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Abstract. This paper presents a robust control algorithm for plants involving both 
internal (i.e., in the state) and external (i.e., in the output or input) known point delays. 
Several stabilizing controller structures are given and analyzed for the case of perfectly 
modelled plants with known parameters. The plant is assumed to be of known order 
and relative order. The parametrized parts of two of the controller structures involve 
delays while those of the two remaining controllers are delay-free. However, auxiliary 
compensating signals which weight the plant input and output integrals are incorporaled 
in all the controller structures for stabilization and model matching purposes. 
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1. Introduction. In the last years, a number of papers have dealt with the 
problem of presence of delays in the controlled plant and the related properties 

of controllability, observability and stabilizability have been investigated in [1-

13]. The stabilizability for known plants by using matrix Lyapunov equations 
and some delay-independent stabilization results have been addressed in [1-2]. 
Also, the relationships between the stabilization of systems with point delays 

have been studied in [5--6] by establishing an equivalent model, subject to 

point delays only, for the class of systems originally possessing exponentially 

distributed delays. The spectrum assignability has been investigated in [8-12] 
for systems with commensurate and noncommensurate delays. A system is 

finite spectrum assignable if it is reachable, and then, spectrally controllable. 

Also, if it is reachable with a closed loop finite spectrum can be achieved with 

a control function based on polynomials on the delay operator, [12]. However, 

the more serious stabilizability problems arise from the presence of internal 

delays, [7], since unsuitable infinite closed-loop spectra can be generated even 

if they are not established as a control objective. 
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In this paper, four robust time-invariant controller structures are given and 

those controller structures for the nominal known plants are studied. They con­

sist of a pararneterized part plus memory-type signal, which involve weighted 

integrals on the piant input and output which extend the scheme proposed in 

[14] for the single external point delay case. The contributions of this paper 

related to previous work, [7-12], [17-22], are the following: (a) Some of the 

proposed Controller Structures (namely, the so-called controller structures I and 

11) are able to achieved prefixed (internal delay dependent) infinite or (delay 

independent) finite closed-loop spectra indistinctly, depending on the particu­

lar controller parametrization, in the nominal situation of known parameters 

and perfectly modelled dynamics. (b) The nominal closed-loop system can also 

match reference models whose zeros include those unstable ones of the plant. 
(c) Both single-internal and single-external point delay are considered in the 

plant state-space description. 

The control problem can be considered as non restrictive in the sense that n 

delays, being integer multiple of the internal delay, (n being the plant order) are 

automatically generated in the plant transfer function and, on the other hand, 

it has been proved in the literature that some distributed-delay systems with 

exponential distribution can be described through equivalent point delay systems 

[5-6]. Also, it has been proven that the stabilization of open-loop stabilizable 

systems subject to internal delays is ensured by the use of distributed-delay 

controllers even if the plant possesses point delays only (see [8-12] and [15--': 
21]). 

The paper is organized as follows. Section 2 deals with the state and in­

put/output nominal descriptions of the plant and the various proposed controller 

structures as well as the statement and conditions of achievement of the con­

trol objectives. Those objectives are closed-loop model matching with (inter­

nal delay-dependent) infinite spectrum and (delay-independent) finite spectrum. 

Section 3 contains the proofs of the results of Section 2. In Section 4 several 

simulation examples are proposed to emphasize the efficiency of the proposed 

control schemes. Finally, in Section 5, conclusions end the paper. 

Notation 

- The Laplace transform of f(t) is denoted by f( s) or L{f(t)} and the 

Laplace transform of f ( - t) for t > 0 is denoted by 7 ( s). 
- deg/J(p(J.I, s)] and deg3 (P(J.I, s)] stand for the degrees of the quasipoly-
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nomial (or two-variable polynomial) p(J-!, s) with respect to J-! and s, 
respectively. If both degrees are identical or the polynomial is of one 

variable, then subindices are not used. 

- Dete) and Adj(.) stand for the determinant and Adjoint of the (- ) 

matrix. 

- e denotes the set of complex numbers. e+ and e- are, respectively, 

the open left-half plane and its complement in e. et = {z E e : 
Re( z) ~ - v }, and e; is the complement of et in e for any real 

constant v. R and R+ denote, respectively, the set of real and positive 

real numbers and Rt = R+ U {O}. 

- Transfer functions involving internal and external delays h and h' are de­

notedbyO(s):::o O(J-!,J-!', s), whereJ-! = exp(-hs) andJ-!' = exp(-h's). 
The equivalent input-output differential-difference description is y(t) = 
O(D -1 ,-1) () 'th D d -1 d ,-1 be' . I , q , q u t Wl = (J1' q ,an q mg, respective y, 
the differential and the internal and external delay operator; i.e:, i = 
Dz(t), z(t - h) = q-1 z(t) and z(t - h') = q,-l z(t) for any signal z(t). 

2. Models for plants and controllers. This section describes the structures 

of a single-input single-output plant involving single point internal (i.e., in the 

state) and external (i.e., in the input or output), delays as well as four controller 

structures which lead to the achievement of model matching objectives with 

finite or infinite closed-loop spectra. Although the plant possess a single internal 

point delay, a general single-input single-output system with n internal delays 

is first analyzed in Subsection 2.1. The reason is that the controller structures of 

Subsection 2.2 below are required to have n internal delays in order to achieve 

(delay-dependent infinite-spectrum) model matching, if desired, as discussed 

later. Such a requirement arises naturally, in order to get sufficieIlt conditions 

for the achievement of (infinite-spectrum) closed-loop pole-placement. Delays 

in the parametrized part of the controller will be not required when the control 

objective is the achievement of delay-independent finite closed-loop spectra. 

2.1. Dynamic systems with internal and external point delay. Consider 

the next transfer function involving internal and external point delays 

O(s) = O(J-!, J-!', s) 
B(J-!, J-!', s) _ 

A(J-!, s) 
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(l.a) 

(l.b) 

with m < n, Kp being the static gain and e" being scalar (if e" = 0 then G(s) 
is strictly proper), J.l = exp(-hs) and J.l' ~ exp(-h's) are complex variables 

dependent on s and the internal and external known delays h and h', and 

nl 

bi(J.l, J.l') = b~l)(J.l) + :~:::.>,j b~2j)(J.l), (2.a) 
j=l 

ni2 ":I 
b(l)(II.) = ~ b(l). II. k = ~ b(l). II. k 

t r L.J m-I,k r L.J m-I,kr , (2.b) 
k=O k=O 

(bW # 0 if h # 0), 
ni2 "2 

b~21)( ) = ~ b(21). k = ~ b(21). k 
• J.l . L.J m-.,kJ.l L.J m-t,kJ.l , (2.c) 

k=O k=O 

(b~~) # 0 if h' # 0), 
nj3 "3 

aj(J.l) = L: an_j,kJ.lk = L: an_j,kJ.lk , (2.d) 
k=O k=O 

(an(J.l) = aDO = 1), 

for I = 1,2, ... , nl; i = 0,1, ... , m; j = 0,1, ... , n where b~~l(J.l), b~~;)(J.l) 
and a(-)(J.l) are one-variable polynomials in J.l and ni2 and ni3 are the num­

bers of internal delays acting from each state variable Xi+l through the state 

feedback and output measurement with the polynomials bP) and an-i-l (i = 
0,1, ... , n), respectively, with bP) = 0 for i > m. Note that n2 = m.ax (ni2) 

O:litt:litm 

and n3 = !pax (ni3) so that bP2 = b~2~) = 0 for k = ni2+1, ni2+2, ... , n2 
O:lit.,:;:;n-l " 

and ai,k = 0 for k = ni3 + 1, ni3 + 2, ... ,n3; alII = 1,2, ... ,nl' If the 
values of ni 2 in (2.b) - (2.c) are different, they can be unified provided that the 

appropriate b~:~ are zeroed. The two-variable polynomials b1(J.l,s), b~I)(Jl,S) 
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and A(JJ, s) in (1.a) are then given by 
m n, 

