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FOR STOPPING RECURSIVE LEAST SQUARES 
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Rimantas PUPEIKIS 

Institute of Mathematics and Informatics 
Akademijos St. 4, 2600 Vilnius, Lithuania 

Abstract. In the papers (Kaminskas, 1972; Kaminskas and Nemura, 1975; Yin, 
1989) the stopping rules of recursive least squares (RLS) are worked out using the 
ellipsoidal confidence region for the respective parameter vector of a linear dynamic 
system. The aim of the given paper is the development of the technique for calculating 
threshold intervals of respective criterions, used in a stopping rule, which are presented in 
Kaminskas (1972). In this connection adaptive threshold intervals based on the Cramer­
Rao lower bound are proposed here. The results of numerical simulation by mM PC/AT 
are given. 
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1. Stopping rule ofRLS. Consider a single input x" and output U" linear 
discrete-time system, described by the difference equation 

where aj, i = 1,]), and bj , j = o,q, are unknown parameters to be estimated by 

processing some input-output observations x" and Uk; p, q are known positive 

integers; N k is a sequence of independent Gaussian variables with zero mean 

and fFJ.,r. 
To calculate the estimate C8 +l of the parameter vector eT = (al' 

... , ap , bo, ... , bq) we use ordinary RLS of the shape 

(2) 

(3) 
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(4) 

Here 

(5) 

is a vector of unknown parameter estimates obtained by recursive processing 

of s + 1 samples of:1:k and Uk, k = 1,2, ... , s, s + 1; 

is a vector of p and q + 1 most recent observations of input Xk and output 

U k; r, is an m. x m positive definite matrix; I is the m x m unit matrix; 

m=p+q+l. 
According to Kaminskas (1972) the stopping rule for RLS is based on the 

appropriate ellipsoidal m-dimensional confidence region 

p{(C, - c)TK,(C, - c) ~ I} = 1- Cl, (7) 

(8) 

with the centre at the point c = Cs . 
Here u~. is the estimate of variance of uk-, that can be calculated recur­

sively; Fa is such that 

(9) 

and it is tabulated; p{. } is a probability; a is a significance level; Fm,,-m 
denotes Fisher's distribution with m and s - m degrees of freedom. 

Then the criterions 

/J, = Tr{K;l}, 

/J, = m!tJC AdK;l}, i = I,m, 
I 

are elaborated in the above mentioned paper. 

(10) 

(11) 

(12) 
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In (10) - (12) 
K "':' l ~2 F r 

8 = mUN. a 8· (13) 

Tr{· }, m~x Ai {. } i = 1, rn and det {. } denote the trace, the maximal eigen-
a 

value and the determinant of matrix K:; 1 , ~tively. 
Criterions (10), (11) define the sum of squares of the main semi axles and 

the square of the maximal semi axle of the confidence ellipsoid, respectively. 

The criterion (12) is proportional to the square of the mentioned ellipsoid vol­
ume. 

Recursive calculations by RLS are stopped when 

(14) 

where 1'0 is the threshold to be chosen beforehand. 

2. Calculation of adaptive thresholds. There exist three main uncertain­
ties while using such a stopping rule. First, for different measures (10) - (12) 

the same threshold 1'0 is chosen; second, there. are no suggestions whatsoever as 
to the choise of 1'0; third, there is not clearly shown the efficiency of different 

1'8. In Yin (1989) it is recommended to solve this problem using 1'0 = I'a so 

that p{X;+q ) I'a} = er, where X;+q denotes the chi-square distribution with 
P + q degrees of freedom. We try to obtain here the threshold values using the 
Cramer-Rao lower bound (Rao, 1968; Pupeikis, 1988). 

It is known (Ljung, 1977; Cypkin, 1984) that under some conditions the 

RLS technique has the maximal rate of convergence. Then according to Cyp­
kin (1984) for the asymptotically optimal algorithm (2)-(4) the asymptotic 

covariance matrix of errors (ACME) is 

and the equalities 

-1 
Vjj = Ijj (c), j = 1, rn, 

Tr{V} = Tr {I\c)} , 
mFAdV} = mFAi {I1(C)} , 
det{V} =.det {I\c)} 

(15) 

(16) 

(17) 

(18) 

(19) 
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are satisfied, because in such a case the Cramer-Rao inequality 

. (20) 

turns out into an equality. 

