of allo-
cating criteria weights (Majumder, 2023a). TOPSIS is used in this study because it is easy
to use and adaptable to both qualitative and quantitative needs. By comparing the best
and worst performance of each alternative, this method improves the trustworthiness of
ranking results. TOPSIS is a great option for situations where the interaction between cost
and performance is crucial since it also takes cost-benefit parameters into account.

1.2. Novelty of the Study

The Seismic Hazard Assessment (SHA) framework utilizing Fuzzy Multi-Criteria De-
cision Making (MCDM) techniques is highly relevant to the seismotectonic settings of
Northeast India and offers significant novelty and advantages in addressing the region’s
complex seismic hazard challenges. Northeast India is one of the most seismically ac-
tive regions in the world due to its unique tectonic setting, involving the interaction of
the Indian Plate with the Eurasian and Burma Plates, resulting in high seismicity across
the Indo-Burma Range (IBR), Shillong Plateau (SP), Eastern Himalayas (EH), Mishmi
Thrust (MT), Naga Thrust (NT), and Bengal Basin (BB). The conventional Deterministic
Seismic Hazard Assessment (DSHA) process often struggles to account for the inherent
uncertainties in seismic parameters, such as site conditions, tectonic settings, magnitude
scaling, and distance attenuation, which are critical for accurate PGA estimation.

The Fuzzy MCDM framework addresses these challenges by incorporating fuzzy sets
and membership functions to quantify uncertainties and reduce subjectivity in weight as-
signments for Ground Motion Prediction Equations (GMPEs). This approach is particu-
larly advantageous for Northeast India, where the seismotectonic complexity and variabil-
ity in fault systems demand a more nuanced and flexible hazard assessment methodology.
By integrating multiple criteria and fuzzy logic, the framework provides a more reliable
and realistic estimation of PGA, capturing the uncertainties associated with seismic events
and tectonic settings. This is especially important for regions like the Indo-Burma Range
and Mishmi Thrust, where high PGA values are observed due to intense tectonic activity,
and the Shillong Plateau, where the Dauki Fault contributes to significant seismic hazard.
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2. Methodology

The objective of this study is to develop and implement a Seismic Hazard Assessment
(SHA). A hybrid fuzzy-based decision-making technique is used to develop a PGA equa-
tion for Seismic Hazard analysis. The methodology is divided into two parts: initial prepa-
ration and MCDM-based PGA, which are discussed in Sections 2.1 and 2.2, respectively.

2.1. Initial Preparation

In this study, two different fuzzy-based MCDM techniques are used to determine the score
values of the considered alternatives. The initial preparation is divided into two parts: the
preliminary analysis of Trapezoidal Fuzzy Numbers (TrFN) and the preliminary analysis
of Single-Valued Neutrosophic Sets (SVNS), which are discussed in Sections 2.1.1 and
2.1.2, respectively.

2.1.1. Preliminary of Trapezoidal Fuzzy Number (TrFN)
There have been several varieties of fuzzy numbers created since Zadeh first proposed
the idea of fuzzy sets (FS) in 1965, including trapezoidal, Gaussian, and triangular fuzzy
numbers. An overview of the most important terms pertaining to fuzzy sets and triangular
fuzzy numbers (TrFNs) is provided below.

Definition 1. A fuzzy set, denoted as F = {(f, μF (f )) : f ∈ R} is characterized by
a set of ordered pairs, where 0 ⩽ μF (f ) ⩽ 1 represents the mapping of membership
(membership function) of objects g within the FS.

Definition 2. TrFN is presented by T̃ = (t1, t2, t3, t4), where T̃ ’s membership mapping
μ

T̃
is presented (Xiao et al., 2012).
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The parameters are defined by a lower limit t1, an upper limit t4, a lower support limit t2,
as well as an upper support limit t3, where t1 < t2 < t3 < t4.

A TrFN transitions into a TFN when its two most favourable values coincide. TFNs,
therefore, represent specific instances of TrFNs. The latter is used in situations where
just a limited segment of the discourse universe is granted exclusive membership, as is
seen in conservative or depressing situations. On the other hand, this approach is used in
positive or tolerant situations when full membership is available to a far larger segment
of the conversation universe. By fostering tolerance and optimism, TrFNs are capable
of competently managing events (Berkan and Trubatch, 2000). Based on the assumption
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Chen, 2007), the operational principles are as follows:
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Definition 3. The process of turning a fuzzy number into a sharp one is called defuzzifi-
cation. The output is transformed from the fuzzy domain back into the crisp domain using
an inverse transformation. If T̃1 = (t

/
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/
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/

4 ) is a TrFN, the corresponding crisp value
R(T̃1) can be generated by the following formula:
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6
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2.1.2. Preliminary of Single Valued Neutrosophic Set (SVNS)
Smarandache (1998) laid the foundation for Neutrosophic Sets in 1998, which was later
built upon by Wang et al. (2010) with the introduction of Single-Valued Neutrosophic Sets
(SVNS). This concept aimed to address situations marked by uncertainty and incomplete
data.

The following definition outlines an SVNS W defined over a specified set E:

W = {(
x, Pm(x),Qm(x), Sm(x)

) : x ∈ E
}
,

where Pm : R → {0, 1} ∪ (0, 1), Qm : R → {0, 1} ∪ (0, 1), Sm : R → {0, 1} ∪ (0, 1) and
so 0 ⩽ Pm(x) + Qm(x) + Sm(x) ⩽ 3. If an SVNS W over a given set E,we refer to the
triplet (Pm(x),Qm(x), Sm(x)) as a Single-Valued Neutrosophic Number (SVNN).

Mandal and Basu (2019) proposed a new scoring function designed to tackle Multi-
ple Attribute Decision Making (MADM) challenges within the SVNS framework. The
scoring process involves the following steps:

(i) Consider a three-dimensional space with the origin represented as O. Within this
space, let denote a specific point U = (aθ , bθ , cθ ), referred to as an SVNN. Per-
form a translation of this point into U to arrive at V = (a� , b� , c� ). Here a� =
aθ + λ, b� = bθ + λ, c� = cθ + λ, where λ > 0, a real number such that c� never
equals 1 and remains unique throughout a given problem. Now, let’s consider another
point, V / = (a� ,−b� ,−c� ), resulting from reflecting V = (a� , b� , c� ) across the
x-axis, acting as a mirror.

(ii) Locate the score function S1(V ) = cos θ , with θ representing the angle between OV

and OV /, and O denoting the origin.
(iii) If the score values for two distinct SVNNs, V1 = (a�1, b�1 , c�1) and V2 =

(a�2 , b�2, c�2), denoted as S1(V1) and S1(V2) respectively, are equal, determine
V ∗∗

1 = (a�1 ,−b�1,−√
c�1 ) and V ∗∗

2 = (a�2,−b�2,−√
c�2 ) respectively for the

corresponding translated points V ∗
1 = (a� ∗

1
, b� ∗

1
, c� ∗

1
) and V ∗

2 = (a� ∗
2
, b� ∗

2
, c� ∗

2
)
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where, a� ∗
1

= a�1 + λ, b� ∗
1

= b�1 + λ, c� ∗
1

= c�1 + λ and a� ∗
2

= a�2 + λ,
b� ∗

2
= b�2 + λ, c� ∗

2
= c�2 + λ.

(iv) Determine cos A and cos B, where A represents the angle between OV ∗
1 and OV ∗∗

1 ,
and B signifies the angle between OV ∗

2 and OV ∗∗
2 , with O denoting the origin.

(v) The score mapping S1(V1) = cos A, as well as S1(V2) = cos B.

2.2. MCDM Based PGA

This study aims to develop and implement a Seismic Hazard Assessment (SHA) frame-
work using Fuzzy MCDM techniques to improve the accuracy and reliability of PGA esti-
mates. The new PGA equation is developed as the average weighted sum of the considered
PGA values. The PGA is determined by the formula (1) with the help of weights of consid-
ering PGA and its calculated PGA from ground motion prediction equation (GMPE) The
weights are determined with the help of a hybrid MCDM technique. Figure 1 illustrates
the computational steps of PGA.

PGAf =
∑m

i=1 pi × v(PGAGMPE−i )∑m
i=1 pi

, (1)

where: PGAf = Final PGA; pi = Calculated Weight for ith Ground motion Prediction
Equation; v(PGAGMPE−i ) = calculated PGA from ith No of Ground motion Prediction
Equation (i = 1(1)m).

To determine the weights of each GMPE (PGAGMPE−i), in the present study we use two
MCDM techniques, namely Trapezoidal Fuzzy Full Consistency Method (TrF-FUCOM)
and Neutrosophic-TOPSIS under Single Valued Neutrosophic Set (SVNS) environment
(Neutrosophic-TOPSIS). The TrF-FUCOM is used to determine the weights of criteria
and Neutrosophic-TOPIS Strategy within the SVNN used to determine the weights of
alternatives. In the Model-I and Model-II, we discuss the computational process of TrF-
FUCOM and Neutrosophic-TOPIS Strategy respectively.

Model-I: In this model, we discuss how to determine the weights of criteria with the help
of TrF-FUCOM.

Phase-i: Suppose F = {ξr : r = 1(1)n} is a collection of criteria.

Phase-ii: Decision-makers’ (DMs’) preferences and opinions about the importance of
each criterion are used to prioritize them in the first phase. The top rank is given to
the factor with the highest weight coefficient, and the lowest weight coefficient factor is
ranked last. The most significant factors are listed first, followed by the least significant,
in descending order of their weight coefficients. As a result, the qualities are ranked as
ξr(1) 	 ξr(2) 	 · · · 	 ξr(κ), and κ represents the rank of a certain factor. An equality
symbol in place of ‘	’ is used to show that two or more components have the same rank.

Phase-iii: By using Table 1, it is possible to compare factors according to their rankings,
which are mostly established by the component that is rated first. Determining the trape-
zoidal fuzzy criterion importance (℘̃ξr(κ)

) for each factor is made easier by this procedure.
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Fig. 1. The comprehensive overview of PGA.

The other components are compared a total of n − 1 times because the most significant
element is self-compared (its importance is ℘̃ξr(1)

= EI ). Based on the criteria’s indicated
importance, Eq. (2) is used to compute the fuzzy comparative significance χ̃κ/(κ+1).

χ̃κ/(κ+1) = ℘̃ξr(κ+1)

℘̃ξ r(κ)

=
(℘̃a

ξr(κ+1)
, ℘̃b

ξr(κ+1)
, ℘̃c

ξr(κ+1)
, ℘̃d

ξr(κ+1)
)

(℘̃a
ξr(κ)

, ℘̃b
ξr(κ)

, ℘̃c
ξr(κ)

, ℘̃d
ξr(κ)

)
, (2)

where the significance of the factor ranked ξr(κ) with respect to the factor ranked ξr(κ+1)

is shown by the symbol χ̃κ/(κ+1).
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Table 1
Evaluating pairs through linguistic measures of significance.

Providing clear definitions for
linguistic terms

Fuzzy measures with trapezoidal shape
of notable significance

(t1, t2, t3, t4) SI

AMI (8, 8.5, 9, 9) 9
Scale of intermediate (	 − 1, 	 − 0.5, 	 + 0.5, 	 + 1) 2 ⩽ 	 ⩽ 8, 	 ∈ N

EI (1, 1, 1, 1) 1

A Trapezoidal Fuzzy vector that represents the relative relevance of choice factors is
thus produced by the expression (3).

χ̃ = (χ̃1/2, χ̃2/3, . . . , χ̃κ/(κ+1)). (3)

Phase-iv: The Trapezoidal Fuzzy weight coefficients of components (ỹ1, ỹ2, . . . , ỹn)
T

were finally calculated. However, the final values of the weight coefficients must satisfy
the following conditions:

Condition 1. The weight coefficient ratio (shown in expression (4)) of the measured com-
ponents (ξr(κ) and ξr(κ+1)) should correspond to the order of their significance (χ̃κ/(κ+1)),
as suggested by Phase-ii.