B1(JJ, s) = I>~l)(JJ)i = L BP)(s)JJi, (3.a) 
;=0 i=O 

m n2 

B~I)(JJ, s) = L b~21)(JJ)s; = L B~21)(s)/, (3.b) 
;=0 ;=0 

n-l na 

A(JJ, s) = sn + L ai(JJ)si = LAi(S)JJi, (3.c) 
i=O i=O 

[ = 1,2, ... , nb the last right-hand-sides of (3) being obtained from the iden­

tities (2). Thus, A(JJ, s) and Br?(JJ, s) can be described indistinctly by two­

variable polynomials in s with coefficients being one variable polynomials in 

JJ or viceversa and 

m 

B~21) ( ) = ""' b(21) . k , s L...J m_k"s , (4) 
k=O 

n 

Aj(s) = Lam_k,jSk, 
k=O 

for I = 0,1, ... , nl; i = 0,1, ... , n2; j = 0,1, ... , na. The two variables JJ 
and s are not independent from the definition of JJ. However, a two-variable 

description of A(JJ, s) and Br?(JJ, s) is used to facilitate the mathematical 

developments associated with the solution of two-variable diophantine equations 

for pole-placement where the second right-hand sides of (3) with (4) are used 
(see Section 2.3 below). From (3) and (4), Eq. 1 can be rewritten as 

(5.a) 

kp E B~j)(JJ,s)JJ,j 
G (s) = k [Bl(JJ, s) + B"] G ( ) j=O (5.b) 

1 p A(JJ, s) , 2 s= A(JJ, s) 

subject to (3) - (4). A direct decomposition of (3) - (4) in a controllabil­

ity canonical form leads directly to the following state-space description (see 

Fig. 1): 

x(t) = A (q-l) x(t) + du(t), 

y(t) = c,! (q-l, ql-l) x(t) + (jIU(t) 

(6.a) 

(6.b) 
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with (J' = kp(J", where x(t) is the n-state vector and £, is a polynomial vector 

of dimension n in the time-delay operators q,-1 and q-1, and 

( -1) [0 In-I] A q = -1 -1 -1 - -an -1(q ) -an -2(q ), ... ,-ao(q ) 
n3 

=A+ I:Ajq-i, 
i=l 

A = [0 In-1] , 
-an -1,0 -an -2,0, ... , -aoo 

A . - [ O(n-1)x(n-2) . ] . - , 
-an -1,i,-an -2,i,.··, -aOi 

d = [O~_l' l]T , 
nl n2 

£,(q-1,q,-1) = I:L:Cijq-iq'-i, 
j=o i=O 

Cij = [bmij bm- 1,ij ... bOii]T. 

By using (7), Eqs. (6) can be rewritten as 

n3 

x(t) = Ax(t) + L:AiX(t - ih) + du(t), 
i=l 

nl n2 

y(t) = L: I: c'fix(t - ih - jh') + (J'u(t) 
j=Oi=O 

leading to the transfer function 

(7.a) 

(7.b) 

(7.c) 

(7.d) 

(8.a) 

(8.b) 

(8.c) 

REMARK 1. Note that system (8) has multiple delays. The particular values 

n1=1, ni2=m-i(i=O,1, ... ,m), ni3=n-i(i=O,1, ... ,n-l)=> 
n2 = m; n3 = n lead to a single-internal single-external delayed system with 

aoo = 1, bW :j:. 0 and, if h' :j:. 0 then b~~) :j:. O. Then, the transfer function 
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(8.c) becomes 

G(,) = t, t,pd p;,;; ('1 -A -t,p' A,) -1 d + 8' 

-k B 1(p"S)+llB2 (p"s) 
- P A(J.I,s) , 

331 

(9) 

with Bi(p" s) (i = 1,2) and A(p" s) defined in (3) with the current values of 

n1, n2 and n3, and the second superscript in Br? being deleted since now 
there is just one external delay, and 

m-i 

b~l)( ) = '" bel) .. k • P, L....J m-.,kp' , 
k=O 

n-j 
aj(p,) = L: an_j,kp,k, 

k=O 
n-j 

Aj(s) = L: an_k,jSk, 
k=O 

(IO.a) 

(10.b) 

for i = 0,1, ... , m; j = 0,1, ... , n; 1= 1,2 with An(s) = aOn and an(p,) = 
aOO = 1, where Bl(p" s) (I = 1,2) and A(p" s) are given by (3) with I = 1 
and n2 = m, n3 = n, B}l)(s) (l = 1,2) and A;(s) are given by (4). Also, 

b~l)(p,) (I = 1,2) and aj (p,) are given by (2.b) - (2.d) with ni2 = m - i and 

nj, = n - j (i = 0,1, ... , m; j = 0,1, ... , n - 1). Eqs. 1O.b have been 
proposed in [8] for a transfer function (9). Note that they are particularizations 

of (4) for bki and akj being zero for k < m - i and k < n - j, respectively. A 

state-space realization of (9) - (10) being algebraically equivalent to (8) is 

n 

x(t) = Ax(t) + L:A;x(t - ih) + duet), (1 1. a) 
i=1 

m m 

yet) = L: cJox(t - jh) + L: CJ1 X(t - hi - jh) + OIU(t), (ll.b) 
j=O j=O 

so that the output becomes undelayed while a single-internal delay is generated 

in the state equation. Furthermore, the two-variable (. )-polynomials appearing 

as entries in I>[.) Adj(sI -A-p,Alt 1d and Det(sI-A-p,A1 )-1 have degrees 

verifying degs (' ) + degl'(' ) ~ m and degs (' ) + degl'(' ) ~ n, respectively, for 

all real n x n-matrices A and Ab the above inequalities arising from the fact 

that all the entries in the matrix (sI - A - p,A1) are of degree one in s and at 

most of degree one in p,. 
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REMARK 2. If A1 = 0 in (11) then there is no internal delay (h = 0) and 

O(s) = 02(S). If there is no external delay (h' = 0) then eij = 0, i # 0 and 

j # 0, and b~~l = O. If A = 0 and eij = 0, i # 0 and j # 0, then the pure 
internal plant delay h generates its n first integer multiples as additional delays, 

[8], leading to the transfer function O( s) = eT (sI - j.tAd -1 d explicited by 

m 

E bi(P,)si 
O(s) = _'_'=_0 __ _ 

n-1 
sn + E ai(p,)si 

i=O 

m m 
E E bm_i,k_iSi p,k-i 
i=O k=i 

n-1 n 
sn + E E an_i,k_iSi J.l k- i 

i=O k=i 

where some of the a(-) and bO could be zero. 

(12) 

REMARK 3. In the more general situation than (8) when the delays hi 
and h'i are not multiple of h and h', the realization of Fig. 1 can still be 
obtained by substituting the blocks p, and p,' by operators exp [ - (h;/hi_1)S] 
and exp [ - (h'i/ h'i - 1)S] corresponding to pairs of consecutive delays and the 
associate time-delay operators q-1 and q,-1 . 

2.2. Plant model. The plant is assumed to be strictly proper (i.e., ()I = 
()" = 0) and described by the single-internal single-external point delay system 

(9) - (11) of Remark 1. The associate degree constraints deg( ai (p,» = n -

deg(Ai(s» = i, deg(by)(p,» = m-deg(Bj')(s» = j; i = 0,1, ... , n-l; j = 
0,1, ... ,m in (10) is then used to solve two-variable diophantine equations 

arising in solving the closed-loop pole-placement. 

REMARK 4. In the general case that coefficients of the suited closed-loop 

characteristic equation be dependent on the internal delay, the numerator of the 

transfer function of the proposed controller is required to have p (p :::;; 2n - 1) 
one-variable polynomials in s, of degree n -1, n being the plant order, similar 

to (4), p being the higher power in p, in the characteristic equation. Thus, the 

controller to be synthesized will be typically a general multi-point delay system 

(1)-(4) even if the plant has only single internal and external delays and the 

suited closed-loop equation has an infinite spectrum, [8-13]. 