Here 

V(c) = M {(c, - c)(cs - c?} (21) 

is the covariance matrix of errors (CME); 

I(po) = M {(Pb(N))} 
po(N) 

(22) 

is Fisher's information; po(N) and Pb(N) are the probability density function 
and its first derivative, respectively; A(c, (7"2(pO)) is the normed information 

matrix NIM); (7"2 (po) is the variance of noise N k ; 

(23) 

Vjj and Ijj(c), j = 1, rn, are diagonal elements of matrices (15) and (23), 
respectively; M {. } is a mean value. 

The estimate of ACME can be calculated by 

(24) 

in off-line operation and 

(25) 

in on-line one. 

Here s is the sample size; U~k is the estimate of variance of (7"~ after 

processing 8 pairs of input-output observations; e = (el, ... , e,)T is the vector 
of residuals (4); 

[ -u -Ui-p+! Xi+! Xi-q+! 

-u:~1 -Ui-p+2 Xi+2 X;-q+2 

~,= (26) 

-Us -2 -U,_p_1 X 6-1 X,-m-1 

-Us -1 -U6-1 X6 Xa- m 



R. Pupeikis 303 

is the matrix of input-output observations; i = max(p, q). 
Taking into account (25) equalities (16) - (19) can be rewritten in such a 

way 

(27) 

(28) 

(30) 

Hence, taking into account (13) it follows for minimal values of thresholds that 

(31) 

(32) 

(2) -1 {-1(~ )} I' ~ = k mFatXk m!lJCAi I Ck , 
mID I 

i= I,m, (33) 

(3) -1 de {-1(~ )} I' m~n = k mF at Xk tIck , (34) 

where Xk = ;;~ /;;~, k = 1,2, ... , s, s + 1 ... , The maximal values of 
thresholds 1'(0) ,kjJ(l) k, 1'(2) ,1'(3) could be calculated by the same formulas 

supposing k ~xs in (3xl) _ (34). mu 

It might be mentioned that the respective minimal and the maximal value 

of thresholds are time varying not only because of current k and Xk but also 
because of the meanings of some parameters whose current estimates ought to 

be substItuted into I( c) of the shape (23). 

Then, recursive calculations by RLS of the shape (2) - (4) are stopped if 

one of the conditions 

(0) ::?; (O)::?; (0) 
1" r jJk r I' k , 

ma.x miD 

(1) ::?; (1)::?; (1) 
I' • ~ jJk ~ I' k , 

ma.x miD. 

(2) ::?; (2)::?; (2) 
J.l. r J.lk ~ J.l k , 

ma.x mill 

(3) ::?; (3)::?; (3) 
1" r jJk ~ I' k , 

ma.x min 

j= I,m, 

k = s + 1, s + 2, ... 

(35) 

(36) 

(37) 

(38) 
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is satisfied or two conditions or three conditions or even all the four conditions 

are satisfied at the same time. 
Here 

(0) (K-1) ILk.j = 6 jj, 

,,(1) _ Tr {K-l} 
rk - s' 

IL13 ) = det{K;l}, 

where K, is of the shape (13). 

j= I,m, (39) 

(40) 

(41) 

(42) 

3. Adaptive threshold for maximale length of the confidence interval. 
Values (10) - (12) are more general characteristics of the accuracy of estimates 

c,. Sometimes it suffices (Kaminskas and Nemura, 1975) to calculate particular 

characteristics, e.g., the maximal length of the confidence interval for a separate 

coordinate Ci of the parameter vector c. According to Rao (1968), Kaminskas 
and Nemura (1975) we use here the statistics 

C· - c· 
t - '." i = 1, v, 
- Ju~.(r')ii' 

(43) 

where t denotes the t distribution with s - v degrees of freedom. 

The confidence interval for the i-th coordinate Ci is 

Ci., - to/UN. J(r ,)ii < Ci < Ci., + to/UN. \I(r ')ii, i = 1, v, (44) 

where to/ is such that 

(45) 

and it is tabulated. 

In Kaminskas and Nemura (1975) a criterion 

IL~4) = mrx { 2tO/UN • ..j(f,)ii} , i = 1, v, (46) 

is proposed which corresponds to the maximal length of the confidence interval 

(44). Therefore the recursive calculations by RLS could be stopped if the 

condition 
(4) ~ (4) ~ (4) 

IL • :>" ILk :>" IL If , 
m.&X miD 

k = s + 1, s + 2, ... (47) 
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with 

(48) 

i = r,v, (49) 

is satisfied. 

4. Time varying threshold intervals for the first order object. As an 

example we consider here a discrete-time object of the shape 

(50) 

where a and bo are the coefficients of di:£ference equation (50). 

In such a case ACME and NIM are 

(51) 

and 

(52) 

respectively, where 

(53) 

is residual; Kr(·), Ku(·), Kur{-) are the meanings of input-output autoco­

variance and crosscovariance function values, respectively; U;k and U;k are 

variances of residuals and input signal, respectively. 