ỹκ

ỹκ+1
= χ̃κ/(κ+1). (4)

Condition 2. The final values of the weight coefficients must meet the transitivity princi-
ple in addition to the requirement stated in expression (3), that is χ̃κ/(κ+1)⊗χ̃(κ+1)/(κ+2) =
χ̃κ/(κ+2), i.e. ỹκ

ỹκ+1
⊗ ỹκ+1

ỹκ+2
= ỹκ

ỹκ+2
. Consequently, the following additional requirement is

met by the weight coefficients’ final values (shown in expression (5)):

ỹκ

ỹκ+2
= χ̃κ/(κ+1) ⊗ χ̃(κ+1)/(κ+2). (5)

Only when the transitivity between the weight coefficients is fully satisfied does the
minimum DMC (deviations from the maximum consistency), i.e. η = 0, get satisfied.
Therefore, it can be concluded that ỹκ

ỹκ+1
− χ̃κ/(κ+1) = 0, as well as ỹκ

ỹκ+2
− χ̃κ/(κ+1) ⊗

χ̃(κ+1)/(κ+2) = 0. The DMC for these weight coefficient values is η = 0. Finding the
values of the weight coefficients of criteria (ỹ1, ỹ2, . . . , ỹn)

T that meet the requirement
that | ỹκ

ỹκ+1
−χ̃κ/(κ+1)| ⩽ η and | ỹκ

ỹκ+2
−χ̃κ/(κ+1)⊗χ̃(κ+1)/(κ+2)| ⩽ η with the minimization

of value η are necessary in order to meet these requirements.
The final nonlinear model for identifying the best fuzzy values for the assessment crite-

ria’s weight coefficients can be set to (ỹ1, ỹ2, . . . , ỹn)
T based on the parameters specified.
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Min η

s.t.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣ ỹκ

ỹκ+1
− χ̃κ/(κ+1)

∣∣ ⩽ η, for all r = 1(1)n,∣∣ ỹκ

ỹκ+2
− χ̃κ/(κ+1) ⊗ χ̃(κ+1)/(κ+2)

∣∣ ⩽ η, for all r = 1(1)n,∑n
r=1 ỹr = 1,

0 ⩽ ya
r ⩽ yb

r ⩽ yc
r ⩽ yd

r , for all r = 1(1)n,

(6)

where ỹr = (y
t1
r , y

t2
r , y

t3
r , y

t4
r ) and χ̃κ/(κ+1) = (χ

t1
κ/(κ+1), χ

t2
κ/(κ+1), χ

t3
κ/(κ+1), χ

t4
κ/(κ+1)).

The requirement that ỹκ

ỹκ+1
−χ̃κ/(κ+1) = 0, as well as ỹκ

ỹκ+2
−χ̃κ/(κ+1)⊗χ̃(κ+1)/(κ+2) = 0

meet must be met in order to attain the highest consistency. Thus, a fuzzy linear model,
Eq. (7), can be created from the model provided by Eq. (6). If it is solved, the ideal fuzzy
values of the weight coefficients are (ỹ1, ỹ2, . . . , ỹn)

T .

Min η s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ỹκ − ỹκ+1 ⊗ χ̃κ/(κ+1)| ⩽ η, for all r = 1(1)n,

|ỹκ − ỹκ+2 ⊗ χ̃κ/(κ+1) ⊗ χ̃(κ+1)/(κ+2)| ⩽ η, for all r = 1(1)n,∑n
r=1 ỹr = 1,

0 ⩽ ya
r ⩽ yb

r ⩽ yc
r ⩽ yd

r , for all r = 1(1)n,

(7)

where ỹr = (y
t1
r , y

t2
r , y

t3
r , y

t4
r ) and χ̃κ/(κ+1) = (χ

t1
κ/(κ+1), χ

t2
κ/(κ+1), χ

t3
κ/(κ+1), χ

t4
κ/(κ+1)).

Transform optimal weights (ỹ∗1, ỹ∗2, . . . , ỹ∗n)
T in which ỹ∗r = (y

t1∗
r , y

t2∗
r , y

t3∗
r , y

t4∗
r )

(for all r = 1(1)n) into crisp value by making use of Eq. (8).

R(ỹ∗r ) = y
t1∗
r + 2y

t2∗
r + 2y

t3∗
r + y

t4∗
r

6
, for all r = 1(1)n. (8)

Model-II: In this model, we discuss how to determine the weights of an alternative with
the help of Neutrosophic-TOPSIS.

Consider the set of alternatives U = {ui : i = 1(1)m}, i ⩾ 1 and F = {ξr : r =
1(1)n}, r ⩾ 2 is the set of attributes with weights R(ỹ∗r ), r = 1(1)n respectively.

Decision-makers assign ratings to the ui, i = 1(1)m alternatives based on the at-
tributes ξr , r = 1(1)n, which are represented using an SVNN. Let’s assume the rating for
the rth attribute concerning the ith alternative is presented as follows:

u∗
ir = (ξr , Tui

(ξr ), Iui
(ξr ), Fui

(ξr )), i = 1(1)m, r = 1(1)n, where 0 ⩽ Tui
(ξr ) +

Iui
(ξr ) + Fui

(ξr ) ⩽ 3. Here, (Tir , Iir , Fir ) is denoted as an SVNN u∗
ir ,(i = 1(1)m and

r = 1(1)n), where r represents the number of attributes and i represents the number of
alternatives. Derive the decision matrix based on the ratings: Ω∗ = [u∗

ir ]m×n

The TOPSIS approach has been summed up as outlined below:

Step 1: The score-matrix Ω = [uir ]m×n,(i = 1(1)m and r = 1(1)n) is obtained from the
decision matrix Ω∗ = [u∗

ir ]m×n utilizing the methods outlined in the preceding section:
i.e. uir = S1(u

∗
ir ).
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Step 2: Evaluation of the normalized decision matrix T = [tir ]m×n using Eq. (9).

tir = uir√∑n
r=1 uir

, i = 1(1)m and r = 1(1)n. (9)

Step 3: Figure out the θ = [λir ]m×n weighted normalized decision matrix, where λir =
R(ỹ∗r ) ⊗ tir , i = 1(1)m and r = 1(1)n.

Step 4: Find the Neutrosophic Positive Ideal Solution (NPIS) and Neutrosophic Negative
Ideal Solution (NNIS), which are degraded by ∂+, as well as ∂−, respectively.

∂+ = {
λ+

1 , λ+
2 , . . . , λ+

n

}
, where λ+

r = max
r

λir , r = 1(1)n and

∂− = {
λ−

1 , λ−
2 , . . . , λ−

n

}
, where λ−

r = min
r

λir , r = 1(1)n.

Step 5: Use the following formulas (10) and (11) to determine the distance between each
NPIS and NNIS option:

ρ+
i =

√√√√
n∑

r=1

(λir − λ+
i )2, i = 1(1)m, (10)

ρ−
i =

√√√√
n∑

r=1

(
λir − λ−

i

)2
, i = 1(1)m. (11)

Step 6: Use formula (12) to calculate each alternative’s performance score:

δi = ρ−
i /

(
ρ+

i + ρ−
i

)
, i = 1(1)m. (12)

Step 7: Based on the performance scores, rank the options; they should be in ascending
order. Eq. (13) normalizes the performance score. The normalized performance score is
used as a final weighting factor for several GMPE equations in this study.

pi = δi∑m
i=1 δi

, i = 1(1)m. (13)

Putting the value of pi in Eq. (1) to enhance the accuracy and reliability of Peak Ground
Acceleration (PGA) estimates.

3. Case Study and Data Collection

In this study, different locations are considered for the Enhanced Seismic Hazard Evalua-
tion of Northeast India, which are discussed in Section 3.1. Section 3.2 discusses the data
collection related to Seismic Hazard Evaluation.
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Fig. 2. Shows seismic source zone of the study area along with its geographical boundary.

3.1. Seismotectonic Setting of the Study Area

To study the northeastern region of India, several researchers have categorized this area
into multiple zones based on its seismic history, seismicity patterns, and the inter- and
intra-dynamic movement geometry. This study, however, classifies Northeast India and
its surrounding areas into Six primary tectonic domains: the Eastern Himalayan source
zone, the Mishmi source zone, Naga thrust zone, the Shillong Plateau source zone, the
Bengal basin zone and the Indo-Burmese source zone (Fig. 2). Understanding the tec-
tonic framework of Assam and its neighbouring states necessitates the development of a
comprehensive seismotectonic map, grounded in geological field surveys.

The Geological Survey of India initially produced a regional geology map for the entire
northeastern region and adjacent areas, utilizing satellite imagery. For detailed seismotec-
tonic analysis of NE India, morphotectonic lineaments across the entire Northeast region
were mapped and correlated with SEISAT, 2000 data. Figure 3, created using the MapInfo
software, illustrates all major faults. It becomes evident from this figure that three promi-
nent tectonic belts converge at two distinct boundaries—Himalayan and Indo-Burmese—
that intersect at the Assam Syntaxis. The region within latitudes 20°N–31°N and lon-
gitudes 86°E–98°E encompasses two major mountain ranges: the Eastern Himalayas in
the north and the Indo-Burmese range in the southeast. Figures 2 and 3 depict the East-
ern Himalayan collision zone, trending east–west to east-northeast–west-southwest, north
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Fig. 3. Seismotectonic map of Northeast India showing main shock, and major fault.

of latitude 27°N. This zone includes the south-dipping Main Central Thrust (MCT) and
Main Boundary Thrust (MBT). Current tectonic compression in this area is approximately
north–south, as indicated by studies conducted by Heidbach et al. (2005, 2007), Bilham
and Gaur (2000), and Jade et al. (2007), which confirmed the north–south crustal short-
ening.

South of latitude 26°N and east of longitude 92°E lies the Indo-Burmese subduction
zone, where the Indian Plate is descending steeply beneath the Burmese arc, as described
by Mukhopadhyay and Dasgupta (1988). To the south of Assam, the Arakan Yoma Belt
trends north-northwest to south-southeast, while the Naga Hills lie to the northeast with a
northeast–southwest orientation. This tectonic framework reveals interactions between the
western Burmese arc, the Sunda plate, and the Burmese plate, as noted by Gahalaut and
Gahalaut (2007). Variations in thrusting and right-lateral slip along the western Burmese
arc’s north–south trending structures are also significant, as highlighted by Kayal et al.
(2004).

Near 27°N and 96°E, in the Assam Syntaxis region, the MBT, Naga Thrust, and the
Belt of Schuppen run parallel on either side of the Upper Assam Valley. Figures 2 and 3
show that Assam is surrounded by multiple thrust zones: the MBT and MCT in the north,
the Lohit-Mishmi Thrust in the northeast, the Arakan Yoma Belt in the southeast, and the
Naga, Disang, and Eastern Boundary Thrusts in the east. Within this region, the intraplate
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domain is deformed, particularly in the Shillong Plateau and Mikir Hills (24°N–26°N) and
in the Tripura Fold Belt (91°E–94°E). This zone is highly seismically active, except for
the Assam Gap, as noted by Khattri (1993) and Kayal et al. (2006). The Tripura-Mizoram
Fold Belt is defined by its north–south trending anticlines and synclines, shaped by tec-
tonic compression forces. Its seismic activity is significantly influenced by its closeness
to active fault systems, including the Dauki Fault near the Shillong Plateau. This fault,
along with others such as the Kaladhan Fault, Madhupur Fault (located in Bangladesh),
and the Sylhet Fault in Bangladesh, contribute to the seismic risks for Tripura. The Dauki
Fault of Meghalaya and the wrench-fold structure identified along the Chittagong coast-
line, referred to as the Chittagong Coastal Fault (as discussed by Maurin and Rangin, 2009,
and Sikder and Alam, 2003), add to the region’s tectonic complexity. Additionally, faults
along Tripura’s northern boundary, near the India–Bangladesh border, further highlight
its geologically active nature.

Notably, Tripura lies near both the Sylhet Fault and the Chittagong Coastal Fault, which
have historically been associated with significant seismic events. The region has witnessed
two major earthquakes with magnitudes exceeding Mw 7 and another event measuring Mw
6.9 in the past. This proximity to multiple active fault systems underscores the seismotec-
tonic complexity and elevated seismic risk in the area.

