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Abstract. The goal of this work is to describe the underlying theoretical and algo­
rithmic basis of a MATLAB-based software develop~ by the authors. The software is 
intended for investigation of time series (signals) which can be modeled as the sum of 
real-valued quasipolynomials plus white noise. With the help of the software described, 
one can compute the expressions of the Cramer-Rao lower bound on the covariance 
matrix of the estimation error of unbiased estimates of damping factors and frequencies 
of quasipolynornials and to obtain estimates of these parameters using three versions 
of Prony method. Using this software, one can generate various models of quasipoly­
nomials, obtain plots of their poles with respect to the unit circle, compute and plot 
20"-bounds (where 0" is given by the CRB formula) around each pole, and also pole 
estimates obtained in each realization. Results of numerical experiments are presented. 

Key words: MATLAB, superimposed signals, quasipolynornials, parametric estima­
tion, Cramer-Rao bound. 

1. Introduction. Models of noisy superimposed signals are very popular 

in the signal processing literature (see, for example, Kumaresan et al., 1986; 

Bresler and Macovski, 1986; Parthasarathy and Tufts, 1985; Stoica et al., 1989; 

Stoica and Nehorai, 1989; Yau and Bresler, 1992; Steedly and Moses, 1993). 

One of the simplest model is the sum of sinusoids in noise. Usually the noise is 

considered to be white Gaussian with zero mean and a finite variance. The main 

parameters to be estimated are the frequencies. An example of the model of two 

sinusoids in noise is presented in Fig. 1. A more complicated model is obtained 

when the damping is introduced. Then the main parameters to be estimated are 

the frequencies and damping factors. An example of the model of two damped 

sinusoids in noise is presented in Fig. 2. With each model of undamped/damped 

sinusoids, one can associate a linear stationary dynamic system whose impulse 

response can be described by that model. The poles of the system are called the 



98 MATLAB-based software for estimation of quasipolynomials 

poles of the signal model (or simply of the signal). It is clear that the dynamic 

systems associated with the models of this kind have poles which are simple. 

In practice, however, one can encounter signals with mUltiple poles. Such 

signals are considered in the antenna data processing literature (Van Blaricum 

and Mittra, 1982). As it is pointed out in (Van Blaricum and Mittra, 1982), 

Tesche (1973) "has shown that a dipole can be resistively loaded in such a way 

as to make it critically damped; that is, to have a double pole on the negative 

real axis. Multiple poles also result in the transient response of a system if the 

system is driven by a signal which itself has a multiple pole. The most common 

example of this would be a system excited by a ramp waveform. The ramp 

waveform has a double pole located at the origin". The impulse responses of 

linear stationary systems are, in general, signals that can have multiple poles. 

Such signals appear also in some biological systems. 

So-called quasipolynomials are generalization of damped sinusoids for the 

case of multiple poles. The simplest example of a quasipolynomial is a signal 

of the form 

Aexp(At)tK-isin(wt+so), t=O,I,2,.... (1.1) 

It has a pole z = exp( A + JW) the multiplicity of which is equal to J{. An 

example of a quasipolynomial with J{ = 2 is shown in Fig. 3. We can take 

several signals of the form (1.1) with the same damping factors and the same 

frequencies. Their sum will make a new signal of the following form: 

e>.t(Ai sin(wt + SOl) + A2tsin(wt + !f2) + ... 

+ AKtK- i sin(wt + SOK)). (1.2) 

This is the general form of a quasipolynomial of degree f{ - 1. 'Thus we 

can define a quasipolynomial as a polynomial with time-varying coefficients 

multiplied by an exponential function with a real exponent. So, in general 

case, a quasipolynomial is determined by the following parameters: the degree 

J{ - 1, the frequency w, the damping factor A, the amplitudes Ai, ... , AK, 
and the phases SO 1, ... , SO K. The main parameters of a quasipolynomial model 

are frequencies and damping factors. They enter the model in a nonlinear 

way. The re~ning parameters (amplitudes and phases) enter the model in a 

linear way. The polynomial degree J{ - 1 is usually assumed to be known. 
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FJg. 1. Two undamped sinusoids and their sum (noiseless and noisy vec­
sions). K = [1,1], A = [l,lJ, "p = (O,OJ, l = (O,OJ, 
w = [O.45""O.bJ, SNR = 10 dB, N = 100. 
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FIg. 2. 1\vo daInped sinusoids and their sum (noiseless and noisy vec­

sions). K = (1, 1J, A = (1,1], "p = [O,O), l = [-0.03, -0.05J, 
w = (O.4",,0.bJ, SNR = 10 dB, N = 100. 
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FIg.3. A quasipolynomial of degree one (noiseless and noisy versions). 