Since time-delay systems are infinite-dimensional, [3-4], [7] - [13], it is not 
evident, without a proof, that multi-variable polynomials may be factorized as 
products of multi-variable polynomials. The following result extends a well­
known one for delay-free systems (see, for instance, [20], [21]) and establishes 
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the fact that any plant transfer function numerator can be factorized into unique 

(except for a constant) complex-variable functions having their zeros within 

preassigned (disjoint) stability and instability subsets of e. 

Lemma 1. Define et = {z E e: Re(z) ~ -p} and e; as being the 
complement of et in e for any given real p > 0. Then, the numerators of 

the transfer function (8) (or (11)) has the following properties: 

(i) If h # 0, then a unique (except for a nonzero constant) factorization 
B(s) = B(J.L, J.L', s) = Bt(s)B;(s) exists where the zeros of the complex 
variable functions B:(s) and B;(s) are in e: and e p-, respectively. 

(ii) If h = ° and h' # 0, then B(s) = exp(-h's)Bt(s)B;(s) with the 
functions B: (s) and B; (s) being characterized as in (i). 

REMARK 5 . The above result is a direct application of the auxiliary Lemma 2 

of Section 3 below by particulariting polynomial degrees. The notation in the 

arguments (J.L,J.L',s) is not kept for the factors B:(s) and B;(s) since their 

explicit dependence on J.L = exp(-hs) and J.L' = exp(-h's) as two-variable 
polynomials is not proven in Lemma 2. However, note from Remark 1 that 

[ + - k +-B:(s) = k+ sm + B:(s)] and B;(s) = i!"[sm-m + B;(s)] for some 

complex functions ii: (s) and ii; (s) of respective degrees in s being less than 

m+ and (m - m+), respectively. Such a property will then allow us to address. 

realizability issues when B(J.L, J.L', s) is involved for calculations. 

2.3. Controller structures. Four stabilizing controller structures valid for 

the achievement of the pole-placement and model-matching with infinite or 

finite spectrum are now described. 

General framework. Although the plant can be (state-space) realized 

with a unique internal delay since deg(aj(J.L)) = n - deg(Ai(s)) = i and 

deg(b?)(J.L)) = n - deg(B)'\s)) = j (i = 0,1, ... , n; j = 0,1, ... , m), 
according to the modelling issues of Section 2;2, the stabilizing controller is 

required to posses p internal delays provided that the degree in· J.L of the pre­

fixed closed-loop characteristic equation is p ~ 2n - 1 (see Remark 4). Four 

parametrized controller structures are presented in this section being gener­

ically described as Lc(O, Aw(O, t)), within the general framework proposed 
in [23] for delay-free systems, where B is a parameter vector of dimension 

ne and Aw(B,t) = {r(t),w(h,h',B,t),A(h,B,t)} is an extended regressor 
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parametrized also in e E Rnc with r(t) being the unifonnly bounded ex­

ternal reference which will be taken as the input to an explicit reference 

model, w(h, hi, e, t) being the regressor of the parametrized controller given 

by a delayed (or. undelayed in the case of finite spectra objectives) differ­

ential system and A(h, hi, e, t) = {c(h, hi, e, t), A(h, e, t)} with A(h, e, t) = 
{>..(h, e, t), >"i(h, e, t), Nj(h, e, t); i = PI + 1, PI + 2, ... , 2n - 1; j = 
P2 + 1, P2 + 2, ... , 2n - 1; PI ~ 0; P2 ~ 0 is a set of auxiliary weighting 
functions which are used to compensate for the transmission of unsuited delays 
through the loop by weighting the time integrals of the reference signal and the 

plant input under the appropriate time-intervals related to plant delays. Such a 

strategy is adopted since, apart from the original internal delay, this one together 

with their integer multiples and their combinations with the external delay are 
transmitted through the feedback loop. In particular, the c(· )-function weights 

the reference signal related to the external delay and the >..(.) (. )-functions weight 
the plant input related to the transmission of the internal delay and its mUltiples 

while the >..(.) and Nci' )-functions are used to compensate for the combined 
effects of the internal and external delays. In the auxiliary A-set, the non­
negative integers PI and P2 are chosen so that all the powers of the internal 

delay greater than PI and all their combinations with the external delay being 

greater than P2 are cancelled by the sets >"0(' ) and >"'0 (')' respectively, while 
such a combined effect for powers of exp(-hs) less than P2 are cancelled by 
>.. ( h, e, t). The reason for a separate choice of the c(.) and the set N (-) (. ) is 

that if the N(t) were omitted, then the unsuitable powers of exp(-hs) in the 
infinite spectra objective could not be zeroed what would introduce "a priori" 

constrains in the choice of the reference model. Thus, PI and P2 are chosen 

by the designer with P = max(PI, P2) ~ 2n - 1 and are related to the suited 
maximum power of the internal delay in the closed-loop characteristic two­

variable polynomials. Details about particular structures and initializations of 

the functions of Aware given later for each particular controller structure. Note 

that w and the elements of A are parametrized bye. Thus, the control law to 

be adopted has the generic form which includes an auxiliary signalv(· ), apart 

from the standard parametrized part, as follows 

u(t) = eT w(h, hi, e, t) + v (Aw(h, hi, e, t». (13) 

The two first structures allow the achievement of both infinite and finite 
closed-loop spectra. The maximum power of the internal delay in the objective 
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is chosen by the designer by the choice of P1 and P2 in the A -set and the 
regressor is the state of a differential system involving the internal delays of 

the plant and (n - 1) of its integer mUltiples. The two last controller structures 
can only be used for (delay-independent) finite spectra control objectives. 

Controller structure I. The particular control law of (13) is given by 

n+m-1 0 

+ L J Ni(r)u(t + r)dr 
i=P2+1 ;-(ih+h/) 

+" (r(t) + j '(r)r(t+ r)dr) l' 
-h' 

(14) 

where v(· ) in (13.a) is the signal in brackets, Co is a scalar parameter, being 
unity when the static gain of the plant and the reference model are identical, 
c( r) is a reference weighting function, and 

(J = [OT, (J11' (J/2 r, OT = [iO)T, O(1)T, ... , ~n-1)T] , (15.a) 

w(t) = [wT (t), wT (t - h), ... , wT (t - (n - 1)h), u(t), y(t)f, (15.b) 

w(t) = [w(l)T (t), W<2)T (t)], ~i)T = [iidT, ~i2)T] , (15.c) 

(i=0,1, ... ,n-1), 
n-1 

tiT = Fw(t) + L FiW(t - ih) + qu(t), 
i=l 

w(t) = 0, t E [(n - 1)h, 0], 

F = Diag(F; F), Fi = Diag(Fi; Fi) (i = 1,2, ... , n - 1), 

u(t) = [u(t),y(t)f, 71= [~q)T, q= diag(q1,q2), 

F = [0 [n-2] , 
- In-2,0, - In-3,0, ... , - loo 

Fi = [ _ In-2,~'(:'-;::~~i~~~" _ 10i]' (i = 1,2, ... , n - 1), 

(15.d) 

(15.e) 

(15.f) 

(15.g) 
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h d 1)() d -O(il) (. - l' /- 1 2) (1)- . d F werew tan z-O,I, ... ,n- , -, are n- vectorsan 

and FC) are (n - 1) X (n - 1 )-rnatrices. Thus, the number of design parameters 

in 0 is nCl ~ nc ~ nC2 with nCl = 2n(n - 1) (i.e., 0'1 = 0'2 = 0) and 

nC2 = 2n(n -1) +,2 (i.e., 0'1 i= 0 and 0'2 i= 0) and the numbers of AC)(' ) and 

NO(' )-functions are, respectively, (2n - PI -1) and (n + m - P2 - 1). Note 
that the first right-hand side of (14) is the output of a general system involving 

internal delays only (i.e., a particularization of (8) to the external delay-free 

case) driven by u(t) = [u(t), y(t)]T and whose dynamics is given by (15) with 

nl = 1 and n2 = n3 = n - 1. The elements of the auxiliary set A are proven 

to exist and defined in Section 3.2, Eq. 31 in order to keep a clear exposition 

of the main text. On the other hand, the choice of the c(· )-function as well as 

the overall role of the A-set in the "a priori" closed-loop spectra, in the sense 

that the degree of exp( -hs) is constrained in the closed-loop transfer function 

denominator prior to the choice of 0, is later summarized in Proposition 1 for 

this particular controller structure as well as for the remaining ones. 