3.2. Earthquake Data Collection

The earthquake catalog used in this study includes detailed information on each event,
such as its location (in terms of coordinates), date, time, and magnitudes expressed in var-
ious scales (ML, Mw, Ms, and Mb). To assess regional seismicity parameters and other
related seismological metrics, a substantial database is essential. The dataset utilized here
is derived from Sil et al. (2013), which covers data until 2010, and is supplemented with
updated information until 2015, sourced from agencies such as USGS, IMD, ISC, and
NGRI. Figure 3 illustrates earthquakes with magnitude Mw greater than 6 that have oc-
curred in Northeast India (NEI). The catalog encompasses a 500 km radius from Assam,
covering latitudes 18°–29° N and longitudes 86°–97° E. A total of 6663 earthquake events,
recorded from 1761 to 2015, were included in the dataset. Some of these events were ini-
tially recorded in different magnitude scales (Mw and others). To standardize the dataset,
a conversion to the moment magnitude scale (Mw) was performed using the correlation
formula developed by Sitharam and Sil (2014). After transforming the magnitudes to a
unified Mw scale, aftershocks and foreshocks were excluded based on the method out-
lined by Gardner and Knopoff (1974), resulting in a selection of 2882 main shocks with
magnitudes greater than Mw 4. According to van Stiphout et al. (2012), the Gardner and
Knopoff method follows a Poisson distribution and uses both time and space windows to
remove aftershocks and foreshocks. The conversion equation used in this study, derived
from historical seismic data specific to the Northeast India region, is the most suitable for
converting magnitudes to Mw for the analysis conducted here.

3.2.1. Fault Data Collection
Northeast India exhibits a complex seismotectonic environment, including subduction
activity along the Indo-Burmese range, plate boundary interactions in the Northern Hi-
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Fig. 4. Data on earthquakes from different sources as well as distinct faults from SEISAT and other literatures,
including fault zones within the Northeast India.

malayas, and intraplate seismic events in the Shillong Plateau region. For this study, a
seismotectonic map was created using ArcGIS 10.2, onto which seismic event data were
overlaid. Fault line data in and around Northeast India was sourced from the Seismotec-
tonic Atlas 2000 (SEISAT, 2000) along with additional references, including Kayal (2008)
and Bahuguna and Shil (2018), to create the fault map (Fig. 3). Data collection from seis-
mic sites involved documenting fault characteristics such as length, depth, location, and
the maximum observed earthquake magnitude near each fault. This study incorporates
fault lines from multiple SEISAT maps. Furthermore, point sources near the fault lines
are regarded as events triggered by these faults. The study specifically identifies active
faults using SEISAT, 2000 data. Eighteen active faults and folds in the Northeast Region,
with potential to generate significant ground shaking in Tripura, are included. Figure 4
shows various fault lines and folds in black, while violet lines highlight fault zones near
these faults and folds. Earthquake events with magnitudes ranging from 4 to 4.9, 5 to 5.9,
6 to 6.9, and above 7 are represented in distinct colours and sizes within their respec-
tive fault zones (Fig. 4). A detailed summary of the fault zones around Northeast India is
presented in Table 2.
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Table 2
Fault details around the Northeast India.

S. No. Starting
longitude

Starting
latitude

Ending
longitude

Ending
latitude

Fault name Length of the
fault (km)

Depth
(km)

F-1 91.63 25.57 91.98 25.88 BSZ 50 24–28
F-2 89.06 27.05 94.33 27.65 MBT and MCT 2000 33–40
F-3 94.35 26.92 97.44 28.9 Mishmi Thrust 230 28–36
F-4 93.59 23.96 94.73 26.44 CMF 308 33–58
F-5 93.38 20.02 93.67 22.66 F.2 296 27–33
F-6 90.24 24.08 90.83 24.9 A.1 110 28–30
F-7 93.04 26.31 93.65 26.48 A.3 80 28–48
F-8 90.53 25.76 90.67 25.9 Samin 20 25–26
F-9 95.68 27.71 97.6 28.74 Lohiti 200 32–35
F-10 92.97 25.12 95.06 26.99 D&N Thrust 400 29–30
F-11 92.97 25.12 89.94 25.26 Dauki 320 28–80
F-12 90.72 25.77 91.73 26.11 Oldham 110 30–32
F-13 91.98 26.92 93.14 25.25 Kopili 400 31–64
F-14 93.42 23.27 92.99 23.66 MAT 125 40–65
F-15 90.69 23.99 91.9 24.94 Sylhet 161 25–30
F-16 92.49 20.11 91.39 23.4 CCF 380 21–25
F-17 92.36 20.75 93.09 24.75 Kaladan 461 27–33
F-18 23.976 91.791 20.23 92.79 TFB 439 27–33

3.2.2. Estimation of Maximum Magnitude
Determining the maximum magnitude (Mmax) is a critical aspect of seismic hazard stud-
ies, particularly due to the significant ground motion associated with higher-magnitude
earthquakes near fault zones. Evaluating the probable Mmax for individual faults is there-
fore essential in seismic risk analysis.

Wells and Coppersmith (1994) investigated the relationship between severe earthquake
magnitudes and fault zone characteristics, establishing empirical correlations. These in-
cluded moment magnitude and factors such as maximum and average displacements,
lengths of surface and subsurface ruptures, rupture widths, and rupture areas. Their find-
ings indicated that the strongest correlation existed between earthquake magnitude and
surface rupture area, surpassing the relationships involving rupture length or displace-
ment. The study also examined correlations across different fault mechanisms, including
normal, reverse, and strike-slip faults.

Kijko (2004) proposed a method to estimate Mmax that accommodates various scenar-
ios across regions. This approach considers three scenarios: (1) earthquake magnitudes
adhering to a doubly-truncated Gutenberg-Richter model, (2) moderate deviations from
the Gutenberg-Richter distribution, and (3) the absence of an assumed magnitude distri-
bution.

Several established methods for estimating Mmax include those by Gupta (2002),
Mueller et al. (2015), Gutenberg and Richter (1944), Kijko and Sellevoll (1989), Raghu
Kanth and Iyengar (2007), and Kijko (2004). In this study, the techniques developed by
Gupta (2002) and Wells and Coppersmith (1994) are utilized. Table 3 presents the esti-
mated Mmax values for various fault lines.
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Table 3
Maximum magnitude calculated Wells and Coppersmith (1994) and Gupta (2002) for each fault.

Fault
name

Start
coordinates
(Long, Lat)

End
coordinates
(Long, Lat)

Depth
range
(km)

Total
fault
length
(TFL)
(km)

Surface
rupture
length
(SRL)
(km)

Observed
magnitude
(Mobs)

Mmax
(Method-A,
Wells and
Coppersmith,
1994)

Mmax
(Method-B,
Gupta, 2002)

Mmax

F.2 (93.38, 20.02) (93.67, 22.66) 27–33 296 11.3 6.2 6.2 6.7 6.7
BSZ (91.63, 25.57) (91.98, 25.88) 24–28 50 1.9 6.3 6.3 6.8 6.8
A.1 (90.24, 24.08) (90.83, 24.90) 28–30 110 4.18 6.4 6.4 6.9 6.9
Oldham (90.72, 25.77) (91.73, 26.11) 30–32 110 4.18 8.1 8.1 8.6 8.6
MAT (93.42, 23.27) (92.99, 23.66) 40–65 125 4.75 6.2 6.2 6.7 6.7
Samin (90.53, 25.76) (90.67, 25.90) 25–26 20 0.76 7.6 7.6 8.1 8.1
Lohiti (95.68, 27.71) (97.6, 28.74) 32–35 200 7.6 8.6 5.6 8.6 8.6
Dauki (92.97, 25.12) (89.94, 25.26) 28–80 320 12.2 7.2 6 7.2 7.2
D&N
Thrust

(92.97, 25.12) (95.06, 26.99) 29–30 400 15.2 6.2 6.2 6.2 6.2

MBT &
MCT

(89.06, 27.05) (94.33, 27.65) 33–40 2000 76 6.9 7.4 7.4 7.4

Mishmi
Thrust

(94.35, 26.92) (97.44, 28.90) 28–36 230 8.74 7.1 5.7 7.6 7.6

CCF (92.49, 20.11) (91.39, 23.40) 21–25 380 14.4 6.9 6.1 7.4 7.4
Kaladan (92.36, 20.75) (93.09, 24.75) 27–33 461 17.5 6.6 6.3 7.1 7.1
TFB (23.98, 91.79) (20.23, 92.79) 27–33 439 16.7 6.4 6.2 6.9 6.9
Kopili (26.92, 91.98) (25.25, 93.14) 31–64 400 15.2 6.2 7.4 7.9 7.9
Sylhet (23.99, 90.69) (24.94, 91.90) 25–30 161 6.2 5.5 7.6 8.1 8.1
CMF (23.96, 93.59) (26.44, 94.73) 33–58 308 11.7 6.0 7.4 7.9 7.9
A3 (26.31, 93.04) (26.48, 93.65) 28–48 80 3.04 4.9 6.4 6.9 6.9

4. Application of the Model

The objective of the present study is the enhanced seismic hazard evaluation of North-
east India. The application of the proposed model is divided into three parts. Section 4.1
discusses the selection of parameters, Section 4.2 covers the application of MCDM, and
Section 4.3 discusses the computational process of the final PGA.

4.1. Selection of Ground Motion Prediction Equation (GMPE)

Ground motion models are designed with a regional perspective, considering distinct tec-
tonic features such as subduction zones, intraplate settings, and plate boundary interac-
tions. These models rely on accelerogram recordings collected from various distances
and magnitudes across the study region. A regression analysis is then conducted on peak
ground acceleration (PGA) values, incorporating both magnitude and distance parame-
ters to minimize variability and derive region-specific coefficients for different spectral
periods. Based on seismic activity and tectonic characteristics, the study area is catego-
rized into two primary zones: shallow crustal intraplate/interplate regions and subduction-
related in-slab/interface regions. Accordingly, separate attenuation models are necessary
to represent ground motion behaviour accurately in each category.

Several researchers have developed ground motion attenuation relationships specific to
different regions of India. Bajaj and Anbazhagan (2019) introduced an equation tailored to
the Himalayan region, calibrated for earthquakes ranging from magnitude 4 to 9 and rup-
ture distances spanning 10–750 km. This model was formulated using an extensive dataset
of 4,940 recorded seismic events, facilitating a comprehensive assessment of regional at-
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Fig. 5. Comparison of different GMPE with observed Ground Motion data of Mw = 6 on 1988-02-06 in India-
Bangladesh Border.

tenuation characteristics. Likewise, Nath et al. (2012) derived a ground motion model
for Northeast India, utilizing data from 13 earthquakes with magnitudes between Mw 4.8
and Mw 8.1, recorded at distances extending up to 100 km. Atkinson and Boore (2003)
formulated a GMPE for stable continental regions in eastern North America, which, de-
spite its original focus, can be adapted for the Bengal Basin due to its comparable tectonic
stability. Raghu Kanth and Iyengar (2007) proposed a GMPE specifically for Peninsular
India, estimating seismic ground motion parameters such as PGA. While developed for
a different setting, its application to the Bengal Basin is feasible due to tectonic similari-
ties. Additionally, Singh et al. (2016) devised a GMPE for Northeast India, with a focus
on seismically active regions influenced by the Indo-Burmese Arc. Given the tectonic
similarities between Tripura and the surrounding active zones, this GMPE is considered
applicable to the study area, though local geological variations, including soil properties
and site conditions, must be accounted for to ensure accurate ground motion predictions.

To validate the five selected attenuation models (Atkinson and Boore, 2003; Raghu
Kanth and Iyengar, 2007; Nath et al., 2012; Singh et al., 2016; Bajaj and Anbazha-
gan, 2019), strong motion data was sourced from the Cosmos Virtual Data Centre (http:
//db.cosmos-eq.org/). Seismic recordings from seven significant earthquakes occurring
between 1987 and 1997, captured through the SMART-1 digital network covering the
Indo-Burma range and Northeast India, were used for this validation.