K = 2, A = I, cp = 0, ~ = -0.05, w = O.b, SNR = 
10 dB, N = 100. 

The main problem is to eWmate the qUlWpolynomial parametels from noisy 
data, to obtain lowel" estimation accuracy bounds and to investigate statistical 

performance and asymptotic properties of ~ estimates. 

With the help of the MA'ILAB software described, one can compute the 

Cram6r-Rao lowel" bound on the covariance matrix of the estimation error of 
unbiased estimates of damping factors and frequencies and to obtain estimates 
of these parameters using three versions of,Prony method: 1) Prony method, 2) 
Prony meth~ with pre1iltering, 3) Prony method with prefiltering and optimiza­
tion. In particular case when the degree of a quasipolynomial is equal to 0, the 

model of quasipolynomials in noise becomes the model of damped sinusoids in 
noise. For such a model, an asymptotic ~-Rao bound formula has been 

derived by Wigren and Nehorai (1991). This formula can also be computed 
with the help of the software considm:d. We present some demo files. With 
the help of this software, one can generate various models of qUlWpolynomials, 
obtain plots of their poles with respect to the unit circle. compute and plot 
2u-bounds (where u is given by the eRB formula) aro~nd ~h POle. show on 
the same plot not only poles and their estimation bounds but also pole estimates 
obtained for e8chnoise realization. For simpler models when there are only one 
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or two quasipolynomials, one can compute the root-mean-square errors (RM­

SEs) of estimation of damping factors and frequencies and compare them with 

the corresponding values of the Cramer-Rao bound for various signal-to-noise 

ratios (SNRs). Also, the software allows one to compute the RMSEs of damp­

ing factors and frequencies for various SNRs and various frequency separations 

~w. The RMSEs so obtained can be plotted in a three-dimensional space. 

The paper is organized as follows. In Section 2, the signal model is pre­

sented. In Section 3, we describe estimation methods used in the software. 

Section 3.1 deals with Prony method. Section 3.2 is based on Prony method 

with prefiltering (Kumaresan and Feng, 1991). The main ideas of Prony method 

with prefiltering are briefly described. The estimation error of the model is dis­

cussed in Section 3.3. The iterative pole optimization procedure which is used 

in the third estimation method is explained in Section 3.4. The CRB formulas 

associated with the estimation problem considered are analyzed in Section 4. A 

short description of the main software units is given in Section 5. In Section 6, 

some numerical examples are given. 

We use the following notation: 

AT - the transpose of matrix A; 

At - the pseudoinverse of an n x m matrix A 

In X n - the n x n identity matrix; 

if rank A = m, 
if rank A = n; 

blockdiag (AI, ... , An) - the blockdiagonal matrix with AI, ... , An on the 

diagonal; 

J=H; 
an *bn - the convolution operation of two sequences {an}, {bn} (n 

... , -1, 0, 1, ... ): an*bn = E~=-oo an-kbk' Note that an*bn = bn * an; 
0" - the Kronecker delta (= 1 if n = 0, = ° otherwise). 

