
INFORMATICA, 1995, Vol. 6, No.4, 483-496

THE ROLE OF ANALOGY IN REUSE

Audrone LUPEIKIENE

Institute of Mathematics and Infonnatics
2600 Vilnius, Akademijos St. 4, Lithuania

Abstract. The development of software systems is intensive person-oriented process.
Therefore it is essential to use previous experience and knowledge. The extension of
reuse through analogy is analysed in this paper. The proposed grouping of analogical
methods, rules, etc., relies on their adaptability to application software development.
The emphasis here is on analogue as a criterion to safeguard the desirable properties of
application software. Knowledge kinds and mechanisms to enable reuse through analogy
are discussed.

Key words: reusability, analogy, requirement specification, consistency, complete­
ness, adequacy.

1. Introduction. The possibility of learning to use previous experience and
artefacts is very important in software systems development. Working out new

problems people usually do not look for a new solution but a similar problem
have been solved earlier is looked for. A new problem is often solved by

adapting the solution of the old one. Reuse in software systems development
encompasses all the resources produced during earlier development. Reuse is

usually applied during the software systems implementation phase to reuse code

fragments and skills. Reuse during the first software systems development phase

has recently begun to be investigated (Horowitz and Munson, 1987; Maiden,

1991).

Reuse is typically analysed as procedure of correctness-preserving nature

(De Antonellis and Pernici, 1995; Balzer, 1985). Reuse may benefit from weak­

ening this property and introducing heuristic rules such as analogical reasoning

especially when we deal with informal user's specification. Analogical rea­

soning has been studied by many researchers in relation to problem solving

(Carbonell, 1983) and artificial intelligence problems (for example, learning)
(Winston, 1982; Gentner, 1983; Greiner, 1988; Hall, 1989). The idea to use

484 The role of analogy in reuse

analogy in automatic synthesis of programs (code) has been developed in Der­

showitz (1985). Analogy as one of the means of reusing specifications during

the early stages of software systems development has been analysed in Maiden

(1991), Lupeikiene and Lempertas (1990).

Software reuse implies not only the software productivity but also the soft­

ware quality. Product quality depends on the quality of its components. Quality

is possible if its criterion is defined. Analogue can serve as extcrnal criterion to

safeguard the correctness of application software (Lupeikiene and Lempertas,

1990) especially in the first development stage when we deal with informality.

In this paper the attempts to motivate reuse extension through analogy are

presented. Different analogical methods are categorized on their adaptability to

application software development. At the end of this paper knowledge kinds

and mechanisms to enable reuse through analogy are discussed.

2. Development of application software. People always use their expe­

rience for solving new problems. Whcn a new problem is to be solved, a

similar problem from the earlier experience is looked for. To use something
again means to reuse it. According to Freeman (1987) reusability is an activity

that produces a system by reusing something from previous development effort.

Knowledge and artefacts are reused in application software development.

Dealing with reusability two general classes of software systems develop­

ment approaches can be distinguished:

1. Reusable processors, where interpreters for executable high-level spec­

ifications are reused (for example, Horowitz and Munson (1987».

2. Reusable mapping systems, where development of software system is

the sequence of transitions from i level description Di to i + 1 level de­

scription Di+l obtaining executable program/code. The mapping types

are:

• transformation (for example, Balzer (1985), Horowitz and Munson

(1987»,

• translation,

• refinement (for example, WIrth (1971), Miriyala and Harandi (1989».

The mapping system can be defined as the pair (Di' M RDi--+Di+l)' where
Di is problem description in i level language, M RDi--+Di+l - mapping rules

from description D; to Di+1.

Let us take a closer look at transformational systems. Development in the

A. Lupeikiene 485

context of transformational view is:
• specification of a new problem in the language of i level obtaining i

level description Di,

• transformation Di -+ Di+1 of i level description into i + 1 level de- •
scription, and n level description meets implementation conditions: is
compilable, is in target language, is efficient, etc.

Transformation rules are fonnal and ensure correctness of the result i + 1 level
descriptions. These rules also preserve properties of i level descriptions in i + 1
level: consistency, completeness, adequacy.

Let us look at the process of application software development. Fig. 1 shows
application software life cycle for mapping systems. When a new problem
is defined its infonnal specification is presented. This specification contains
information

Application do­
main description

r------,~
User

requiremants

&~ domQin

Req~~1 s peclfica.tion

Fig. 1. Software life cycle in mapping systems.