Seismic recordings obtained from multiple monitoring stations were utilized to assess
the accuracy of the selected ground motion prediction equations (GMPEs). A comparative
analysis was performed using peak ground acceleration (PGA) values recorded at the rock
level for the India-Bangladesh Border earthquake (1988-02-06, 14:50:45 UTC, Mw = 6),
juxtaposing them with the predictions from the chosen GMPEs (Fig. 5). However, due to
the proximity between the observed data and the modelled predictions (Fig. 5), along with
inherent uncertainties in each equation, selecting the most suitable model presents a chal-
lenge. These epistemic uncertainties can be mitigated through the logic tree framework,
which enables the incorporation of multiple models into the evaluation process.

A logic tree structure consists of branches and nodes, where each branch corresponds
to a distinct model, and several branches merge at a common node. To refine the decision-
making process, an enhanced hybrid trapezoidal neutrosophic-based approach, referred to

http://db.cosmos-eq.org/
http://db.cosmos-eq.org/
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Table 4
Ground motion attenuation equation used in the study.

Authors Applicable
magnitude

Applicable
distance

Standard form of equation Coefficient for
zero period

GMPE -1 Atkinson
and Boore
(2003)

4.5–8 1–1000 Log Y = C1 + C2M +
C3h + C4R − g Log R

C1 = −0.0471
C2 = 0.6909

g = 10(0.301−0.01M) log(R) C3 = −0.0113
C4 = −0.00202

GMPE-2 Raghu
Kanth and
Iyengar
(2007)

4–8 1–300 ln Y = C1 +C2(M − 6)+
C3(M −6)2 − ln R −C4R

C1 = 1.6858
C2 = 0.9241
C3 = −0.0760
C4 = −0.0057

GMPE-3 Nath et al.
(2012)

4.6–8.1 ⩽100 ln Y =
C1 +C2 +C3(10−M)3 +
C4+ln(rrup +exp(C6M))

C1 = 9.143
C2 = 0.2470
C3 = −0.0140
C4 = −2.67
C5 = 32.9458
C6 = 0.0663

GMPE-4 Singh et al.
(2016)

4–8.5 1–300 ln Y = C1 +C2(M − 6)+
C3(M −6)2 − ln R −C4R

C1 = 2.082
C2 = 0.8569
C3 = −0.0472
C4 = −0.0091

GMPE-5 Bajaj and
Anbazhagan
(2019)

4.0–9.0 1–750 ln Y = a1 + a2(M − 6) +
a3(9 − M)2 − a4 ln R −
am ln R(M − 6) + a7R

a1 = 1.071
a2 = −0.257
a3 = −0.184
a4 = −0.479
am = 0.078
a7 = −0.0085

as the Integrated TrF-FUCOM- Neutrosophic-TOPSIS method, is applied. This technique
assigns weightage to each model branch based on its associated uncertainties, ensuring a
more robust and objective evaluation. The incorporation of this advanced methodology
aids in addressing the uncertainties linked to seismic hazard assessments. Further details
regarding the GMPE equations utilized in this study are provided in Table 4. Figure 6
depicts the decision hierarchy in this case.

4.2. Application of MCDM

The objective of this study is to develop an improved Seismic Hazard Assessment of
Northeast India framework by integrating a fuzzy MCDM technique. From the case study
it is clear that in the present study consider six sites, namely Bengal Basin, Indo-Burma,
Shillong Plateau, Eastern Himalaya, Mishmi Thrust and Naga Thrust. The behaviour con-
sidering criteria and alternatives are changed as per Seismotectonic setting. So, in the
present study developed 12 models to determine the score value of alternatives. In this
study {Site condition(ξ1), Tectonic setting(ξ2), Magnitude scaling(ξ3), Distance Atten-
uation(ξ4)} consider as a set of criteria and {GMPE − 4(u1), GMPE − 3(u3), GMPE −
4(u1), GMPE − 1(u4), GMPE − 5(u5)} is consider as a set of alternative.

Model-I: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Bengal Basin using
TrF-FUCOM.
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Fig. 6. Decision Hierarchy.

Model-II: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Indo-Burma using
TrF-FUCOM.

Model-III: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Shillong Plateau using
TrF-FUCOM.

Model-IV: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Eastern Himalaya
using TrF-FUCOM.

Model-V: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Mishmi Thrust using
TrF-FUCOM.

Model-VI: Determine the weights of {ξ1, ξ2, ξ3, ξ4} for the location Naga Thrust using
TrF-FUCOM.

Model-VII: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Bengal
Basin using Model I and Neutrosophic-TOPSIS.

Model-VIII: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Indo-
Burma using Model II and Neutrosophic-TOPSIS.

Model-IX: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Shillong
Plateau using Model III and Neutrosophic-TOPSIS.

Model-X: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Eastern
Himalaya using Model IV and Neutrosophic-TOPSIS.

Model-XI: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Mishmi
Thrust using Model V and Neutrosophic-TOPSIS.

Model-XII: Determine the score value of {u1, u2, u3, u4, u5, u6} for the location Naga
Thrust using Model VI and Neutrosophic-TOPSIS.
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Table 5
TrF transformations of evaluations.

Criteria u2 u1 u3 u4

Important fuzzy measures of trapezoidal shape (1, 1, 1, 1) (1, 1.5, 2.5, 3) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4)

4.2.1. Evaluation Process of Criteria Weights
Model III is used to determine the criteria weights for Shillong Plateau.

The initial stage involves establishing the sequence of criteria. Then assign the TrF
transformations of evaluations for ordering criteria with the help of Table 1 shown in
Table 5.

u2 	 u1 ≈ u3 	 u4

χ̃u2/u1 = ỹu2/ỹu1 = (1, 1.5, 2.5, 3)/(1, 1, 1, 1) = (1, 1.5, 2.5, 3)

χ̃u1/u3 = ỹu1/ỹu3 = (1, 1.5, 2.5, 3)/(1, 1.5, 2.5, 3) = (0.33, 0.6, 1.67, 3)

χ̃u3/u4 = ỹu3/ỹu4 = (2, 2.5, 3.5, 4)/(1, 1.5, 2.5, 3) = (0.67, 1, 2.33, 4)

Hence, the definition of a vector representing comparative significance is as follows: χ̃ =
((1, 1.5, 2.5, 3), (0.33, 0.6, 1.67, 3), (0.67, 1, 2.33, 4))

The constraints arising from the transitivity requirement of the relation are as follows:

ỹu2/ỹu3 = (1, 1.5, 2.5, 3) ⊗ (0.33, 0.6, 1.67, 3) = (0.33, 0.9, 4.17, 9),

ỹu1/ỹu4 = (0.33, 0.6, 1.67, 3) ⊗ (0.67, 1, 2.33, 4) = (0.22, 0.6, 3.89, 12).

Model (14) was developed to ascertain the optimal values of weight coefficients for the
dimensions, incorporating the defined constraints.

Min η

s.t.

|yt1
2 − y

t4
1 | ⩽ η, |yt1

1 − 0.33y
t4
3 | ⩽ η, |yt1

3 − 0.67y
t4
4 | ⩽ η,

|yt1
2 − 0.33y

t4
3 | ⩽ η, |yt1

1 − 0.22y
t4
4 | ⩽ η,

|yt2
2 − 1.5y

t3
1 | ⩽ η, |yt2

1 − 0.6y
t3
3 | ⩽ η, |yt2

3 − y
t3
4 | ⩽ η,

|yt2 − 0.9y
t3
3 | ⩽ η, |yt2

1 − 0.6y
t3
4 | ⩽ η,

|yt3
2 − 2.5y

t2
1 | ⩽ η, |yt3

1 − 1.67y
t2
3 | ⩽ η,

|yt3
3 − 2.33y

t2
4 | ⩽ η, |yt3

2 − 4.17y
t2
3 | ⩽ η, |yt3

1 − 3.89y
t2
4 | ⩽ η,

|yt4
2 − 3y

t1
1 | ⩽ η, |yt4

1 − 3y
t1
3 | ⩽ η, |yt4

3 − 4y
t1
4 | ⩽ η, |yt4

2 − 9y
t1
3 | ⩽ η,

|yt4
1 − 12y

t1
4 | ⩽ η,

∑4
i=1

( y
t1
i +2y

t2
i +2y

t3
i +y

t4
i

6

) = 1,

0 ⩽ y
t1
i ⩽ y

t2
i ⩽ y

t3
i ⩽ y

t4
i , for all i = 1(1)4,

η ⩾ 0.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)
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Table 6
Weights of criteria.

t1 t2 t3 t4 Weights
(defuzzified value)

η 0.116 0.116 0.116 0.116 0.116
ξ1 0.184 0.199 0.199 0.298 0.213
ξ2 0.182 0.182 0.613 0.667 0.407
ξ3 0.087 0.175 0.254 0.254 0.200
ξ4 0.035 0.081 0.291 0.305 0.180

Table 7
Weights of criteria of for different seismotectonic region.

Model
(location)

Measure-
ment

Site
condition
(ξ1)

Tectonic
setting
(ξ2)

Magnitude
scaling
(ξ3)

Distance
attenuation
(ξ4)

η (Objective
function value)

Model-I
(Bengal
Basin)

Fuzzy
measures

(1, 1, 1, 1) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4) (0.068, 0.068, 0.068, 0.068)

Weights 0.331 0.331 0.180 0.158 0.068
Rank 1 1 2 3

Model-II
(Indo-
Burma)

Fuzzy
measures

(2, 2.5, 3.5, 4) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (0.068, 0.068, 0.068, 0.068)

Weights 0.158 0.331 0.331 0.180 0.068
Rank 3 1 1 2

Model-III
(Shillong
Plateau)

Fuzzy
measures

(1, 1.5, 2.5, 3) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4) (0.116, 0.116, 0.116, 0.116)

Weights 0.213 0.407 0.200 0.180 0.116
Rank 2 1 2 3

Model-IV
(Eastern
Himalaya)

Fuzzy
measures

(2, 2.5, 3.5, 4) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (0.068, 0.068, 0.068, 0.068)

Weights 0.158 0.331 0.331 0.180 0.068
Rank 3 1 1 2

Model-V
(Mishmi
Thrust)

Fuzzy
measures

(2, 2.5, 3.5, 4) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (0.068, 0.068, 0.068, 0.068)

Weights 0.158 0.331 0.331 0.180 0.068
Rank 3 1 1 2

Model-VI
(Naga
Thrust)

Fuzzy
measures

(2, 2.5, 3.5, 4) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1.5, 2.5, 3) (0.068, 0.068, 0.068, 0.068)

Weights 0.158 0.331 0.331 0.180 0.068
Rank 3 1 1 2

Eq. (14) introduces a fuzzy linear model, which can be resolved to ascertain the optimal
values of the criteria.

The fuzzy linear model, as outlined in Eq. (14), functions as a tool for identifying
optimal criteria values. Through the utilization of the Excel solver for linear programming,
this model (14) calculates weight coefficients for the criteria. The weights for TrF criteria
are illustrated in Table 6. The defuzzified value of the criteria is determined using Eq. (8),
as depicted in the last column of Table 6.

In the similar process in this study evaluate the weights of criteria for different location
shown in Table 7.
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4.2.2. Evaluation of Score Value of Alternative
Model-IX is used the score value of the considering alternative (GMPE). The decision
maker utilizes SVNNs to assess alternatives based on their attributes, leading to the con-
struction of the decision matrix-1.

Matrix-1: Decision Matrix

Ω =

⎡
⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 (0.8, 0.05, 0.05) (0.85, 0.05, 0.03) (0.75, 0.05, 0.03) (0.72, 0.07, 0.05)

u2 (0.7, 0.2, 0.1) (0.7, 0.1, 0.05) (0.68, 0.15, 0.05) (0.65, 0.1, 0.1)

u3 (0.88, 0.07, 0.05) (0.95, 0.03, 0.02) (0.92, 0.05, 0.03) (0.9, 0.05, 0.05)

u4 (0.65, 0.2, 0.1) (0.72, 0.1, 0.05) (0.65, 0.15, 0.05) (0.6, 0.1, 0.1)

u5 (0.88, 0.07, 0.05) (0.95, 0.03, 0.02) (0.92, 0.05, 0.03) (0.9, 0.05, 0.05)

⎤
⎥⎥⎥⎥⎦
.