Then inequality (20) can be rewritten in such a way 

(54) 

since Fisher's information 

I(po) = l/uJr. (55) 
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In view of the mentioned expressions time varying thresholds can be ob­

tained for object (50) by the formulas: 

1 ..... 2 
(0) -1 - as 

J.t ',1 = 8 mFerxs .......... 2 ..... 2 ' 
m .. x 1 + bo U fUN • x. B 

1 ..... 2 ..... 2 
,,(1.) = 8-1 - a~2 + UN. mF ~ 
r -- ..... 2 er "8, 

ma.x -. U (T 

1 + boo ..... ;. x. 
UN. 

if W1k > W2k' 

if Wh < W2k' 

if W1. > W2., 

if W1. < W2., 

if Wl k > W2kl 

if Wh < W2kl 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 
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where 

if Wl. > W2., 

if Wl. < W2., 

j = 1,2, 

307 

(67) 

Equations (56) - (67) could be realized in on-line operation if the estimates 

ak, bOk , K:I:(O, k), Ku(O, k), KU:I:(T, k), T = Q,1, CT:l:k' CTek , CTNk are sub­

stituted into the above mentioned expresions instead of their unknown values, 

. respectively. They may be calculated in such a way: 

[ -K:I:(O,k) Ku(1,k) + KU:I:(1,k) K:l:u(O,k)] 

[ilk] = -Ku:I:(l,~) Ku~, k) + Ku~O~ k) KU:I:(O,k) , (68) 
Ok K:I:(O, k)Ku(O, k) - KuA1, k) 

~ ~ 1[ ~ ] -K:I:(O, k) =K:I:(O, k - 1) + 1 + k ZkZk - K:I:(O, k - 1), T = 0,1, 
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UNk =UNk_l + k ~ 1 [(Ark - N k f -UNk_l] , 

Nk =Nk-l + ~ (Ark - Nk-l) , 

Vk =uk - Yk = Uk - bOkXk + akYk-l. 

For higher order objects the stopping conditions are considerably more 

complicated, but not so much that their determination were imposible. Recom­

mendations referring to the information matrix can be found in Cypkin (1984); 

Klein and Melard (1994). 

5. Simulation results. The stopping rule in (10) - (12) with adaptive 

thresholds (56)- (67) for a discrete-time object with a = 0.7 and bo = 1 

in (50) was investigated by numerical simulation by means of IBM PC/AT. 

Realizations of independent Gaussian variables ek with zero mean and unitary 

variance and a sequence of the second order model of the form 

(69) 

were used as an input sequence Xk. Ten experiments with different realizations 

of noise N k at the noise level uJv / u~ = 0.5 were carried out. In each i -th 

experiment, first, the estimates of parameters a = 0.7 and bo = 1 of Eq. 50, 

the criterions Jl~l), fJ~3) of the shape (40), (42), respectively, and their mini­

mal and maximal threshold values were obtained, by formulas (60), (61), (64), 

(65). Afterwards, the same values were calculated recursively, using the above 

mentioned on-line procedure. 

In Table 1 the estimates, averaged by 10 experiments, 

10 
;:;: _ ~ "~(i) 
a- L..Ja, 

10 i=l 

10 
;:;: 1 L~(·) b= - b' 

10 ' 
i=l 

(70) 

(71) 
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10 
.,..,.(1) _ 1 '" (1) 
J.Lk - 10 L...J J.Lk,i' 

i=l 

10 
.,..,.(3) _ 1 '" (3) 
J.Lk - 10 L...J J.Lk,i' 

. i=l 

and their maximal threshold values 

10 
.,..,.(1) _ 1 '" (1) 
J.L • - 10 L...J J.L .,' , 

ma-x ma.x 
i=l 
10 

-rf3} = ~ L: J.L(~: •• 
ma-x 10. ma.x ,=1 
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(72) 

(73) 

(74) 

(75) 

with their confidence intervals ~, calculated in each i-th experiment after pro­

cessing 15 values of observations (Xl<, Uk) are given. 