Controller structure n. The control law is now 

[ 
t 2n-1 t 

u(t) = OT w(t) + ! A( T)U(t - T)dT + ,],;,1 A;( T )u(t - T )dT 

n+m-1 t 

+ L J Ni(r)u(t - r)dr 
i-p +1 

- 2 (ih+h') 

(16) 

subject to (15). Note that Controller Il, compared to Controller I, contains 

convolution integral-type terms constructed with the elements of the A -set which 

are defined in Section 3.2, Eq. 34. 

The two next structures are particularizations of Controllers I and 11, re­

spectively, and they involve delay-free controller dynamics. It will be seen that 

closed-loop, internal delay-dependent dynamics is un achievable by the use of 
those controllers. 
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Controller structure ill. The control law is now 

m 0 

+ t; J N;(r)u(t + r)dr 

-(ih+h') 

337 

+ '0 (,(t) + ] '(T),(t + T)dT) l (17) 

-h' 

where 

() _ [O<l)T ;;(0 2)T ()' (),] T 
- , ,1, 2 , 

(I8.a) 
wet) = [W<1)T(t),W<2)T(t),u(t),y(t)r, 

~(t) =FW(t) + qu(t), wet) = [W<1)T (t), W<2)T (t) r ' (I8.b) 

with F, if and u being defined as for Controllers I-II and 0'/ (l = 1,2) being 

zero or nonzero scalars (see (IS.e) to (IS.g». In this case, the dimension of ne 

is constrained to 2n - 2 ~ ne ~ 2n, ne being the dimension of 0 and wet) and 

there are n \.)-function and m No-functions defined in Section 3.2 (Eq. 36). 

Controller structure Iv. The control law is now 

[ 
n t 

u(t) = OT wet) + "tdi Ai(r)u(t - r)dr 

m t 

+ L J N;(r)u(t - r)dr 
i=O 

(ih+h') 

+ '0 (,(t) + j '(T)'(t - T)dT) 1, (19) 
o 

with 0 and w being defined as in (18) and F and q being defined as in (IS.g)­

(IS.e). The A-set is defined by (38). 
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REMARK 6. Note that if PI = 2n - 1 and P2 = m + 1 then all the 

functions ).O{- ) and ).'O{- ) in Eq. 14 and Eq. 16 are deleted then the closed­

loop spectrum would be dependent of the higher powers of exp ( - hs). Also, 

max(Pl, P2) < n in order that the two-variable diophantine equations associated 

with the pole-placement problem have a solution for some parametrization () of 

the controller. 

The next assumptions about both plant and controller are made to address 

the model matching problem in the case of known plants. 

Assumption 1. (a) Both the internal and external delay, are bounded and the 

plant is strictly proper (i.e.; n > m and (open-loop) stabilizable; i.e., rank [sI -

A - exp( -hs )A1 , d] = n for all sEC: with Re s ~ 0 if Controllers I or III 

are used. 

(b) The delays are bounded and the plant is strictly proper and strictly stable 

if Controllers 11 or IV are used; i.e., det(sI - A - exp(-hs)Al) = 0 has all 

roots in Re s < O. 
Assumption 2. The parameterized part of the controller is spectrally con­

trollable and strictly stable; i.e., F, Fi (i = 1, 2, ... , n - 1) and q are chosen 
verifying 

[ 
n-l 1 

rank sI - F - ~ exp( -ihs)Fi, q = n -1, 
.=1 

all sEC, (20.a) 

and 

( 
n-l ) 

D(s) = Det sI - F - ~exp(-ihs)Fi 

n-1 n-ln-1 (20.b) 

= L Di(s)mi = L L dki skmi = 0 
i=O k=O 

has all roots in Re s < 0, with Fi = 0 (i = 1,2, ... , n - 1) for Controllers 

III and IV and, furthermore, all D(-)(. )-polynomials are monic; i.e., Di(S) = 
sn-1 + Di(S) with deg Dj(s) = n - 2. 

The stabilizability Assumption l(a) is necessary for stabilization purposes. 

If could be substituted by the stronger one of plant spectral controllability, 

namely, the given rank condition holds for all sEC. Assumption l(b) is 

stronger than Assumption l(a) and it is motivated by the fact that Controller 11 

and IV involve the use of convolution integrals over increasing time intervals. 
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The next result, which is proved in Section 3.2, is related to the role of the 

auxiliary set 1\(0, t) for synthesis of the closed-loop transfer function. 

Proposition 1. (Achievable Transfer function from 1\(0, t)). Assume that 

Assumptions 1-2 hold and consider the factorizations B(J-t, J-t/, s) = B:(s) 
B; (s) of Lemma 1 for a given p > ° and D(Il, s) = D1(S)D2(S) of Lemma 

A.l(i) with all the zeros of D1 (s) in Cl c ct and those of D2( s) in C2 C C~ 
P P 

and C~ = {z E C; Re z ~ _pI} some pI > 0. Thus, for any Controller 
p , 

structure I to IV parameterized at 0 E Rnc, these exits an auxiliary set 1\(0, t) 
such that the closed-loop transfer function is given by 

where 

so that 

y(s) cokpD(Il, s)B(Il, Il', s) Co kp B; (s)D2(s) 
r(s) = M(s)[Qo(s) + Ql(ll, s)] = Qo(s) + Ql(J-t, s)' (21) 

M(s) = Dl(S)Bt(s) 

_ {[I+(I~IlI)C(S)] 
- 1 

[1 + c(s)] 

(Controllers I and III), 

(Controllers 11 and IV), 

_ 1 [1- Dl(S)B:(S)] 
c(s) = L{c(-t)} = 1- Il' D1(S)B/(s) , 

_ _ 1 - D1(S)B:(s) 
c(s) - L{c(t)} - () +() , D1 S Bp s 

(22.a) 

(22.b) 

(22.c) 

and Qo( s) + Q1 (Il, s) is calculated from (32), (33), (35) and (37) (Section 3.2) 

for the Controller structures I to IV, respectively with Q1 (J-t, s) = 0 being delay­

independent and for Controller structures 11' and IV. Note that (22.b) is a syn­

thesizable signal since L{ (1- q,-l )c( -t)} = (1- D1 (s)B:(s»j Dl(S)B: (s) 
is a filter of zero relative degree having impulse response v(t) so that c( -t) = 
c( -t - hI) + v(t), or, c(t) = c(t - hI) + v( -t) for all t ~ 0, the negative time 

argument meaning that t is changed to (-t) when the filter impulse response 

is calculated (see Notation Section). 

2.4. Control objectives. A reference model defining the suitable behaviour 

for the plant is defined'by the transfer function 

G () G ( ') k Bm(ll, s) 
m S = m Il, Il , s = m A ( ) , 

m Il,S 
(23) 
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nm 
with Am(J.L, s) = Amo(s)+A;" (J.L, s) = L: Ami (s)J.Li . Although the numerator 

i=O 
of Gm(s) depends, in general, on the internal delay, its possible two-variable 

polynomial structure is not obvious, as an achievable objective, from the fac­

torization of the numerator of the closed-loop transfer function (21) and the 

considerations of Remark 5. This point will be discussed later since for model 

matching purposes, the numerator of (23) has to be fixed to that of (21). The 

next assumption is introduced. 