S~tem
specification

about application domain and description of the task to be solved. The informal
specification presented by the user is the background for obtaining requirement
specification - a formal high level description reflecting the user's point of view
on the system. Requirement specification is mapped into system specification -
lower level formal description reflecting system developer's point of view on the
system. The last and the best analysed step in application software development
is the implementation of system specification obtaining executable code. Two

486 The role of analogy in reuse

additional domains are inseparable from this process: domain of system design

and domain of programming.

All mapping steps are the same (see Lupeikiene and Lempertas, 1990) in

the context of solutions of the problems outlined in this paper. Thus below we

examine the mapping: application domain description + user requirements -

requirement specification.

Transformational approach ensures correctness of the resulting executable

program/code by construction. It means that requirement specification must

be correct, i.e., requirement specification must be consistent, complete and

adequate. Problems arise because of mismatches between what the user wrote

and what he had intended. The user's information on application domain and
tasks to be solved as a rule is:

• insufficient (forgotten or unknown for the user),

• incorrect,

• unverified,

• ambiguous,

• old.
The user omits some information considering it to be well known from experi­
ence or common sense.

Reusability implies automation. Standard automatic application software
development methods require consistent, complete and adequate requirement

specification in a certain formal language. Automation in transformational sys­
tems requires consistent, complete and adequate 1 level description Dl and

transformational rules.

There are different approaches proposing methods and tools to obtain con­

sistent, complete and adequate requirement specification. We shall discuss

approaches which:

• analyse the specification itself,

• use external knowledge for analysis.

An example of internal analysis of specification is in Balzer (1985). R.Balzer

to partially overcome the problem of safeguarding the features of requirement

specification proposes to build paraphraser and examine the behaviour itself.

The paraphraser improves the readability of specification. Among the classes

of tools for dynamic specification analysis: theorem proover, interpreter and
symbolic evaluation - the latter is used. These tools allow to find only part of

A. Lupeikiene 487

inconsistencies and incompleteness: as much as the user him..<;elf can determine

from the other information representation form and from consequences of the
behaviour generated for the test case.

An example of first steps to use external knowledge for specification analysis

is in Levene and Mullery (1982). In order to ensure necessary properties of

requirement specification the attempt is made to expand the boundaries of one

person's understanding. The acquired requirement specification is compared to

a predefined standard one in a formal language. However, in such a way only

predefined inconsistencies can be determined and predefined knowledge can be

used to supplement requirement specification.

Analogical approach overcomes the enumerated problems and extends the

scope of external knowledge being dealt with (Lupeikiene and Lempertas, 1990)

for the reason that analogy supports reuse across domains. In the next section we
propose grouping of analogical methods relying on their impact to application

software development process.

3. Analogy in application software development. Analogy is similarity
of a certain type. According to G.Polya (1954) analogy is such similarity
which can be expressed on a concept level. Analogical situations correspond to

each other by certain relations. Analogical approach is based on presumption
that if two situations or descriptions are analogous in a certain aspect they

should be analogous in other aspects as well. Such pragmatic view allows
to analyse analogy as the mapping between two domains: source and target.

Analogy system can be defined as the pair (8, M RS_T), where S is source
description, M RS ___ T - mapping rules from source to target. From this point

of view analogy system is mapping system, where mapping type is analogical

derivation and i = 1.

Reuse may benefit from weakening formal correctness-preserving nature of

transformation systems and/or combining pure mapping types in one system.

Analogy has advantages in that it enables a wider variety of previous knowledge

and artefacts for reuse than less powerful techniques: matching on similarity,

abstraction, classification.

The analogical methods, rules, etc., proposed in Carbonell (1983), Choura­

qui (1985), Dershowitz (1985), Gentner (1983), Greiner (1988), Hall (1989),

lantke (1985), Maiden (1991), Miriyala and Harandi (1989), Winston (1982)
can be differently categorized. The categorization may rely on reusable knowl-

488 The role of analogy in reuse

edge kinds, nature of reusable knowledge (Mili et aI., 1995), etc. The catego­

rization relying on the analogy adaptability and impact to application software

development is analysed in this paper.

Problems which can be solved by extending transformation systems with

analogical reasoning to obtain requirement specification are the following:

A. Requirement specification complement in the case of missing informa­

tion.

B. Requirement specification consistency, sufficient completeness and ade­

quacy analysis and assurance.

Dealing with the A problem analogical methods can be categorized in two
types based on the extent to which the knowledge from analogues are reused:

• methods which aim to map maximum possible knowledge from analogue

to target,

• methods which aim to map useful (for concrete problem solving) knowl-
edge.