2. Signal model. Consider the following noise corrupted signal 

Vn(q) = un(q) + en(q), (n = 0, I, ... , N - 1; q = 0, 1, ... , Q), (2.1) 

where 
L 

un(q) = L hl,n(q) (2.2) 
1=1 
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is the sum of real-valued quasipolynomials, i.e., signals of the form: 

hl,n (q) =e A1 n( all (q) sin(wln + !Pll (q)) + aI2(q)n sin(wln + !P12 (q)) 

+ ... + alKI (q)nKI - 1 sin(wm + !PIKI (q))) (2.3) 

with the damping factors Al < 0, frequencies WI > 0, amplitudes alk(q) E 

R (alKI (q) i= 0), and phases !Plk(q) E [-11",11"), k = 1, ... , KI (we assume 

the amplitudes and phases to be nonrandom); en (q) stands for additive real­

valued white Gaussian noise with zero mean and variance (12 satisfying the 

following condition: 

(2.4) 

We assume also that N ~ Kl + ... + KL, and that all the parameter pairs 

(AI, WI) are different. In a particular case when all KI = 1, our model becomes 

the sum of real damped sinusoids in noise. The variable q in (2.1) - (2.3) 

stands for the variable of an experiment. In general case, the model (2.1)­

(2.3) means that we have Q experiments and that in each of them we observe 

N noisy equally-spaced samples of the sum of L quasipolynomials. If Q = 1, 

we obtain the case of a single experiment, thus the variable q may be omitted. 

Equations (2.1) - (2.3) can be written in a vector form: 

v(q) = u(q) + e(q), 

u(q) = hl(q) + ... + hdq), 
(2.5) 

where 

v(q) = [vo(q), VI (q), ... , VN -1 (q)f, 

hi(q) = [hi,o(q), hi,l(q), ... , hi,N-1(q)f, i = 1, ... , L. 
(2.6) 

The vectors u( q) and e( q) are defined analogously. 

Define the vector d/i associated with (AI,WI) and with the power ni - 1 in 
the following way: 

d 1i = [8i1 , eA1 COS(WI), 2i- 1e2A1 COS(2WI), ... , 

(N - l)i-le(N-1»,1 cos((N - l)wI)f, (2.7) 
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for i = 1,2, ... , K" Introduce also the vector dii which is defined analogously 

as d'i with the only difference that "cos" is replaced by "sin" and 6i1 by O. 

Denote by D a matrix whose columns are the vectors {d,i , dii }, i.e., 

We call D the matrix of basis signals. 

Using the notations introduced, the noiseless observation'u(q) may then be 
written as 

where 

u(q) = Da(q), 

a(q) = [all(q) sin(SOll), all(q) COS(SOll), ... , 

a1K1 (q) sin( SOlK,), a1K, (q) COS(SOlKJ, ... , 

aL1(q) sin(SOL1), aL1(q) COS(SOLl), ... , 

aLKL (q) sin(SOLKL), aLKL (q) COS(SOLKL)f· 

(2.9) 

(2.10) 

It follows from (2.9) that u( q) belongs to the linear subspace of RN spanned 

by the columns of D. This subspace is called the signal subspace and is denoted 

£D' The complimentary subspace is called the noise subspace and denoted £E' 

Denote by IID and IIE the projectors on £D and £E. We have IID + IIE = 
IN x N, the identity matrix. The projector II D is a known function of {(.x" Wl)} 
since 

(2.11) 

3. Estimation of damping factors and frequencies of quasipolynomials. 

Consider the quasipolynomial model (2.1) - (2.3). Assume that Q = 1, i.e., that 

we have a single experiment case. We are interested in estimating the damping 

factors' and frequencies of this model. For this purpose, we use three variants 

of Prony method: 1) least-squares (LS) Prony method, 2) LS Prony method 

with prefiltering, and 3) LS Pron~ method with prefiltering and optimization. 

For a quick reference, we present a short description of these methods. 

3.1. Prony method. Prony method (Prony, 1795; Hildebrand, 1956; Kay 

and Marple, 1981) is a method which models data (equally spaced samples) by 

a linear combination of exponentials. This procedure fits an exponential curve 
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of p exponentials to N data points. Since each exponential term ake&kn has 

two parameters: an amplitude ak and an exponent Sb Prony method requires 

N ~ 2p data measurements. The original Prony method exactly fitted the 

curve consisting of p exponential terms to a data set of N = 2p elements. 

When N > 2p, a least squares technique is used. 