Matrix Ω is translated by translating the entries of each entry. For each entry in ma-
trix Ω, add 0.01 to all the components, represented in Matrix-2.

Matrix-2: Translation of Ω

⎡
⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 (0.81, 0.06, 0.06) (0.86, 0.06, 0.04) (0.76, 0.06, 0.04) (0.73, 0.08, 0.06)

u2 (0.71, 0.21, 0.11) (0.71, 0.11, 0.06) (0.69, 0.16, 0.06) (0.66, 0.11, 0.11)

u3 (0.89, 0.08, 0.06) (0.96, 0.04, 0.03) (0.93, 0.06, 0.04) (0.91, 0.06, 0.06)

u4 (0.66, 0.21, 0.11) (0.73, 0.11, 0.06) (0.66, 0.16, 0.06) (0.61, 0.11, 0.11)

u5 (0.89, 0.08, 0.06) (0.96, 0.04, 0.03) (0.93, 0.06, 0.04) (0.91, 0.06, 0.06)

⎤
⎥⎥⎥⎥⎦
.

The next step is to determine the score matrix using the score function. Matrix-3 rep-
resents the score matrix denoted by Ω∗. The score value of

S1(0.81, 0.06, 0.06) = 0.81 × 0.81 + 0.06 × (−0.06) + 0.06 × (−0.06)√
0.812 + 0.062 + 0.062

√
0.812 + (−0.06)2 + (−0.06)2

= 0.978290366.

Matrix-3: Score Matrix

Ω∗ =

⎡
⎢⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 0.978 0.986 0.982 0.963
u2 0.799 0.940 0.884 0.895
u3 0.975 0.995 0.988 0.983
u4 0.771 0.943 0.874 0.878
u5 0.975 0.995 0.988 0.983

⎤
⎥⎥⎥⎥⎥⎦

.

Determine the Normalized Decision Matrix using Eq. (8) on matrix Ω∗. As shown in
matrix-4, the Normalized Decision Matrix decision matrix is denoted by T .

t11 = 0.978√
0.9782 + 0.7992 + 0.9752 + 0.7712 + 0.9752

= 0.484.
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Matrix-4: Decision Matrix with Normalization

T =

⎡
⎢⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 0.484 0.454 0.465 0.458
u2 0.395 0.432 0.419 0.425
u3 0.482 0.458 0.468 0.467
u4 0.381 0.434 0.414 0.417
u5 0.482 0.458 0.468 0.467

⎤
⎥⎥⎥⎥⎥⎦

.

Determine the weighted normalized decision matrix after determining the weights of the
criteria. Multiply each criteria weight with the element of the corresponding row of ma-
trix T to form the matrix. The weighted normalized decision matrix is denoted by matrix θ

and is represented by the matrix-5.

Matrix-5: Weighted Normalized Decision Matrix

θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 0.484 × 0.213 0.454 × 0.407 0.465 × 0.200 0.458 × 0.180

u2 0.395 × 0.213 0.432 × 0.407 0.419 × 0.200 0.425 × 0.180

u3 0.482 × 0.213 0.458 × 0.407 0.468 × 0.200 0.467 × 0.180

u4 0.381 × 0.213 0.434 × 0.407 0.414 × 0.200 0.417 × 0.180

u5 0.482 × 0.213 0.458 × 0.407 0.468 × 0.200 0.467 × 0.180

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 ξ2 ξ3 ξ4

u1 0.103 0.185 0.093 0.083

u2 0.084 0.176 0.084 0.077

u3 0.103 0.186 0.093 0.084

u4 0.081 0.176 0.083 0.075

u5 0.103 0.186 0.093 0.084

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, determine NPIS and NNIS using λ+
r = maxr λir , r = 1(1)5 and λ−

r = minr λir ,
r = 1(1)5 respectively.

λ+
1 = max{0.103, 0.084, 0.103, 0.081, 0.103} = 0.103,

λ−
1 = min{0.103, 0.084, 0.103, 0.081, 0.103} = 0.081.

So,

∂+ = {λ+
1 , λ+

2 , λ+
3 , λ+

4 } = {0.103, 0.186, 0.093, 0.084},
∂− = {

λ−
1 , λ−

2 , λ−
3 , λ−

4

} = {0.081, 0.176, 0.083, 0.075}.

Next, compute the distance between each alternative between NPIS and NNIS using
the formulas (9) and (10). Table 8 illustrates the distance between each alternative between
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Table 8
NPIS and NNIS distances from each alternative.

Value Value

ρ+
1 0.0024 ρ−

1 0.0266
ρ+

2 0.0248 ρ−
2 0.0034

ρ+
3 0.0003 ρ−

3 0.0276
ρ+

4 0.0276 ρ−
4 0.0006

ρ+
5 0.0003 ρ−

5 0.0276

NPIS and NNIS.

ρ+
1 =

√
(λ11 − λ+

1 )2 + (λ12 − λ+
2 )2 + (λ13 − λ+

3 )2 + (λ14 − λ+
4 )2

= √
(0.103 − 0.103)2 + (0.185 − 0.186)2 + (0.093 − 0.093)2 + (0.083 − 0.084)2

= 0.0024,

ρ−
1 =

√
(λ11 − λ−

1 )2 + (λ12 − λ−
2 )2 + (λ13 − λ−

3 )2 + (λ14 − λ−
4 )2

= √
(0.103 − 0.081)2 + (0.185 − 0.176)2 + (0.093 − 0.083)2 + (0.083 − 0.075)2

= 0.0266.

Calculate the performance score for each alternative using the formula (11). Table 9
displays the performance scores for each alternative in Model IX. Organize the alternatives
in ascending order based on their performance scores and assign ranks accordingly.

δ1 = ρ−
1 /(ρ+

1 + ρ−
2 ) = 0.0266/(0.0266 + 0.0024) = 0.918.

Similar procedure of Model-IX in this present study calculates the score value of alter-
natives of different locations. Table 9 represent the results of Model-VII, VIII, IX, X, XI,
XII. In this present study normalized performance scores are consider as weights of alter-
natives.

4.3. Computation of Final PGA

A grid of 0.1-degree x 0.1 degree (11.1 km x 11.1 km) was established to encompass
the entire area of Tripura state. Relevant tectonic features that could generate significant
ground motions in the vicinity were identified, as shown on the seismotectonic map (see
Fig. 2a, b). The maximum earthquake magnitude for each seismic source was determined
(refer to Table 4). Distances from each grid point to the corresponding seismic sources
were calculated using ArcGIS 10.0 software (ESRI 2011). Ground motion prediction
equations (attenuation models) (Table 9) were chosen based on the region’s tectonic char-
acteristics and geology, utilizing magnitudes from the previous step and distances from
the calculated data as inputs to estimate ground motion parameters. The magnitudes deter-
mined in Table 4 and the distances calculated from ArcGIS 10.0 software serve as inputs
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Table 9
Weights to various GMPEs for PGA computation across different seismotectonic regions (alternative level).

GMPE Site Tectonic Magnitude Distance Normalised
performance
scores

Rank

Model-VII (Bengal Basin)
GMPE-1 0.7 0.2 0.1 0.7 0.15 0.1 0.75 0.2 0.05 0.7 0.2 0.1 0.067 5
GMPE-2 0.8 0.1 0.1 0.75 0.15 0.1 0.85 0.1 0.05 0.85 0.1 0.05 0.198 3
GMPE-3 0.95 0.05 0.05 0.85 0.08 0.07 0.95 0.03 0.02 0.9 0.05 0.05 0.310 2
GMPE-4 0.75 0.15 0.1 0.7 0.2 0.1 0.8 0.15 0.05 0.75 0.15 0.1 0.098 4
GMPE-5 0.9 0.05 0.05 0.9 0.05 0.05 0.92 0.05 0.03 0.88 0.07 0.05 0.328 1

Model-VIII (Indo Burma Region)
GMPE-1 0.88 0.07 0.05 0.95 0.03 0.02 0.92 0.05 0.03 0.9 0.05 0.05 0.310 1
GMPE-2 0.7 0.2 0.1 0.8 0.1 0.05 0.8 0.15 0.05 0.75 0.1 0.1 0.035 5
GMPE-3 0.8 0.1 0.1 0.9 0.05 0.05 0.85 0.1 0.05 0.9 0.05 0.1 0.218 3
GMPE-4 0.75 0.15 0.1 0.85 0.1 0.05 0.85 0.1 0.05 0.8 0.15 0.1 0.132 4
GMPE-5 0.85 0.1 0.05 0.95 0.03 0.02 0.95 0.03 0.02 0.9 0.05 0.05 0.306 2

Model-IX (Shillong Plateau)
GMPE-1 0.8 0.1 0.1 0.85 0.15 0.05 0.8 0.1 0.1 0.8 0.1 0.1 0.007 4
GMPE-2 0.8 0.15 0.05 0.85 0.1 0.05 0.8 0.15 0.05 0.8 0.1 0.1 0.040 3
GMPE-3 0.9 0.05 0.05 0.95 0.03 0.02 0.9 0.05 0.05 0.9 0.05 0.05 0.325 1
GMPE-4 0.9 0.05 0.05 0.92 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.302 2
GMPE-5 0.85 0.1 0.05 0.9 0.05 0.05 0.85 0.1 0.05 0.85 0.1 0.05 0.325 1

Model-X (Eastern Himalaya)
GMPE-1 0.7 0.2 0.1 0.85 0.1 0.05 0.85 0.1 0.05 0.8 0.1 0.05 0.022 4
GMPE-2 0.7 0.1 0.1 0.8 0.1 0.05 0.8 0.1 0.05 0.75 0.1 0.05 0.140 3
GMPE-3 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2
GMPE-4 0.85 0.05 0.03 0.95 0.03 0.02 0.95 0.03 0.02 0.9 0.1 0.05 0.304 1
GMPE-5 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2

Model- XI (Mishmi Thrust)
GMPE-1 0.7 0.2 0.1 0.85 0.1 0.05 0.85 0.1 0.05 0.8 0.1 0.05 0.022 4
GMPE-2 0.7 0.1 0.1 0.8 0.1 0.05 0.8 0.1 0.05 0.75 0.1 0.05 0.140 3
GMPE-3 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2
GMPE-4 0.85 0.05 0.03 0.95 0.03 0.02 0.95 0.03 0.02 0.9 0.1 0.05 0.304 1
GMPE-5 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2

Model-XII (Naga Thrust)
GMPE-1 0.7 0.2 0.1 0.85 0.1 0.05 0.85 0.1 0.05 0.8 0.1 0.05 0.022 4
GMPE-2 0.7 0.1 0.1 0.8 0.1 0.05 0.8 0.1 0.05 0.75 0.1 0.05 0.140 3
GMPE-3 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2
GMPE-4 0.85 0.05 0.03 0.95 0.03 0.02 0.95 0.03 0.02 0.9 0.1 0.05 0.304 1
GMPE-5 0.8 0.1 0.05 0.9 0.05 0.03 0.9 0.05 0.03 0.88 0.07 0.05 0.267 2

for these equations. Subsequently, the computed weightage (Table 9) for each GMPE
model was applied to calculate the PGA for all sources using formula 1. The calculated
PGA values for all the faults and lines in each scenario are gathered, and the seismic
hazard is identified as the maximum ground motion value across all sources. The source
responsible for the highest ground motion is designated as the controlling source. PGA has
been computed at the centre of each grid points (grid size 0.1◦ × 0.1◦). A spatial DSHA
map is generated for the entire Northeast India which shows the vulnerable regions in the
Northeast.
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Fig. 7. PGA map of Northeast India.