Table 1. Estimates (70), (71), criterions (72), (73) and their maximal thre­

shold values (74), (75), averaged by 10 experiments, with confi­

dence intervals after processing 15 values of observations 

.,..,.(1) 
J.L k 

Input - Gaussian process 

.,..,.(3) 
J.L k 

0.39 ± 0.03 0.84 ± 0.07 2.26 ± 0.45 3.33 ± 0.17 0.89 ± 0.20 1.06 ± 0.01 

Input - AR process 

0.24 ± 0.04 1.17 ± 0.12 0.66 ± 0.22 1.89 ± 0.19 0.15 ± 0.05 1.57 ± 0.16 

Table 2 presents the same estimates, respective criterions and their minimal 

threshold values 
10 

_(1) _ 1 '" (1) 
J.L k - 10 L...J J.L k,,. , 

mlD i=l mID 

(76) 

10 
_(3) _ 1 '" (3) 
J.L ~ - 10 L...J J.L k,,. , 

mID i=l mm 

(77) 
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Table 2. Estimates (70), (71), criterions (72), (73) and their minimal 

threshold values (76), (77), averaged by 10 experiments, with 

confidence intervals depending on k 

b .,.,.(1) 
J1, k 

min 

k = 100 

.,.,.(3) 
J1, k 

min 

.,.,.(3) 
J1,k 

0.69 ± 0.01 0.99 ± 0.01 1.52 ± 0.08 1.99 ± 0.02 0.49 ± 0.03 1.01 ± 0.01 

0.70 ± 0.01 1.00 ± 0.01 0.70 ± 0.04 0.91 ± 0.01 0.16 ± 0.01 1.08 ± 0.01 

k = 200 

0.70 ± 0.01 0.99 ± 0.01 1.52 ± 0.05 1.84 ± 0.01 0.49 ± 0.02 1.01 ± 0.01 

0.69 ± 0.01 1.00 ± 0.01 0.63 ± 0.02 0.77 ± 0.00 0.14 ± 0.01 1.04 ± 0.01 

k = 300 

0.70 ± 0.01 0.99 ± 0.01 1.27 ± 0.07 1.66 ± 0.01 0.39 ± 0.03 1.01 ± 0.01 

0.70 ± 0.01 1.01 ± 0.02 0.47 ± 0.03 0.67 ± 0.00 0.10 ± 0.01 1.05 ± 0.00 

k = 400 

0.70 ± 0.01 1.00 ± 0.01 1.16 ± 0.04 1.56 ± 0.01 0.35 ± 0.02 1.00 ± 0.00 

0.70 ± 0.01 0.99 ± 0.01 0.38 ± 0.02 0.60 ± 0.00 0.07 ± 0.00 1.04 ± 0.00 

k = 500 

0.70 ± 0.01 0.99 ± 0.01 1.13 ± 0.04 1.48 ± 0.01 0.33 ± 0.01 1.00 ± 0.00 

0.70 ± 0.01 0.98 ± 0.01 0.33 ± 0.01 0.55 ± 0.00 0.06 ± 0.00 1.04 ± 0.00 

averaged by 10 experiments and calculated in each experiment after processing 

different number of observations (Xk' Uk). The first line of each k corresponds 

to the meanings which were calculated using a Gaussian process as input and 

the second line - to the meanings obtained by applying sequence of the shape 

(69) as input. It follows from the simulation and estimation results, presented 

here, that condition (36) for averaged measure (72) will be satisfied even for 

k = 100, if Xk is a Gaussian process and for k = 400, if Xk is AR sequence. 
On the other hand the condition (38) will be not satisfied for both inputs even at 
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k = 500. It can be mentioned that a decrease in 143 ) is negligible for increased 

number of k. 

6. Conclusions. The results of numerical simulations carried out by com­

puter prove the applicability of adaptive threshold intervals if the right criterion 

is chosen for recursive least squares stopping. Otherwise, the proposed here 

approach will be inefficient. That is why it is important recursively to calculate 

different criterions and their minimal and maximal time varying thresholds in 

order to choose the right ones and to use them for stopping LS while estimating 

unknown parameters. 
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APffi ADAPTYVIUS SLENKSCIll INTERVALUS, 

STABDANT REKURENTINI MAZIAUSIllJQ KVADRATQ 

ALGORITMi\ PARAMETRQ ERDvEJE 

Rimantas PUPEIKIS 

Analltinio tyrimo bUdu, taikant Kramerio-Rao nelygyb~, sudaryti adaptyvfis slen­
ks~iq intervalai prof. V. Kaminsko ir prof. A. Nemuros kriterijams, jq pasiiilytiems 
parametrq iver~iq skai~iavimams stabdyti, pasiekus pageidaujallUl §iq iver~iq tikslUllUl. 
Darbe pateikti net ir riboto pobU~io skaitinio modellavimo rezultatai (Lenteles I, 2) 
parodo, kad ne visi minetq autoriq kriterijai gall bUti panaudoti rekurentinio ma2iausilijq 
kvadratq algoritmo stabdymui, taikant adaptyvius slenk~ius. 