Assumption 3. The reference model is strictly stable and realizable so that 

all the roots of Am(J.L, s) = 0 are in Re s < 0 and nm = degs(Am(J.l, s)) ~ 
mm = deg(Bm(J.L, s)). Furthermore, nm - mm ~ n - m (thus, the controller 
is strictly proper from Assumption lea»~. 

Note that. the reference model is realizable and model matching is an "a 

priori" achievable objective since nm - mm ~ n - m. The control objectives 

are: 

Objective 1 (Model matching with infinite spectrum independent of the exter­
nal delay). In this case, BERne exists such that (21) equalizes (23) with 

A;" (J.L, s) =I O. It can be divided into two subobjectives, namely: 

(a) Gain and zero matching: The following design constraints hold 

Co = kmk;l and Bm (s) = B; (s)D2 (s). Since D(J.L, s) is freely designed 
by choosing the matrices F and FO' the reference model includes the un­
stable plant zeros related to the stability domain et plus a number of free 

stable zeros given by D2 (s). Note that degs(D2) = mm - degs(B;) ~ 

m + nm - n - deg(B;). 
(b) Pole-assignment: It is achieved with a particular controller within 

the Controller structures I and 11 provided that there exists a parameter 

vector BERne such that Qo(s) + Ql(J.l,S) = Am(J.L,s). This objective 
is unachievable with Q 1 (J.L, s) =I 0 from the Controller structures III and 

N since those ones do not possess internal delays. 

Objective 2 (Model matching with finite spectrum). It is similar to Objective 1 
but A;"(J.L, s) = 0 so that the closed-loop characteristic equation can match to 
that of a delay-independent reference model. 

Objective 2 will be proven to be achievable with any of the given controller 

structures under a set of (rather weak) Assumptions including Assumptions 1-

3. The existence of particular parametrizations B of Controllers I-IV leading to 
the achievement of Objectives "1-2 is addressed in the next main result of this 
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section which is proven in Section 3.2. 

Theorem 1. Under Assumptions 1-3, consider the factorization for 
B(ft, ft', s) and D(ft, s) of Proposition 1 for arbitrary real positive con­

stants PI and P2 with Co = kmk;1 and c( -t) (Controllers I-m) or c(t) 

(Controllers II-IV) being defined by (22.b) and (22.c), respectively. Thus, 
the next propositions hold. 

(i) If n - 1 ~ PI ~ P2 ~ 0 and 0'2 =f. 0, then a (nonnecessary unique) 
parameter vector 0 and a set auxiliary functions, 1\(0, t) parameterized at 
0, exist for Controller I so that Objectives 1-2 are achieved for any strictly 

m 

Hurwitz Am(ft, s) = Amo(s) + A;' (ft, s) = E Ami (s)fti (A;' (ft, s) being 
;=0 . 

zero for Objective 2) provided that the next two conditions hold: 

1. deg(Am;(s» = 2n -1 if~'l =f. 0 and deg(Ami(S» = 2n - 2 if(J'1 = 0 
for i = 0,1, ... ,PI, 

2. Each polynomial pair (Ao(s), Bal)(s) + 0; Ba2\s») is a coprime pair; 
i = 0,1, ... ,PI with 0; = 1 for i = 0, 1, ... ,P2 and 0; = 0 for i = 
P2+1,P2+2, ... ,PI, A sufficient condition is that A(O, s), B(O, 1, s) 
and B(O, 0, s) be coprime in the variable s. 

(ii) Proposition (i) holds for some parametrization of Controller 11 pro­
vided that Condition 1 holds and (Ao(s), Bal)(s») ~r, equivalently, A(O, s) 
and B(O, 0, s) are coprime pairs. 

(iii) Objective 2 is achieved for some parametrization (J of Control­
ler m provided that A;' (ft, s) = 0, Condition 1 holds for i = 0 and the 

maximum common factor of (;~ A;(s») and eta (B}l)(s) + B}2\S»)) or, 

equivalently, that of A(I, s) and B(I, I, s) divides Amo(s). 

(iv) Proposition (iii) holds for some parametrization of Controller IV 
provided that the last condition is changed by the maximum common 

factor of Ao(s) and Ba1)(s) or, equivalently, that of A(O, s) and B(O, 0, s) 

dividing Amo(s). 
The alternative conditions on quasipolynomials which guarantee the fulfil­

ment of Theorem 1 [(i) - (iv)] follow directly by comparison with those es­

tablished for one-variable polynomials. In the same way, the replacement of 

the coprimeness conditions of (i) - (ii) by more general ones is obvious by 

first cancelling all the common factors in the diophantine equations so that the 

resulting conditions become converted into coprimeness conditions of the co-
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efficient polynomials. Each (one-variable) solution can only be explicited after 

expliciting the associated ones which those corresponding to preceding powers 

of Jl. 

3. Mathematical proofs 

3.1 Preliminary technical result to Lemma 1. The proof of the next result 

leads directly to Lenuna 1. 

Lemma 2. Consider disjoint sets ct and C; for any real constant v 

and any two-variable polynomial 

Q(s) = Q(Jl, Jl', s) =Ql(Jl, s) + Jl'Q2(Jl, s) 
mq 

= L [qr1)(Jl) + Jl'q~2)(Jl)]smq-i, (24) 
;=0 

with 
n qi1 

q~l)(II.) = """" q(l) , "k 
• r L mq-",kr 

k=O 

(q~~) # 0 if h # 0), (25.a), 

nq 

= L q~~_i,kJlk (qW # 0 if h' # 0), (25.b) 
k=O 

and nq = m,ax (nqil' n qi2 ) so that some of the bO-coefficients in (25.a)­
O<;.<;mq 

(25.b) can be structurally zero. Then, the following propositions hold: 

(i) If h # 0, then a unique (except for a nonzero constant) factorization 

Q(s) = Qt(s)Q;(s) exist with the zeros (which can, possible, be an infi­

nite number) of the complex variable functions Qt(s) and Q; (s) being in 

ct (s) and C; (s), respecti vely. 

(ii) If h = 0 and , then there exist Qt (s) and Q; (s) with the same 

properties as in (ii) such that Q(s) = exp(-h's)Qt(s)Q;(s). 
(iii) Q( s) can be uniquely factorized, except for a nonzero constant, as 

Ql(S)Q2(S) with Ql(S) and Q2(S) being complex-variable functions which 
have zeros on (nonnecessarily connected) arbitrary disjoint subsets of C. 
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Proof. (i) For all complex S = u + jw, Ipl = I exp(-hu)l, Ip'l = 

[ 
mq 

lexp(-h'u)l· From (24)-(25), Q(s) = smq i~ (qP)(p) + p'q~2)(p))s-i] 

since h j:. 0, qW j:. 0. Thus, note the following facts: (a) IQ(s)1 -+ 00 at the 

rate lulmqlq~~)1 as u = Re(s) -+ +00, since p -+ 0, p' -+ 0 as u -+ +00, 

namely, there exist two positive real constant k1 and k2 (k2 ~ k1) such that 

for some positive real constant U1 and all u = Re (s) ~ U1, k11ulmq Iq~~) ~ 
IQ(s)1 ~ k21ulmq IqWI· 

(b) IQ(s)l-+ 00 as u = Re(s) -+ -00 at the rate of 

max [ max (exp(jhlul)lq~J~)llulmq-i), 
O"J"nq 
O::&ti:Etmq 

In particular, that divergence occurs at the rates of exp(hnqlul)lq~~) I or 
q 

exp[(n h + h')lulllq(2) I if q(l) ../.. 0 and q(2) = 0 or q(l) = ° and q(2) ../.. 0 q On q On q r Onq ' On q Onq r , 
respectively. 