5. Discussion of the Study

The results from Fig. 7, Fig. 8 and Fig. 9 provide a comprehensive understanding of the
seismic hazard and tectonic behaviour of Northeast India, a region characterized by com-
plex interactions between the Indian, Eurasian, and Burma Plates. Figure 7 represents
PGA map of Northeast India with color-coded PGA ranges: (Dark Red: 0.000–0.180 g),
(Reddish-Pink: 0.180–0.240 g), (Orange-Red: 0.240–0.360 g), (Orange: 0.360–0.540 g),
(Yellow: 0.540–0.720 g), (Light Yellow: 0.720–1.000 g), (Light Blue: 1.000–1.435 g),
(Dark Blue: >1.435 g). This figure highlights high PGA zones in the Mishmi Thrust (MT),
with values up to 1.436 g, reflecting intense seismic activity due to thrust faulting. The
Shillong Plateau (SP), influenced by the Oldham and Dauki Faults, exhibits elevated PGA
values up to 0.96 g in Assam, consistent with its history of major earthquakes like the
1897 Great Assam Earthquake. Figure 8 illustrates the spatial distribution of dominant
seismic sources across Northeast India, with fault colour codes as follows: Mishmi Thrust
(Dark Purple), Lohit (Dark Blue), F2 (Blue), Kopili (Light Blue), A3 (Cyan), D&N Thrust
(Light Green), A1 (Yellow-Green), MBT&MCT (Yellow), BSZ (Light Orange), Samim
(Orange), Oldham (Reddish Orange), Dauki (Red), Sylhet (Dark Red), CMF (Deep Red),
Kaladan (Darker Red), TFB (Brownish Red), and CCF (Dark Brown). The analysis reveals
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Fig. 8. Spatial map of controlling source across northeast India.

Fig. 9. Box plot of PGA from controlling source.

that MBT and MCT serve as the primary controlling sources in most parts of the Eastern
Himalayan region, whereas the Lohit Fault dominates the Naga Trust Region, generating
the highest recorded PGA of up to 1.43 g. The box plot (Fig. 9) illustrates the maximum
PGA distribution across various faults, with the Lohit Fault exhibiting the highest ob-



TrF-FUCOM-Neutrosophic-TOPSIS Strategy under SVNS Environment Approach 31

Fig. 10. Variation of PGA across all district headquarters of Tripura considering all seismic sources for their
respective maximum earthquake magnitudes.

served PGA (∼1.43 g) and the Kopili Fault showing the lowest observed PGA. As we
move to Bengal basin, it is clearly evident that CCF Fault, TFB Fault and Kaladan Fault
are the controlling sources around this region which produce PGA up to 0.69 g in this
region. So, a detailed discussion is required to understand the variations of PGA and their
controlling source in the seven sister Northeastern States of India.

5.1. PGA across all district headquarters of Tripura

The DSHA (Deterministic Seismic Hazard Assessment) map for Northeast India, pre-
sented in Fig. 7, indicates a variation in Peak Ground Acceleration (PGA) values ranging
from 0.21 g to 0.69 g. These values are considerably higher than the 0.36 g PGA specified
in IS 1893-Part 1 (2002). This higher PGA scenario assumes that all local faults and lin-
eaments are under critical stress, making them capable of triggering earthquakes. The IS
1893-Part 1 (2002) zonation map, based on historical earthquake data, is periodically re-
vised to account for new seismic activity. Figure 10 illustrates the variation in PGA across
eight district headquarters in Tripura, considering all seismic sources. Notably, Belonia,
the headquarters of South Tripura District, exhibits the highest PGA value among the dis-
tricts. The greatest PGA in the state is found in the southwestern region of Tripura, near
the coordinates 91.4°E and 23.4°N, close to Belonia Subdivision. This area lies approx-
imately 17 km from the Muhuri River, where the PGA ranges between 0.5 g and 0.65 g,
indicating a high seismic risk zone. This heightened risk is attributed to the Chittagong
Coastal Fault (CCF), which produced a significant earthquake with a magnitude of 6.9 in
1762. In 2009, three earthquakes greater than magnitude 5 (Mw > 5) were recorded in the
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CCF region, further indicating a substantial earthquake risk. Belonia, with its alluvial soil
deposits and classification as Site Class D according to the NEHRP guidelines, faces an
increased vulnerability to soil liquefaction. As we move inward towards the central part
of Tripura, PGA values on bedrock are observed to range from 0.3 g to 0.37 g, largely due
to the proximity of the Sylhet Fault in Bangladesh, which has been seismically active in
the past five years. Moving northward towards the Mizoram-Tripura border, the influence
of the Kaladan Fault and the Tripura Frontal Fold becomes more prominent, with PGA
values reaching up to 0.37 g. This further highlights the varying seismic risk levels across
different parts of Tripura.

5.2. PGA Across All District Headquarters of Mizoram

Mizoram, located in the northeastern part of India, comprises 11 districts, including
Aizawl, Champhai, and Lunglei, among others. The state is characterized by its hilly ter-
rain, with the Lushai Hills running through the central region, and dense forests that define
much of its landscape. The state’s geography is dominated by steep slopes and valleys,
drained by numerous rivers such as the Tlawng, Chhimtuipui, and Kaladan. Seismotec-
tonically, Mizoram lies within the eastern Himalayan seismic belt, influenced by active
fault zones, including the Kaladan Fault, which runs north-south along the India-Burma
plate boundary. The interaction of the Indian and Burma plates, along with various local
fault systems, makes Mizoram a seismically active region, with varying earthquake risks
across its districts.

The seismic hazard analysis of districts in Mizoram, particularly in relation to the
Kaladan Fault, reveals distinct variations in Peak Ground Acceleration (PGA) values
across the region, influenced by both fault characteristics and seismotectonic position-
ing. The Kaladan Fault, a major N-S trending dextral strike-slip fault system, is associated
with moderate earthquakes (maximum magnitude of 7.1) and plays a significant role in
the seismic activity of the region. Sites located closer to the fault, such as Aizawl, Serch-
hip, and Lunglei, show relatively higher PGA values, ranging from 0.412 to 0.415, due
to their proximity to the Kaladan fault zone, which is a major tectonic feature in the re-
gion (Fig. 11). These locations experience a heightened risk of ground shaking due to the
fault’s active strike-slip nature, leading to potential earthquakes along the plate bound-
ary between the Indian and Burma plates. As the distance from the fault increases, such
as in Mamit and Saitual, the PGA values gradually decrease, with Mamit showing the
lowest PGA of 0.210. This drop is justified by the increasing epicentral and hypocentral
distances, which reduce the intensity of seismic waves. Additionally, the spatial distribu-
tion of PGA results is influenced by the varying geological features of the region. For
instance, Champhai, located at a greater distance from the Kaladan Fault, records a PGA
of 0.295, reflecting its location within a more stable area of the region, though still within
the influence of the fault system. The analysis demonstrates that the closer a district is to
the Kaladan Fault, the higher the PGA, which correlates with the fault’s active seismic
behaviour and its interaction with regional tectonics. Therefore, the seismic hazard in Mi-
zoram’s districts, as indicated by PGA values, is strongly influenced by proximity to the
Kaladan fault, making it a critical factor in seismic risk assessment for the region.
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Fig. 11. Variation of PGA across all district headquarters of Mizoram considering all seismic sources for their
respective maximum earthquake magnitudes.

5.3. PGA Across all District Headquarters of Assam

Assam, located in northeastern India, consists of 33 districts, each with varying geograph-
ical and seismotectonic characteristics. The state is bordered by Bhutan, Bangladesh, and
several other northeastern states, with its terrain comprising valleys, hills, and plains. The
Brahmaputra River, one of the largest rivers in India, flows through Assam, defining much
of its landscape. Seismically, Assam is part of the eastern Himalayan seismic belt, influ-
enced by several active fault zones, such as the Oldham, Samin, Sylhet, and D&N Thrust
faults. These tectonic features, particularly the subduction of the Indian plate beneath the
Eurasian plate, make the region susceptible to moderate to strong earthquakes. Assam’s
geography, combined with its position near major seismic zones, contributes to the varied
seismic hazard across its districts. The seismic hazard analysis of the region, based on
Peak Ground Acceleration (PGA) values, offers critical insights into the varying levels
of seismic risk across different districts, reflecting the influence of fault proximity, seis-
motectonic positioning, and fault characteristics. The PGA is a key indicator of ground
shaking intensity, and this analysis highlights the role of active fault systems in determin-
ing the seismic vulnerability of each district. Figure 12 shows PGA values for all districts
for all 18 faults for the Assam Region.

Guwahati, situated near the Oldham fault, exhibits the highest PGA value of 0.9387.
The Oldham fault, one of the most active faults in the region, has a significant role in
shaping the seismic hazard in Guwahati. With a maximum earthquake magnitude of 8.6
and a depth of 31 km, the fault generates substantial seismic energy, resulting in strong
ground shaking in the surrounding areas. The district’s proximity to this fault, combined
with its depth, contributes to the high PGA, indicating a higher level of seismic risk. The
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Fig. 12. Variation of PGA across all district headquarters of Assam considering all seismic sources for their
respective maximum earthquake magnitudes.

Oldham fault is known for its historical and ongoing seismic activity, which underlines
the need for heightened preparedness and mitigation measures in Guwahati.

In contrast, Bongaigaon (PGA = 0.5741) lies at a greater distance from the Oldham
fault, which explains its lower PGA value. Although still influenced by the fault’s seis-
mic activity, Bongaigaon experiences a reduced intensity of ground shaking due to the
increased epicentral distance of 35.30 km and hypocentral distance of 46.98 km from the
fault. The seismic energy dissipates with distance, leading to a comparatively lower PGA
in this district. Despite this, the district is still susceptible to moderate shaking, particularly
in the event of a major earthquake along the Oldham fault.

Rangia (PGA = 0.5321) also experiences a notable seismic hazard, though slightly
less intense than Bongaigaon. The district’s proximity to the Oldham fault plays a key
role, but its PGA value reflects the interaction between fault distance, depth, and earth-
quake magnitude. The Oldham fault’s influence remains significant but weaker compared
to Guwahati due to the increased distance from the fault.

Karimganj (PGA = 0.3859), located near the Sylhet fault, exhibits a lower PGA. The
Sylhet fault, with a maximum earthquake magnitude of 8.1 and a depth of 28 km, is a less
active seismic source compared to the Oldham fault. The fault generates smaller earth-
quakes and is located farther from Karimganj. These factors contribute to the reduced
seismic hazard in this district, reflected in the relatively low PGA. However, the region
is still vulnerable to moderate shaking, especially if a major earthquake occurs along the
Sylhet fault.

Goalpara (PGA = 0.5505) also lies near the Samin fault, which has a similar seismic
characteristic to the Sylhet fault. The Samin fault, with a magnitude of 8.1 and a depth
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of 26 km, is associated with moderate seismic activity. The proximity of Goalpara to this
fault results in a slightly higher PGA compared to Karimganj, as the district is situated
closer to the fault. Despite this, the PGA remains lower than in areas near the Oldham
fault, reflecting the fault’s lower seismic intensity.

Haflong (PGA = 0.3457), situated near the D&N Thrust fault, experiences lower PGA
values, indicating reduced seismic hazard. The D&N Thrust fault, with a magnitude of 6.7
and a depth of 30 km, produces earthquakes of moderate size, contributing to less intense
ground shaking. The district’s distance from the fault and the fault’s moderate seismic
activity result in a PGA lower than in areas closer to more active faults like the Oldham
fault.

Morigaon (PGA = 0.3355) similarly experiences a relatively low PGA due to its lo-
cation farther from major fault systems like the Oldham and Samin faults. Although the
district is influenced by regional seismicity, the absence of nearby active faults leads to
lower seismic intensity and a reduced PGA. The depth of 31 km and the maximum earth-
quake magnitude of 8.6 for the Oldham fault have minimal effect on this district’s seismic
hazard, as it lies outside the most affected zone.

Mushalpur (PGA = 0.2929) exhibits one of the lowest PGAs, which can be attributed
to its distance from major fault lines. The district is situated in a region with relatively low
seismic activity, and the absence of nearby significant fault sources results in a reduced
seismic hazard. The PGA value reflects this lower risk, though it still experiences minor
shaking during larger seismic events from distant fault systems.

Diphu (PGA = 0.2657) also exhibits low seismic hazard due to its position relative
to the D&N Thrust fault, which is farther from the district. The fault generates moderate
earthquakes, but the resulting ground shaking is less intense in Diphu due to the district’s
location and the fault’s seismic characteristics.