Methods described in Winston (1982), Gentner (1983) can be mentioned as
examples of maximum mapping. They vary in what is thought to be essential

to map from analogue to target. The paper Winston (1982) points to the im­
portance of causal relations. The method presented in Gentner (1983) aims to

maximize overlapping of relational structures. Mapping rules include the prin­

ciple of systematicity which considers interconnected relations more important
than isolated ones. These two approaches can be applied simultaneously in

order to maximize information mapping. However, generally the different ana­
logical methods can be incompatible.

Greiner's (1988) analogical method is an example of usefulness in analogy

application. The solving of initial problem in analogical domain proposes the

conjectures to be added to the initial domain. Thus the theory, formed by

adding the new conjecture, must be able to solve the initial problem too.

In the requirement specification complement, analogical methods which

maximize possible mapping knowledge are preferred.

The essence of the B problem is different from the first one. The analogue is
suggested to be used as criterion to ensure desirable characteristics of require­
ment specification. Requirement specification quality improves if qualitative

components are reused and quality is possible if its criterion is established.

Reuse is closely tied with adaptation because artefact as a whole or its

A. Lupeikiene 489

components cannot be used frequently as they are. Changes can be planned

using various parameterization and abstraction techniques. Analogical approach

implies poorly planned and unassumed changes, so modification is required to

accommodate the needs of a new system.

Modification is the sequence of transitions of i level description from j state

to j + 1 state. The modification rules M dRD~ DHl signify that changes affect

states of i level description and not the level of desCription language. Depending

on the object to be modified and the purpose of modification, we distinguish

three approaches (denoted by B1, B2, B3) to software system development.

B1. The users' information about application domains and tasks to be

solved U Sl, ... , U Sm is stored with corresponding requirement specifications

RSl , ... , RSm • Components in the solution space RSi can be traced to compo­

nents in the initial space U Si' The new requirement specification RS is obtained

by first matching user's specification US to the known U Sl, ... , U Sm to find

analogous user's specification U sf. The detennined all possible analogies are

used to modify analogical requirement specification RSi! in order to construct

the target requirement specification RS (Fig. 2).

Fig. 2. Specification derivation by analogue modification.

The characteristic example of this approach is presented in Carbonell (1983)

where problem solution is derived in the second-order space. The states of the

second-order problem space encapsulate analogical solutions or their modifica­

tions.

This approach is preferred when the mapping from i level description to

i + 1 level description cannot be characterized by mapping rules M RD; D;+l.

Due to the nature of analogy process the derived description Di+l may be

incorrect. The additional heuristic rules usually are developed to correct the

490 The role of analogy in reuse

errors. To the extent as analogy application is correct the desirable properties

of i level description Dj are preserved or developed in i + 1 level description

Di+1'
B2. The previous users' specifications U S1, ... , U Sm are stored in the sys-

tem together with derivation paths DPt, ... , DPm of corresponding require­

ment specifications. The derivation path is understood as a set of derivation

rules together with their application order. Derivation path retrieval is achieved

by matching the new user's description US to each US 1 , ... , U Sm to select

analogical specification U Sf. The derivation path of analogical requirement

specification is modified and used to derive a target requirement specification

RS. This approach is shown in Fig. 3.

Fig. 3. Specification derivation by analogous mapping paths.

The Greiner's (1988) analogical method can serve as an example of this

approach. The author introduces abstractions for organizing clusters of related

derivation paths. The derivation of target requirement specification RS is de­

fined by set of heuristics. Heuristics prune and order abstractions--candidates

and their instantiations.

This approach is preferred when we cannot store or define all the mapping

rules M RDi-+Di+l and only their useful subset is sufficient to obtain i + 1

level description. (Useful subset of mapping rules is a collection of necessary

mapping rules to derive requirement specification.)

B3. The third approach (Fig. 4) is closest to the traditional transformational

approach to application software development. Analogue as the criterion to

ensure necessary properties of requirement specification is mostly obvious in
this approach.

Previous users' specifications U S1, ... , U Sm and corresponding require­

ment specifications RS1 , ••• ,RSm are stored in the system. The base require-

~ ... @
~ / {

@// RSA ® ... i

A. Lupeikiene

:::::}

mod Ificatlon

~

mapping

491

Fig. 4. Specification derivation by modification of base specification.

ment specification RS1 is obtained from user's specification US. Specifica­

tion RSl rarely meets the consistency, completeness, adequacy conditions. To

overcome that problem specification RS1 is modified using inferred analogies

between Rsf and RSl • The prerequisite for exploiting the criterion RSf
is the existence of analogy between US and U sf. It should be noted that

mapping from us to RSl is carried out by rules which may include not only

correctness-preserving transformations but analogical reasoning rules as well.