By combining (a) and (b), IQ- 1(s)1 -+ 0 =? Q-1(s) -+ 0 for u -+ ±oo as 

Isl -+ 00. Now, proceed by contradiction by assuming that Q(s) has no zeros 

so that Q-1(s) is analytic in C and converges to zero as Isl -+ 00 and, thus, 

is bounded in C. Then, by LiouvilIe's theorem [17], the analytic and bounded 

function Q-1(s) is constant in C which is a contradiction to its convergence to 

zero as Isl-+ 00. Thus, Q(s) has a zero So E C so that Q(s) = (s - Sl)Q1(S) 
for some complex-variable function Q1(S). Now, proceed recursively from 

j = 0 to j = Cl' to yield Q(s) = CD: (s - Si)] Qj(S) = [bo (s - Si)] Qj+1(S), 

where Sj E C is a zero of Qj+1(S), where a is some finite or (denumerable) 

infinite nonnegative integer such that Q <>+1 (s) = k Q, some real nonzero con-

stantkQ.Thus,Q(s)=kQ[.[I(S-Si)] =kQ[ n (S-Si)][ n_(S~Si)] 
1_0 SiC;J siEC" 

and the proof of (i) is complete with Qt (s) = n (s - Si) and Q; (s) = 
siECj" 

n (S-Si). 

(ii) For h = 0 and h' j:. 0, Q(s) = j.l'fJ(s) and (i) can be applied to O(s). 

(iii) If follows directly from Q(s) = kQ Lfro (S-Si) = kQQ1(S)Q2(S) with 
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Qj(S) = n (S - Sij) (j = 1,2) for arbitrary disjoint subsets Dl and D2 
sijEDj 

ofC. 

3.2. Achievable closed-loop transfer functions from the Controller struc­

tures I to IV 

3.2.1. Preliminary technical lemmas. The next two result are then used in 

the next subsections: 

Lemma 3. Consider the Laplace transformable functions p: (-00,0]-+ 
R, p: [0,00) -+ R and v: [0,00) -+ R with pet) = p(-t) for t ~ 0. Then, 

L{ f~b p(r)v(t+r) dr} = (I-exp( -8s»p(s)v(s) for any real constant 8 ~ 
0, where pes) = L{p(t)} = L{p(-t)}. Also, for any Laplace transformable 

function p: [0,00) -+ R, L{ fboo p(r)v(t + r) dr} = exp( -8s)p(s)v(s). 

Outline of proof. To prove the first identity, take LapIace transforms in 

the identity f~b p( r)v(t + r) dr = fooo p( -r)v(t - r) dr - fooo p( -r)[v(t -
r)Ub(t - r)] dr where Ub(r) is the unity step function at t = 8. 1be second 
identity can be found in any basic introductory text to Laplace transforms. 

q . 
Lemma 4. Consider two-\Tariable polynomials Q(J-l, s) = L Qi(S)J-l1 

i=O 
q' . 

and Q'(J-l, s) L Q;(S)J-lI. Then, Q(J-l, s) Q(J-l, s)Q'(J-l, s) 
i=O 

q j +q . q' j +q . 

L L Qj(s)Q:_j(S)J-l1 = L L Qj(S)Qi-j(S)J-l1 
j=Oi=j j=Oi=j 

= 

max(i,q) max(i,q) 

L Qj(s)Q:_j(s) L Qj(S)Qi_j(S) 
j=max(O,i-q') j=max(O,i-q') 

(i=O,l, ... ,q+q'). 

The proof follows directly by expanding in powers of J-l. 

3.2.2. Calculations of A(q,t) for Controller Structures I-IV. Proof of 
Proposition 1 

Controller structure I. By taking Laplace transforms in (IS.b) - (IS.d), with 

zero initial conditions so that y( s) = G( S )u( s) with G( s) defined in (9), one 
gets directly 

(26) 
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with 

(l = 1,2) (27) 

with N/(J.l, s)j D(J.l, s) (l = 1,2) being strictly proper that implies the realiz­

ability of F(-)(s) since degs(N(-)(J.l, s)) ~ degs(D(J.l, s)) = n - 1 with strict 

inequalities holding if and only if 0(.) is zero. By taking Laplace transforms 

in (14) with zero initial conditions and the use of (26) - (27) together with 

Lemma 3, one gets directly 

u(s) =CO [1 + (1 - J.l')c(s)]r(s) 

{ 
2n-l n+m-l 

+ i=~l (1 - J.li)Xi(s) + (1- J.l')A(s) + i=~l (1 - J.L' J.li)XHs) 

1 
+ D(J.l, s)A(J.l, s) [A(J.l, s)N1(J.l, s) + B1 (J.l, s)N2 (J.l, s) 

+ J.l'B2(J.l, s)N2(J.l, s)] }U(S), (28) 

with c(s) = L{c(-t)}, X(s) = L{>.(-t)} , A(-)(s) = L{>.O(-t)} and 

X(.)(s) = L{>.(./-t)}. The particularization of (3) to the plant (9)-(11) and 

Controller I, (14) - (15), leads to 

n m 

A(J.l, s) = L A; (s)J.li; B/(J.l, s) = L B}/) (s)J.li , (29.a) 
i=O i=O 

n-l 

D(J.l, s) = L Dj (s)J.li; 
i=O 

(29.b) 
n-l n-2 

N/(J.l, s) = L NP)(s)/ = L N;I)(s)J.li + OfD(J.l, s) 
i=O ;=0 

for I = 1, 2. The substitution of (29) into (27) and the use of Lemma 4 yield 
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{~ [;~. (D;(') - N}')(,»)A;-;(,) - :t, Nj')(')Bi~;(')]"; 
2n-l [ n-l 

+ if.l D(Jl, s)A(Jl, S)Ai(S) + j~l (Dj(s) - NP)(s))A;_j(s) 

- ;~, Nj')(')Bi:\(')] / - D(", ,)A(", ,) [X(') ;};" X;(,) 

n+m-l ] n+m-l[ 

+ ;=~l A~(s) + ;=~1 D(Jl, s)A(Jl, S)A~(S) 

- ;~, Nj')(')Bi:\(')k l + [D(", ,)A(", ,)A(.) 

-~ C~, Nj')(')Bi~;('») "}, }u(,) 
=co [1 + (1 - Jl')c(s)] D(Jl, s)A(Jl, s)r(s), (30) 

with j;l = max(O, i - n), j;2 = max(O, i-m). Now, the subset A((}, t) of 
A((}, t) is determined for any controller parametrization () by taking Laplace 

antitransfonns of 

[ 
P2 n-l ] - _ 1 (2) (2) ; 

A(S) - D( s)A( s) ~.~ Nj (s)Bi_j(s) Jl , 
Jl, Jl, ,=0 J=Ji2 

(31.a) 

[ 
n-l 

- _ 1 (1) 
A;(S) - D( )A( ) L (Nj (s) - Dj(s))A;_j(s) Jl,s Jl,s .. 

J=Ji, 

+ ;~, Nj')(')BI:\(')] , (31.b) 

i = PI + 1,Pl + 2, ... , 2n - 1, 

[ 
n-l ] -, _ 1 (2) (1) 

A;(S) - D(Jl, s)A(Jl, s) .~ Nj (S)Bi_j(S) , 
J-J'2 

(31.c) 

i = P2 + 1,P2 + 2, ... , n + m-I. 
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Now, substituting (22.b), (31) into (30) and the obtained u(s)/r(s) into the 

closed-loop transfer function y(s)jr(s) = G(s)u(s)jr(s) leads directly to (21) 
with 

Qo(s) = [Do(s) - N6 1)(s)] Ao(s) - N62)(s) [B~l)(s) + B~2)(S)] 

+ { .2f:l [.~ (Dj(s) _ N?\s)) Ai_j(s) 
'=p,+l J=J', 

n-l 

- L: NP\s)B}::j(s) 

_ .2f1 .~ NP)(S)B}:~(S)]}, 
'=P2+ 1 J=J'2 

(32.a) 

p, [n-1 
Q1(/1-,S) = tt j~, (Dj(s) - NP)(s)) Ai_j(s) 

- J~' Nj')(,)B!'lJ(')] P; 

-t, [i~' Nj')(,)B!:>;(,)k, (32.b) 

and Proposition 1 is proved for Controller I. 