Sankardev Nagar (PGA = 0.2030) and Nagaon (PGA = 0.2023) show similarly low
PGAs. Both districts lie outside the influence of major fault systems like the Oldham and
Samin faults and are located in regions of low seismic activity. The low PGAs in these
districts reflect minimal seismic risk, though they are still susceptible to distant earthquake
shaking.

Udalguri (PGA = 0.2002) and Biswanath Chariali (PGA = 0.1847) experience among
the lowest PGAs in the region. These districts are situated far from major fault lines,
with minimal seismic activity influencing their ground shaking. The relatively low PGAs
in these areas suggest a lower seismic hazard, with shaking likely coming from distant
sources.

In conclusion, the seismic hazard in this region is primarily influenced by the proximity
to active fault systems like the Oldham, Sylhet, Samin, and D&N Thrust faults, which gen-
erate varying levels of seismic activity. Districts closer to these faults, such as Guwahati
and Bongaigaon, experience higher PGAs, indicating a higher seismic risk. On the other
hand, districts located farther from active fault zones, like Udalguri and Biswanath Char-
iali, exhibit lower PGAs and are less vulnerable to strong ground shaking. The analysis
emphasizes the need for targeted earthquake mitigation strategies, particularly in districts
with high PGAs due to their proximity to major active faults.
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Fig. 13. Variation of PGA across all district headquarters of Meghalaya considering all seismic sources for their
respective maximum earthquake magnitudes.

5.4. PGA Across All District Headquarters of Meghalaya

Meghalaya, located in Seismic Zone V of Northeast India, is one of the most seismically
active regions in the country, with several major active faults that significantly influence
its vulnerability to earthquakes. The region’s seismic hazard is primarily driven by the
Oldham, Dauki, and Samin faults, each contributing to the region’s earthquake potential
in distinct ways. The interaction of these faults with the geological features of the Shillong
Plateau and surrounding areas amplifies the seismic threat faced by the state.

The Oldham Fault, a reverse fault situated to the north of the Shillong Plateau, is a
major geological feature in the region. Extending over approximately 110 km, it dips at
57° north and is responsible for the devastating 1897 Assam earthquake (Mw 8.6). This
fault has been linked to a slip of 16 m during the earthquake, and studies have shown
that the seismic moment generated by this fault during the event was 2.18 × 1021 Nm,
consistent with values obtained from empirical models. Figure 13 shows the PGA values
for entire Meghalaya region along with the variations of PGA in District level. The fault
marks the northern boundary of the Shillong Plateau and influences several key regions,
including Williamnagar, Nongpoh, Ampati, Shillong, Baghmara, Mawkyrwat, Jowai, and
Nongstoin. These regions exhibit varying levels of Peak Ground Acceleration (PGA), with
Williamnagar and Nongstoin experiencing moderate to high PGAs, indicating the poten-
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tial for significant ground shaking during an earthquake originating along the Oldham
Fault. The fault’s historical activity, especially the 1897 earthquake, underscores its ca-
pacity to generate high-magnitude seismic events, making areas in its vicinity particularly
vulnerable.

The Dauki Fault, another critical fault in the region, is a 320 km long system that
trends east-west and exhibits both reverse and right-lateral strike-slip motion. This fault
system runs through Meghalaya, from Brorghat in the west to Leike in Assam to the east,
and is composed of multiple fault segments that dip to the north. Studies suggest that the
eastern segment of the Dauki Fault, stretching from Brorghat to Leike Assam, forms a
single fault. This fault system represents a significant seismic threat, as it is associated
with high-stress zones between the Shillong Plateau and the Bengal Basin. Khliehriat,
located near the Dauki Fault, is at risk due to the potential for large earthquakes with
magnitudes greater than 7.5, which have historically occurred along similar thrust faults.
The seismic activity along the Dauki Fault poses a particular danger to the eastern parts of
Meghalaya, with the potential for destructive earthquakes that could affect nearby towns
and infrastructure.

The Samin Fault, though smaller than the Oldham and Dauki Faults, still plays an
important role in the seismic hazard of the region. This fault is approximately 4 km long
with a throw of 3 km and has a broader fracture zone of 11 km. Located near the village
Samin, it trends in an E30°S–W30°N direction. Although the Samin Fault is not as large as
the Oldham or Dauki Faults, its proximity to towns such as Tura and Resubelpara means
that it can still generate significant ground shaking. Recorded PGAs of 0.46494 g and
0.856 g in these areas suggest that moderate earthquakes originating from the Samin Fault
could lead to substantial ground motion. These areas, while not as vulnerable to large-
magnitude earthquakes as those near the Oldham and Dauki Faults, could still experience
considerable shaking, especially from smaller to medium-sized seismic events.

The combination of these active faults significantly enhances the seismic hazard faced
by Meghalaya. The proximity of these faults to populated areas, coupled with their histor-
ical and ongoing seismic activity, underscores the region’s vulnerability to earthquakes.
The Oldham Fault, in particular, poses the highest threat, given its association with the
1897 earthquake and its ongoing seismic activity. Regions such as Williamnagar, Shil-
long, and Nongstoin, which lie within its influence zone, are particularly at risk of strong
ground shaking. The Dauki Fault, with its potential for large-magnitude earthquakes, also
adds to the region’s seismic risk, particularly in the eastern parts of Meghalaya, including
Khliehriat. Meanwhile, the Samin Fault, though smaller, still poses a significant threat to
areas like Tura and Resubelpara, with its potential to generate moderate seismic events.

5.5. PGA Across All District Headquarters of Manipur

The seismic hazard analysis of Manipur reveals notable differences in the earthquake
risk across various districts in the region, driven largely by their proximity to the active
Churachandpur-Manipur Fault (CMF). The CMF, a dextral strike-slip fault located along
the boundary between the Indian and Sunda plates, accommodates a significant portion
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Fig. 14. Variation of PGA across all district headquarters of Manipur considering all seismic sources for their
respective maximum earthquake magnitudes.

of the relative plate motion (43%) between these two tectonic plates. The seismic hazard,
measured in terms of Peak Ground Acceleration (PGA), varies across the districts based
on several factors, including their distance from the fault zone, the fault’s characteristics,
and their seismotectonic position within the broader regional tectonic setting.

The CMF plays a dominant role in the seismic activity observed in Manipur. This
fault is not only a significant structural feature in the region but also an active one, con-
tributing to frequent seismic events due to the ongoing plate motion between the Indian
and Sunda plates. As highlighted by Kundu and Gahalaut (2013), a sharp change in the
earthquake magnitudes near the longitudes of 93°–95°E corresponds to the location of the
CMF, indicating its significant role in the region’s seismicity. This motion along the CMF
affects large parts of the Manipur region, with earthquake magnitudes as high as 7.9, and
is responsible for a substantial amount of ground shaking that impacts districts in close
proximity to the fault.

Figure 14 shows the PGA results for the various districts of Manipur, which indicate
a clear spatial gradient in seismic hazard, with districts closer to the CMF Fault experi-
encing higher levels of ground shaking. For instance, Porompat, situated near the fault,
exhibits the highest PGA value of 0.6958. This high level of ground motion is a direct re-
sult of its proximity to the CMF Fault, where fault slip and seismic wave propagation from
the earthquake source cause strong shaking. In comparison, Churachandpur, although also
near the fault, experiences a slightly lower PGA (0.6872), suggesting that while it is sim-
ilarly exposed to seismic hazard, the ground motion may be somewhat reduced due to
minor variations in fault rupture or local site conditions.
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As we move further from the fault, such as in Thoubal (PGA: 0.6737) and Bishnupur
(PGA: 0.6579), the PGA values begin to decrease, indicating a reduction in seismic haz-
ard. This decrease can be attributed to the attenuation of seismic waves as they travel
farther from the earthquake source. Similarly, Kakching (PGA: 0.6465) and Tahamzam
(PGA: 0.6426) experience slightly lower PGAs due to their greater distance from the fault.
This pattern suggests that the influence of the fault diminishes with increasing distance,
as seismic waves lose energy over larger distances.

Moving even farther from the fault, districts such as Chandel (PGA: 0.5838) and
Ukhrul (PGA: 0.5752), show a further reduction in PGA. The seismic hazard in these
districts is lower, reflecting their more distant location from the CMF. The decrease in
ground acceleration is particularly noticeable in these areas, where the seismic waves have
significantly attenuated. Similarly, Tengnoupal (PGA: 0.4877) and Noney (PGA: 0.4783),
located further from the fault, experience even lower PGAs, indicating a substantially re-
duced seismic risk.

The lowest PGA value is observed in Kamjong (PGA: 0.3830), which is located at
the farthest point from the CMF fault in this study. This very low value further highlights
the relationship between seismic hazard and distance from the fault. At this distance, the
seismic waves have weakened considerably, leading to minimal ground shaking.

The variations in PGA across Manipur can be explained by several factors, with the
most significant being the proximity to the CMF fault. Districts situated closer to the fault
experience stronger ground shaking due to their proximity to the earthquake source. This
is especially true for Porompat and Churachandpur, where the fault is located relatively
nearby. As distance from the fault increases, such as in Kamjong and Tengnoupal, seis-
mic waves lose energy, resulting in lower PGA values and, consequently, reduced seismic
hazard.

5.6. PGA Across All District Headquarters of Arunachal Pradesh

The seismic hazard analysis of Arunachal Pradesh reveals significant variation in earth-
quake risk across the districts, which is primarily influenced by the region’s seismotectonic
setting and proximity to active fault systems. This region, located at the junction of the
Himalayan Range, the Mishmi Hill Range, and the Naga Hill Range, is seismically ac-
tive, largely due to the presence of several major fault zones, including the Lohiti Thrust,
Mishmi Thrust, and other associated fault structures such as the Po-Chu and Bame Faults.
These fault systems, especially the Lohiti and Mishmi Thrusts, play a crucial role in ac-
commodating the tectonic stresses arising from the ongoing collision between the Indian
and Eurasian plates. This collision results in high-magnitude seismic events, including the
1950 Assam Earthquake, which occurred due to strike-slip motion along the Po-Chu Fault.
The region is characterized by a mixture of thrust and strike-slip faulting, contributing to
the complex seismic behaviour observed across the districts.

The seismicity in Arunachal Pradesh is closely linked to the movement along several
fault systems that define the region’s seismotectonic framework. The Lohiti Thrust, which
runs along the eastern parts of the state, plays a significant role in seismic activity. This
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Fig. 15. Variation of PGA across all district headquarters of Arunachal Pradesh considering all seismic sources
for their respective maximum earthquake magnitudes.

thrust extends over 200 km and marks a major tectonic boundary between different ge-
ological formations, including the Indo-Burmese mobile belt and the Mishmi formation.
The Mishmi Thrust, another key fault in the region, trends WNW–ESE and is particularly
important in the Nao Dihing Valley, where it connects with the Main Boundary Thrust
(MBT) of the Himalayas. Both these thrusts are associated with significant seismic activ-
ity, which is reflected in the ground motion observed across various districts of Arunachal
Pradesh. Additionally, the region’s proximity to the convergence of the Himalayan tec-
tonic plate boundary further contributes to the frequent occurrence of large and damaging
earthquakes.

The Peak Ground Acceleration (PGA) results for various districts in Arunachal
Pradesh show a clear pattern of seismic risk that correlates with their proximity to ac-
tive fault zones (Fig. 15). Districts closer to the Lohiti Thrust, such as Tezu and Namsai,
show the highest PGAs, reflecting their immediate proximity to the fault. Tezu, located
near the heart of the Lohiti Thrust, exhibits the highest PGA value of 1.423, indicating a
very high seismic hazard in the region. This can be attributed to the direct influence of
the fault, where tectonic stress is most concentrated and earthquake energy is released.
Namsai, situated nearby, experiences a slightly lower PGA of 1.093, still indicating a high
seismic risk but slightly reduced compared to Tezu. This decrease in PGA may be due to
slight variations in local fault geometry or a difference in the specific fault rupture char-
acteristics in the region.
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As we move further away from the Lohiti Thrust, the PGA values gradually decrease.
For example, Hawai and Roing, while still near active fault zones, exhibit lower PGA
values of 1.071 and 0.939, respectively. This reflects a reduction in seismic hazard as
the distance from the fault zone increases. These districts, though still in relatively close
proximity to the fault, are less directly impacted by fault movements compared to districts
like Tezu and Namsai. The decrease in PGA further supports the notion of seismic wave
attenuation with distance from the fault, where the ground shaking diminishes as seismic
waves propagate outward.