Primary results of this approach are presented in Lupeikiene (1992), but

more detailed development requires further analysis.

The next section deals with the reusable knowledge kinds to ensure creation

of base and target requirement specifications.

4. Knowledge kinds and mechanisms in reusable development. Reuse
in application software includes all the knowledge used and produced during

development process. Different researches propose different clusification of

reusable knowledge Freeman (1987), Mili et at. (1995). In this paper four

reusable knowledge kinds are distinguished to enable both mapping and modi­

fication processes in application software development:

• knowledge about domains,

• knowledge about ~'1alogues,

• base concepts and rules,

• concepts' base semantics.

This knowledge can be manipulated consistently by:

• generalization-specialization mechanism,

• mechanism of similarity--difference analysis,

• analogical mechanism (Fig.5).

492 The role of analogy in reuse

KN:>WU!DGE KINDS

r--Knc-w-1ed,ge.----. Knowl~. ~ue.
about about concepts

domllim arWogues and rules

generalization_
specialization

rrechanism

mechanism
of similarity­
diflerenat analysis

mod ification

Concept;'
base.

semantics

Fig. S. Knowledge kinds and mechanisms to enable specification mod­

ification.

Knowledge about domains is domain-specific, and domains we deal with in

development process are different (see Fig. 1). Application domain knowl­

edge is whatever known about the area which problems computer-based system

solves. For example, tool-making shop management, mathematics, etc. This

knowledge is more stable, less changing than user's requirements and can be

used to build not the only application software. System design domain and
programming domain knowledge relates to the process of application system
development. This may include life cycle models, system architecture models,

definitions of data types, definitions of programming language constructs, test

plans, etc. Viewed abstractly, i + 1 level domain predetermine the i + 1 level

language to which concepts and constructs i level description is mapped. The
development processes may differ in number of domains.

The knowledge about analogues consists of a set of domain descriptions.

Not all analogous domains are closely related. Descriptions of the diverse

domains are relevant and of great value as well.

Base concepts are general domain-independent knowledge. Base rules in­

clude laws, axioms, principles. Base rules imply the possibility to solve general

problems or use general means of solutions. They relate the problem at hand
with typical solution of this problem. As the example of base rule modus po­

nens rule can serve, in this case applied not to propositions but to objects and
types of relations.

Concept's base semantic reveals the underlying principle or the essence

A. Lupeikiene 493

of the concept. The discovery of the underlying principle to a certain extent
explains the human understanding of the concept. The underlying principle
enables someone to perceive the reason why the instance is a member of the

concept and recognize the basis relating members to the concept. Matching on
underlying principle is more powerful technique than matching on similarity,
on analogy or classification. The first steps toward finding out the technique by

which a machine could arrive at concept base semantic were done in Pursvani
and Rendel (1987). The development of this proposal requires further analysis

and research. It should be noted that real world objects are characterized by

structure. The ability to handle structured objects is inevitable to discover the
essence of the object.

Two steps in analogical reasoning: analogue detection and analogy appli­
cation, i.e., mapping from source to target, may be described and controlled
by analogical mechanism. Analogical mechanism facilitates the definition of
concepts' base semantics as well.

Knowledge is organized into a structured taxonomy. It means that knowl­
edge is linked together by the relation of generalization. Generalization-spe­
cification mechanism is needed in analogy application step, in tailoring base
concepts and rules to the needs of concrete problem.

The mechanism of similarity-difference analysis is needed to define con­
cepts' base semantics. The influence of different types of similarity (parame­
teric, incremental, etc.) on discovery of concept underlying principle is outside
the scope of this paper. It should be noted that similarity-difference mech­
anism plays important role in requirement specification creation when initial
description is provided by means of differences from some analogue.

5. Conclusion. Reuse is essential in human activity thus the application
software development is not exception. The extension of reuse through analogy
in application software development was analysed in this paper. The main

issues pointed out in this paper are:

• transformational approach to application systems development benefit
from complement with analogical reasoning,

• different analogical methods, rules, etc. can be grouped according to

their adaptability to application software development into three groups,
which use previous artefacts, extend mapping rules and extend modifi­

cation rules,

494 The role of analogy in reuse

• the desirable properties of domain descriptions, specifications, program.<;,

etc., are assured using analogue as a criterion,

• knowledge about domains, analogues, base concepts and rules, concepts'

base semantics are to be used to complement the target specification.