Controller structures IT-ill and IV. The results for the remaining Con­

trollers, obtained in a similar way as in the previous subsection, are the follow­

ing: 

(i) Controller 11: 

Qo(s) = [Do(s) - N61)(s)] Ao(s) - N62)(s)Ba1)(s), (33.a) 

p, [n-1 
Q1(/1-, s) = tt j~, (Dj(s) - N1j(s))Ai_j (s) 

(33.b) 

with 
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i = PI + 1,PI + 2, ... , 2n - 1, 

(34.c) 

i = P2 + 1, P2 + 2, ... , n + m-I. 

(ii) Controller Ill: 

Qo(s) = (~Ai(S)) [D(s)-NI(S)] - ~ [BP)(s)+Br2)(s)]N2(.s), (35) 

with 

,\.(S) _ Aj(s)[NI(S) - D(s)] + B~I)(s)N2(S). 
,- D(s)A(J-l, s) , 

i=1,2, ... ,m, 

,\j(S) = Aj(s) [NI(S) - D(s)] 
D(s)A(J-l, s) 

i = m + 1, ... , n j = 0,1, ... , m. 

(iii) Controller N: 

with 

Aj(S) 
[D(s) - NI(S)] Aj(s) - N2(S)BF\~) 

D(s)A(J-l, s) 

i=1,2, ... ,m 

Aj(S) = [D(s) - NI (s)] Ai(S) A'.(S) = N2(s)B?)(s) 
D(s)A(J-l, s) , J D(s)A(J-l, s) , 

i = m + 1, m + 2 ... , n j = 0, 1, ... , m. 

(36.a) 

(36.b) 

(38.a) 

(38.b) 
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3.3. Proof of Theorem 1. (i) From (24), the numerator of (21) equalizes 

that of (23) and zero matching is achieved for any reference model including 

the unstable plant zeros and having free stable zeros at D2(J.l, s) = O. Note 

that the degree constraint on the factor D2 of D(J.l, s) ensures that the relative 

degree of the closed-loop transfer function is non less than that of the plant 

(Assumption 3). Thus, Objectives 1-2 are fulfilled for the auxiliary set A(O, t) 
generating the closed-loop transfer function (21) if and only if the denominator 

of (21) and (23) become equal for some 0 (namely, if and only if pole-placement 

is achieved for some 0). Thus, Objective 1 is achieved if and only if for any 

arbitrary polynomial Amo(s) of degree 2n - 1 

Qo(s) + Ql(J.l, s) = Amo(s) + [Amo(s) - Amo(s)] + A~(J.l, s), (39) 

and Objective 2 is fulfilled if and only if (39) holds with Ql(J.l, s) = O. From 

(27), NP) = Jt/(s) + Of Dj (s); j = 0,1, ... , n - 1, I = 1,2. Thus, the 
substitution of (32) into (39), by separating the powers of J.l, yields the following 

set of equations 

[N~I)(S) + BiDo(s)]Ao(s) + [B~l)(s) + B~2)] [N~2)(s) + B~Do(s)] 

= Do(s)Ao(s) - Amo(s), (40.a) 

i-I 

= L [Dj(s) - NP)(s)] Ai_j(S) - NP)(s) [B?)(s) + 8i B?)(S)] 
j=o 
+ Di(S)Ao(s) - Ami(S); i = 1,2, ... ,PI - 2, (40.b) 

2n-l n-l 

= Amo(s) + Dpl_l(S)Ao(s) - Amo(s) - L L NP\s)B}:.~(s) 

J~L { ;~ [Nj')(,) - D;(s)]A;_J(s) 
i#p! -I 

(40.c) 
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[N~~)(s) + O~Do(s)]Ao(s) + [Bal)(s) + bp,Ba2)(s)] [NJ2\S) + O~DPl (s)] 
PI-l 

= L [Dj(s) - NP)(s)] Ai_j(S) - Ny)(s) [By)(s) + bpIBY) (s)] 
j=O 

+ DpI (s)Ao(s) - Ampl (s)]. (40.d) 

Remark in the proof. Although (40.a) and (40.c) are both obtained for 

the J.l0 -power in (39), they cannot be jointly solved in the pairs (Ng), Ng) 

since the right-hand-side terms of (32) posses common triples (NrY , Ng), D(.» 
of polynomials corresponding to powers J.l0 and J.li (i =1= 0). To achieves 

decoupling, the arbitrary polynomial Amo (s) is used and the resulting equation 

for the J.l°-power is split into (40.a) and (40.c). 
To pursue with the proof, note that deg(Np)(s)) ~ deg(Np)(s» = n-I < 

deg( Ao (s» = n if O2 =1= 0, with the first inequality becoming an equality if 0i =1= ° so that each Eq. (40) has a unique solution (NP\s), N j(2) (s») [or, equiva­
lently, (NP)(s), N j(2)(s), Oi, O2) for i = 0, I, ... ,PI for any arbitrarily prefixed 

(NP)(s),NP)(s)); j=PI+l,PI+2, ... ,n-1, i=O,I, ... ,n-l, 1= 1,2 
provided that the given coprimeness assumption holds for each prefixed set of 

polynomials Am;(s); i = 0, I, ... ,PI of degree 2n - 1 if 0i =1= ° and O2 =1= ° 
and 2n - 2 if 0i = ° and O2 =1= 0, [23]. The solution is built recursively from 
k = ° to k = PI by using for each equation in (40) corresponding to each k-th 
power of J.l, the previously calculated to (NP)(s), NP) (s »; j = 0, 1, ... , k-l 

calculate (Nkl)(s), Nk2)(s) for each k = 0,1, ... ,PI for prefixed D(J.l, s) and 

(NP)(s), Nj(2)(s)); i = PI + I,PI + 2, ... , n.- 1. Thus, proposition (i) is 
proved. The proofs of (ii) - (iv) follow similarly by using (33), (34) and (35), 

and Theorem 1 is proved. 

4. Simulated examples. The main purpose of this section is to verify the 

theory presented in the previous sections by numerical simulations. In the 

following examples, we check the performance of the proposed controllers 

even for unstable plants, in the achievement of Objectives 1-2 by using the 

Controller structure I, in Examples 1 and 2, and the Controller structure 11, in 

Example 3. Controllers III and IV could be considered as particular cases of 

Controllers I and 11 and have not been explicitly simulated. 

Example 1. In this example, we analize the performance of Controller 

structure I for the transfer function O(s) = 1/(s2 + 2s - 1 - J.l). 
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The model reference transfer function is Gm(s) = 1/(82 + 5s + 6). 

We apply the proposed Controller structure I by choosing F = -5, q = l. 
With this choice the parameter vector is () = (-3,42, -3, -17) and the ..\(t)­
function transform: 

~(t) = ..\( -t) ~ X(s) = (s + 5) . 
(s2 + 2s - 1- J.t)(s + 5) 

Fig. 2 summarize the results of this numerical simulation for a step input. 

--&- plant output Y=Vm 

--plant input U 

Y=Ym' 0.8 T···················· .. ·······T··············· .. ··:·· ........................................ . 

U 
0.6 ................. -.... -.. -..... -..... ~ ................ ··························f··························· ....... , ....... j 

i . ! 

0.4 ..... _ ................................. :.1 ....................................... .1.. ........................................ ; 
I::.' j 

0.2 .................................... ..l .......................................... l .......................................... ! 
! 

o .................................... .1 .......................................... j ••.••••..•••..••.••••..•.••.•. ············1 
: : . 
i 1 
1 i 

-0.2 ..... ..... _ ...... _ ............... '1' ........................................ '1" ............................... · ........ 1 

-0.44,----------+---------~----------~ 

o 5 10 15 t sg. 