Districts such as Pasighat and Changlang, which are situated farther from the cen-
tral fault zone, show a further decrease in PGA values, with Pasighat recording 0.620
and Changlang at 0.484. This reduction can be explained by the increasing distance from
the Lohiti Thrust and the reduced intensity of seismic waves as they travel further from
the fault source. Although these areas are still within the broader seismic region, the di-
minished PGA values indicate that they are less exposed to the direct effects of seismic
activity. In contrast, districts farther west, such as Ziro, Bomdila, and Tawang, which are
located along the Main Boundary Thrust (MBT) and the Mishmi Thrust, display lower
PGAs, reflecting their position away from the major active faults in the region. For exam-
ple, Ziro and Bomdila record PGAs of 0.442 and 0.372, respectively. These lower PGAs
are expected as these districts are situated further from the primary fault zones of the Lo-
hiti and Mishmi Thrusts, and the seismic waves have already weakened by the time they
reach these locations.

The seismic hazard in Arunachal Pradesh is heavily influenced by its seismotectonic
position, with the proximity to active faults like the Lohiti Thrust and Mishmi Thrust
determining the level of seismic risk in each district. Districts closer to these faults, such
as Tezu and Namsai, experience higher PGAs, indicating a higher seismic hazard, while
districts farther from the faults, such as Palin and Yingkiong, exhibit lower PGA.

5.7. PGA Across All District Headquarters of Nagaland

The seismic hazard analysis for Nagaland reveals that the region is seismically active,
with notable variations in ground shaking (measured as Peak Ground Acceleration, PGA)
across different districts. The seismic hazard in Nagaland is influenced by the region’s
tectonic setting, which is characterized by the presence of several major fault systems,
including the Churachandpur-Manipur Fault (CMF) and the D&N Thrust. These faults,
along with other regional structural features such as the Naga Thrust, contribute to the
seismic activity observed in the region. The analysis shows that districts closer to the
active faults, particularly the CMF, experience higher levels of ground shaking, while
districts farther from these faults experience lower seismic risk. The region’s seismicity,
as indicated by past earthquakes, is strongly linked to the movement of the Indian plate,
particularly along the plate boundaries that affect the region.

Nagaland is positioned within a tectonically complex zone, influenced by the interac-
tion of multiple active faults. The CMF, a major strike-slip fault that accommodates sig-
nificant movement between the Indian and Sunda plates, plays a major role in the seismic
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Fig. 16. Variation of PGA across all district headquarters of Nagaland considering all seismic sources for their
respective maximum earthquake magnitudes.

activity of the region. This fault is responsible for large-scale tectonic motions that produce
significant earthquakes in the region. The D&N Thrust, another important fault zone, is
located in the southern parts of Nagaland and is also responsible for seismic events, though
it generally produces smaller earthquakes compared to the CMF. The tectonic setting in
Nagaland is further complicated by the presence of the Naga Thrust, which is a major ge-
ological feature in the region. This thrusts, along with other fault systems, generates both
thrust and strike-slip earthquakes that contribute to the overall seismic hazard.

The seismicity of the region, including that of Nagaland, is not limited to shallow
earthquakes. Earthquakes in the region occur at varying depths, with smaller events typi-
cally occurring at depths ranging from 1 to 144.5 km, while higher-magnitude events are
generally observed at depths of 4 to 120 km. The depth of these earthquakes plays a crucial
role in determining the level of ground shaking, as deeper earthquakes tend to generate
less intense surface shaking compared to shallow ones. The occurrence of these deeper
seismic events is indicative of the region’s tectonic complexity, where both shallow and
deep earthquakes are generated by the interaction of multiple fault systems.

The analysis of PGAs across various districts of Nagaland presented in Fig. 16, re-
veals a clear trend: districts closer to the CMF experience higher PGAs, indicating higher
seismic risk. For example, Phek and Meluri, located in proximity to the CMF, exhibit rel-
atively high PGAs of 0.6598 and 0.6556, respectively. These high PGAs are indicative of
the significant seismic hazard posed by the CMF, where tectonic movements along the
fault lead to substantial ground shaking. The relatively high PGA values in these districts
suggest that they are more directly affected by seismic events originating along the CMF.
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As we move further from the CMF, the PGAs decrease, as observed in districts such as
Shamator (PGA: 0.5617) and Noklak (PGA: 0.5046). While these districts are still within
the broader influence of the CMF, they are farther from the fault zone, and the seismic
waves attenuate as they travel away from the earthquake source. This attenuation results
in lower PGAs and reduced seismic hazard in these districts compared to areas like Phek
and Meluri. Further decreases in PGA are observed in districts like Kiphire (PGA: 0.4786)
and Zünheboto (PGA: 0.4708), which are even farther from the CMF and experience sig-
nificantly weaker seismic shaking. These districts are still within the region affected by
the CMF, but their distance from the fault zone and the attenuation of seismic waves over
distance lead to lower PGA values and a reduced seismic risk. As we move to districts
such as Longleng (PGA: 0.4487) and Mokokchung (PGA: 0.4434), the PGA continues to
decrease, reflecting their more distant location from the CMF and the D&N Thrust. These
areas are located farther from the primary seismic sources, and the ground shaking in these
districts is further diminished due to both distance and the local geological conditions. The
lowest PGAs are observed in districts like Tuensang (PGA: 0.4339) and Kohima (PGA:
0.3579), which are located at even greater distances from the major fault systems. The seis-
mic hazard in these districts is relatively low, as seismic waves lose energy over greater
distances, leading to minimal ground shaking at the surface. The variations in PGA across
Nagaland can be attributed to several key factors, with proximity to fault zones being the
most significant. Districts located closer to the CMF, such as Phek and Meluri, experi-
ence higher ground shaking due to their proximity to the fault zone, where the release of
tectonic stress results in strong seismic waves. Conversely, districts farther from the fault,
such as Tuensang and Kohima, experience much lower PGAs as seismic waves attenuate
over distance. The D&N Thrust, although also active in generating earthquakes, produces
relatively lower PGA values compared to the CMF. This is likely due to the smaller magni-
tude and shallower depth of the earthquakes associated with this fault. The shallow nature
of earthquakes along the D&N Thrust means that the seismic waves generated may not
travel as far or with the same intensity as those generated by the CMF.

6. Validation of the Model Using Comparative Study

Table 10 presents a comparison of the PGA values from the current study with those
from previous research, highlighting some discrepancies between them. The variations
in PGA across different studies are mainly attributed to differences in the faults, folds,
thrust, seismicity parameters considered, and the specific equations used. Additionally,
Table 11 compares the PGA value calculated for the January 3rd, 2017 earthquake using
the present methodology with strong motion accelerograph data recorded at Agartala,
Belonia, Shillong, Tura, and Tezpur (Debbarma et al., 2017), showing excellent agreement
with the recorded data.

7. Conclusion

The research used a trapezoidal neutrosophic-based decision-making approach for seis-
mic hazard analysis in Northeast India, with a specific focus on regions such as Tripura.
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Table 10
Comparison of estimated PGA values obtained for major cities with previously reported values.

Sl. No. 1 2 3 4 5 6 7

City Guwahati Agartala Aizawl Imphal Shillong Itanagar Kohima
Latitude 26.1445 23.8315 23.7271 24.817 25.5788 27.1024 25.6747
Longitude 91.7362 91.2868 92.7176 93.9368 91.8933 93.692 94.11
Present Study 1.13 0.37 0.34 0.42 0.4 0.22 0.4
NDMA (2010) 0.23–0.40 0.12–0.20 0.22–0.45 0.30–0.55 0.25–0.45 0.28–0.45 0.25–0.55
Ghione et al. (2021) 0.35 – – – 0.55 – –
Bahuguna and Sil (2020) 0.46–0.92 – – – – – –
Das et al. (2016) – 0.22 – – – 0.18 0.15
Sil et al. (2013) – 0.11–0.20 0.1–0.17 – – – –
Sharma and Malik (2006) – – 0.3 0.4 – 0.44 0.5
Pallav et al. (2012) – – – 0.18–0.8 – – –

Table 11
Peak ground acceleration from strong motion accelerographs for EQ 3rd Jan 2017.

Site name R Depth Hypo.
distance

Mw PGAcal PGAobs Diff.

Agartala 74 36 82 5.7 0.04764 0.05158 0.00394
Belonia (BELO) 100 36 106 5.7 0.03118 0.021 −0.0102
Shillong (SHL) 172 36 175 5.7 0.01195 0.043 0.0310
Tura (TURA) 242 36 244 5.7 0.00567 0.0104 0.0047
Tezpur (TEZP) 300 36 302 5.7 0.00334 0.00293 −0.0004
Bokaro (BOKR) 619 36 620 5.7 0.00041 0.000316 −9.85E−05

This innovative methodology addresses the shortcomings of traditional seismic hazard
assessment techniques, particularly in the selection and weighting of Ground Motion Pre-
diction Equations (GMPEs). By integrating the TrF-FUCOM and Neutrosophic-TOPSIS
methods, the framework effectively tackles uncertainties inherent in seismic hazard anal-
ysis, especially in areas with intricate tectonic configurations. The approach incorporates
critical factors such as site conditions, tectonic settings, magnitude scaling, and distance
attenuation, offering a holistic and robust method for hazard evaluation. This enables the
generation of reliable design inputs for earthquake-resistant structures. The study lever-
ages seismic and tectonic data collected within a 300 km radius of Northeast India, en-
suring a comprehensive and region-specific analysis. The seismic hazard analysis across
various regions in Northeast India reveals significant variations in Peak Ground Accel-
eration (PGA) values, which correlate with proximity to active fault zones. A total of 28
faults have been identified in Northeast India, with 18 of them being active and capable
of generating significant ground motion. Key faults, such as the Oldham, MBT&MCT,
Lohiti, CMF, Sylhet, CCF and Kaladan, have been recognized as primary contributors to
seismic activity in the capitals of the Northeastern states of India. In Arunachal Pradesh,
Tezu shows the highest PGA of 1.423 g, indicating a very high seismic risk near the Lo-
hiti Thrust, while Namsai also exhibits elevated PGAs. In Nagaland, Phek and Meluri
near the CMF display PGAs of 0.6598 g and 0.6556 g, respectively. Manipur’s proximity
to the CMF is reflected in Porompat’s high PGA of 0.6958 g. Meghalaya sees significant
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risk due to the Oldham Fault, with Guwahati experiencing the highest PGA of 0.9387 g,
while Williamnagar, Shillong, and Nongstoin are also at risk. In Mizoram, Aizawl, Serch-
hip, and Lunglei have PGAs ranging from 0.412 g to 0.415 g, influenced by the Kaladan
Fault. Tripura’s DSHA map shows PGA values from 0.21 g to 0.69 g, with the highest in
the southwestern region near Belonia, driven by the Chittagong Coastal Fault (CCF), asso-
ciated with a significant earthquake in 1762. Peak ground acceleration value obtained for
Gangtok city is the least among the entire Northeast India. The results of this study show
a reasonable alignment with previous research and the strong-motion accelerogram data
recorded during the January 3rd, 2017 earthquake. The seismic hazard analysis findings
offer valuable insights for seismic zonation and the earthquake-resistant design of critical
infrastructure, such as bridges, buildings, dams, and underground systems like tunnels,
drainage, and sewage networks. Additionally, these results will assist in city planning by
addressing seismic vulnerabilities and integrating earthquake-resistant design principles
into urban development strategies. However, the study could be enhanced by incorporat-
ing additional seismic hazard factors, including foreshocks, aftershocks, wave propaga-
tion modes, shear wave velocity at bedrock, and more accurate methods for determining
the maximum earthquake magnitudes along lineaments, faults, and folds. Future research
could focus on developing more efficient algorithms to simplify data handling and inter-
pretation.
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