REFERENCES

Balzer, R. (1985). A 15 year perspective on automatic programming. IEEE Transac­

tions on Software Engineering, SE-l1(ll), 1257-1277.

Carbonell, J.G. (1983). Learning by analogy: formulating and generalizing plans from
past experience. In R.S.Michalski, J.G.Carbonell and T.M.Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, CA pp. 137-

162.

Chouraqui, E. (1985). Construction of a model for reasoning by analogy. In L. Steels,
J.A. Campbell (Eds.), Progress in Artificial Intelligence. England. pp. 169-183.

De Antonellis, V., and B.Pernici (1995). Reusing specifications through refinements
levels. Data & Knowledge Engineering, 15(2), 109-133.

Dershowitz, N. (1985). Program abstraction and instantiation. ACM Transactions on
Programming Languages and Systems, 7(3), 446-447.

Freeman, P. (1987). Reusable software engineering: concepts and research directions.
In P.Freeman (Ed.), Tutorial: Software Reusability. IEEE Computer Society Press.
pp. 10-23.

Gentner, D. (1983). Structure mapping: a theoretical framework for analogy. Cognitive
Science, 7(2), 155-170.

Greiner, R. (1988). Learning by understanding analogies. Artificial Intelligence,

35(1), 81-125.

Hail, R.P. (1989). Computational approaches to analogical reasoning. Artificial
Intelligence, 39(1), 39--120.

Horowitz, E, and J.B. Munson (1987). An expansive view of reusable software. In
P.Freeman (Ed.), Tutorial: Software Reusability. IEEE Computer Society Press.
pp. 39-49.

Jantke, K.P. (1985). Program synthesis by analogy - a two-phased approach. In W. Bibel
and B. Petkoff (Eds.), Artificial Intelligence: Methodology, Systems, Applications.
North-Holland, pp. 67-75.

Levene A.A., and G.P.Muliery (1982). An investigation of requirement specification
languages: theory and practice. Computer, May, 50-59.

Lupeikiene, A., and D.Lempertas (1990). Some remarks on analogical approach to
automatic software development. II, 2541-Li. 1--10.

Lupeikiene, A. (1992). Analogical approach for implementation of inheritance and

A. Lupeikiene 495

delegation. Avtomatizatsija protsesov planirovanija i upravlenija, 13, 79-89 (in
Russian).

Maiden, N.A.M. (1991). Analogy as paradigm for specification reuse. Software
Engineering Journal, 6(1), 3-15.

Mili, H., F. Mili and A. Mili (1995). Reusing software: issues and research directions.
IEEE Transactions on Software Engineering, 21(6), 528-561.

Miriyala, K., and M.T. Harandi (1989). Analogical approach to specification derivation.
ACM Software Engineering Notes, 14(3), 203-218.

Polya, G. (1954). Mathematics and Plausible Reasoning. Princeton University Press,
Princeton, NJ. 472 pp.

Pursvani, K., and L. Rendel (1987). A reasoning-based approach to machine learning.
Computational Intelligence, 3(4), 351-366.

Winston, P.H. (1982). Learning new principles from precedents and exercises. Artifi­
cial Intelligence, 19(3), 321-350.

Wirth, N. (1971). Program development by stepwise refinement. Communications of
the ACM, 14(4), 221-227.

Received November 1995

A.Lupeikiene is a researcher at the Management Systems Department of

the Institute of Mathematics and Informatics, Vilnius, Lithuania. Her research

interests include conceptual models, methodologies and tools for databases and

intelligent information systems design.

496 The role of analogy in reuse

ANALOGUOS VAIDMUO PAKARTOTINAME NAUDOJIME

Audrone LUPEIKIENE

Susidiir~ su nauja problema, ~mones paprastai iesko ne naujo sprendimo, 0 panasios,
anks~iau spr~stos problemos. Ziniq, patyrimo, gautq rezultatq pakartotinas naudojimas
ne isimtis ir programll sistemll kiirime. Siame darbe nagrinejamas pakartotino naudojimo
galimybiq ispletimas analogijos metodu. Pasiiilytas analogijos metodq sugrupavimas
pagal galimyb~ juos pritaikyti programll sistemq kiirime ir taikymo tikslq. Pabre~iamas
analogo, kaip kriterijaus, vaidmuo reikiamq programq sistemq savybiq u~tikrinimui.
ISskirti ~iniq tipai ir mechanizmai, jgalinantys atvaizdavimo ir modifikavimo procesus
programq sistemq kiirime papildyti analogija.