Fig. 2. Example 1. Plant input and output. Model output. 

As a proof of robustness, we present the numerical simulation of the former 

plant with a perturbated plant G(s) = (1 - J.t}/{s2 + 28 - 1 - 1') without 
modifying the nominal controller. In Fig. 3, we summarize the results of the 

robustness performance. 

Example 2. The Match control for a Iinearized Wind Thnnel Model has 

been considered. In steady-state operating conditions, the dynamic response of 
the Match number perturbations 6 M to small perturbations in the guide vane 
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--e-- plant output Y 
• - ••• model output Ym 

-- plant input U 

Y 40 
Ym 

.................. ,.................. ..................................... . ...... , .............. . 

U 30 

20 :~=E~-r:~~::1~:~-:t-:~-r:::J 
10 

o 

·10 

-20~----+-----+-----+-----~----r---~ 

o 1 2 3 4 5 6 t sg. 

Fig. 3. Example 1. Robustness performance. Plant input and output. 

Model output. 

angle actuator 60 A is described by the next differential system: 

T6M(t) + 6M(t) = k60(t - h), 

80(t) + 2(w8(j(t) + w268(t) = w288A (t), 

where 68(t) is the guide vane angle, and T, k, h, C, w are parameters defining 

the operating point. These are considered constants with small perturbations. In 

the state variable form we have added a term depending on the Match number 

perturbation. The reason for this is the achievement of closed-loop transfer 

function for the plant with infinite or finite spectrum to the designer's choice. 

One of the more important features of the presented controller is its capacity of 

controlling that class of systems. The system in state variable form is written 

as 

:Cl = -azl + kaz2(t - h), 

:C2 = Z3( +zt} -+ added term, 

:C3 = -W2 Z2 - 2CWZ3 + w2 u, 

where a = liT, Xl = 8M, X2 = UJ, X3 = 80, u = 60A . With a = 1, k = 
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10, ( = 3, w = 4 radsls and h = 0.2. The plant transfer function is: 

40 
Gm{s) = 3 2 ' 5 + 135 + 165 + 4 - 10511 - 12011 

and the model reference transfer function is: 

40 
Gm {8} = . 

53 + 252 + 128 + 10 

Choose F = (~6 !5) and ql = 0, q2 = 1. The parameter vector 8 and 

the ~(t)-function Laplace transform., displayed on Fig. 4, are: 

0= (-76, 10, -10, -5144, -3340, -10160,360, -1200, -100, 842), 

- - -60{82 +58+6) 
~(-t) = ~{t} - ~{5} = . 

(53 + 1352 + 165 + 4 - 10511 - 12011)(52 + 55 + 6) 

1-- lambda signal I 
A( t) 0 . 0 0 4 ........ _ ........... '!" ................... r" ................. '( ................... --:-.................. . 

.. ·· .. ·········· .... ·! .. ··· .. ········· .. ··r················· t ..................... ! ..................... : 0.0035 

0.003 

0.0025 

······················1·························1"· 

0.002 

0.0015 

0.001 

0.0005 

0 
. . '---j 

0 0.02 0.04 0.06 0.08 0.1 t s9. 

Fig. 4. Example 2. 5.{t)-function, being 5.{t) = ~(-t). 

In Fig. 5.1, the initial conditions are zero for the plant and for the reference 

model. Similar results will be obtained with the Controller structure 11. In 

Fig. 5.2, initial conditions are zero for the reference model and :1:1(0) = 
0.1, X2(0) = X3(0) = 0 for the plant. In both cases, the reference input is 

r(t) = 10 sin(O.It). 
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--e- plant output Y 
- - ~. - model output Ym 
.•... plant input U 

Y 150 
Ym 
U 100 

50 

0 

-50 

·100 

-150 
0 5 10 15 20 25 30 35 40 t sg. 

Fig. 5.1. Example 2. 'kro I.C. Plant input and output. Model output. 

--e-- plant output Y 
-.~.- model output Ym 
••••• plant input U 

: ~ o 

-50 

-100 

o 5 10 15 20 25 30 35 40 t sg. 
Fig. 5.2. Example 2. Non zero I.C. Plant Input and Output. Model Output. 
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Example 3. Now, the behaviour of the Controller structure 11 is proved 

by choosing the same data as in the prerious example but using 2: 1 (0) = 
0.2, 2:2(0) = 2:3(0) = O. Fig. 6 summarizes the results for this simulation. The 

parameter vector 8 and the Laplace transform of A(t) are: 

8 = (-76,10, -10, -5144, -3340, -10160, 360, -1200, -100, 902), 

A 8 _ .-60(82 +58+6) 
( ) - (83 + 1382 + 168 + 4 - lOsJl - 120Jl)(82 + Ss + 6)' 

--e- plant output Y 
-.~-- model output Ym 
. - - -' plant input U 

Y 200 
Ym 
U 150 

100 

50 
-!I~I:::I:::~~:I:::I:~:~!:::~II:--::' 

0 
1 : ! ., r ~ 

f' .• "i .·~··············t'·"'·········~-·····'·'······i····· ·····-·-··t······-······t~··, ···~···············l 

- 5 0 

-100 

-150 

I .~ ••. ~ .. t ............ L ............. ; .- ........ !...... . .... j ..... -~ .. '!I-.i ......... -... --; .......... -.... i 
~ . . . . . 

-::::C't:::r:-:r-:r:j'l 
-200 

. . . . i 

o 5 10 15 20 25 30 35 40 t 59. 

Fig. 6. Example 3. Plant input and output Model output 

For the computation of the convolution integral, the next modification of the 

Controller structure is considered 
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t 

J >.(r)u(t - r) dr ~ jj>'(s)u(s) = jj A(~~(S) :~~~) r(s) 
h 

_ jjr(s) L- 1 ( h) 
- Am (S) -- Y t - . 

Since >.(s) = l/A(s) and u(s) = A(s)/Am(s)r(s) with A/Am being real­

izable with deg.(A) = deg.(Am). The above change makes easier (and in this 

example equivalent to the theoretical one) the controller realization. Note that 

although it is not recommended the use of Controller 11 or IV for unstable plants 

(see Assumption 2.b), it is seen in this example that the associate performance 

is acceptable. 

5. Conclusions. In this paper, four controller structures have been proposed 

for closed-loop plant delays when both delays are finite and known. The four 

controller structures involve a memory effect in the control action to compensate 

for the presence of delays. Such a memory acts, in general, in two ways, namely, 

the parameterized part of the controller can consist of a linear dynamic system 

involving (internal) delays and, furthermore, a set of weighting functions which 

ponderate the input time-integral is additively used to generate the plant input. 

The first memory effect is used to make possible the achievement of delay­

dependent pole-placement control objectives and it can be omitted in the case 

when finite-spectrum assignability is suited. The second memory effect is used 

to cancel the unsuitable multiples of the internal delay and their combinations 

with the external one which are generated through the feedback loop and which 

are not prefixed in the control objective. Two important design features are that 

the plant is allowed to posses unstable zeros and the closed-loop characteristic 

polynomial can be of finite or infinite (namely, delay-dependent) spectrum in 

accordance to designer's choice. 
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TIESINIQ SISTEMl,! SU vELINIMU 

POLIQ PADETIES VALDYMAS 

Manuel de la SEN, Josu JUGO 

Straipsnyje nagrinejami tiesinht sistemlt su velinimu polilt padeties valdymo rob as­

tiniai algoritmai. Nagrinejamos sistemos su vidiniu ir isoriniu velinimu, jlt modeliai bei 

valdymo algoritmlt struktiiros, kai valdymo taisykles apibiidinamos keturiais desniais. 
Pateikiami formuluojamlt uMavinilt matematiniai sprendimai, modeliavimo pavyzd~iai. 