Suppose that we have measurement results VD, Vl, ... , VN-l of some func­

tion v(t) at equally spaced points 

Vn = v(n.6.t), n = 0,1, ... , N - 1. (3.1) 

We want to approximate the measured data {vn } by the following exponential 

model 

where ak, Sk E C, and 

p 

Xn = L ake&k n , 

k=l 

ak = Ak exp(J<,ok), 

Sk = (Ak + JWk).6.t. 

(3.2) 

(3.3) 

A natural way of finding estimates of {Ak, <,ok, Ak, W k} and p is to minimize 

the error 
N-l 

L /vn - xn/ 2 • (3.4) 
n=D 

However, this is a difficult nonlinear least-squares problem. In the literature, 

one can find some iterative procedures to solve (3.4). In these procedures, an 

initial estimate of the unknown parameters is successively improved. Prony 

method is often used to estimate the parameters of (3.2). Although this method 

gives a suboptimal solution which does not minimize (3.4), its results, however, 

are quite satisfactory in many cases. 

Denote 

Zk = eSk (k = 1, .. . ,p). 

Then equation (3.2) can be written as 

p 

Xn = Lakz/:. 
k=l 

(3.5) 

(3.6) 
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In the best case when the model (3.6) exactly fits the measured data vo, VI, ... , 

V N -1> we would have 

p 

Vn=LakZk (n=O,l, ... ,N-l). (3.7) 
k=l 

Rewrite this as a system of equations 

al + a2 + ... + ap = Vo, 

alzl + a2Z2 + ... + apzp = VI, 

alzf + a2Z? + ... + 2 V2, apzp (3.8) 

If Zl, Z2, ... , Zp were known, then this set of equations would make a system of 

N linear equations in the p unknowns aI, a2, ... , ap. If N = p, then this system 

could be solved exactly, and if N > p, then it could be solved approximately 

in a least squares sense. 

However, if {Zk} are unknown, we need to have at least 2p equations. 

Also, {Zk} enters (3.6) in a nonlinear way what creates additional difficulties. 

Minimization of these difficulties is the essence of Prony. method. 

Let Zl, Z2, ... , zp be the roots of the following algebraic equation 

Zp - {3lzp-l - {32zp-2 - ... - {3p-lz - {3p 

= (z - Zl)'" (z - zp) = O. (3.9) 

We need to determine the coefficients {3l, ... , {3p. For this purpose, multiply 

the first equation of (3.8) by {3p, the second by {3p-b the pth by {3b and the 

(p + l)th by (-1), and add the results. Since Zl, Z2, ... , zp are the roots of 

equation (3.9), we get the following relationship 

Vp - {31 Vp_l - ... - {3pvo = O. (3.10) 

Repeating the same procedure starting from the second, third, ... , (N - p)th 

equation, we will obtain N - p - I additional equations. Thus, using 0.8) and 
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(3.9), we get the following system of N - p linear equations 

vp-d31 + vp -2f32 + ... + = vP ' 

vpf31 + vp -1f32 + ... + 

or, in a shortened form, 

p' 

L v n -kf3k = Vn , n = p, p + 1, ... , N - 1. 
k=1 

We can rewrite equation (3.12) in a more compact form 

where 130 = -1. 

p 

2: v n -kf3k = 0, n = p, p + 1, ... , N - 1, 
k=O 

(3.11) 

(3.12) 

(3.13) 

Since Vo, V1, ... , v N -1 are known, system oflinear equations (3.11) can be 

solved exactly if N = 2p, or solved approximately, by a least-squares method, 

if N > 2p. 

After the coefficients 131, ... ,f3p have been found, the unknowns Z1 , ... , zp 

can be computed a<; the roots of equation (3.8). They are real or complex. Then 

(3.8) becomes a system of N linear equations in p unknowns a l, ... , ap • They 

can be determined by using the first p equations of system (3.8), or, preferably, 

by applying a least-squares method to the entire system (3.8). 

The method described is called Prony method. One of its main features is 

that nonlinearity of equations (3.8) is transferred into determining of the roots 

of algebraic equation (3.9). Below we present the summary of Prony method: 

Step 1. Solve equation (3.11) to find the unknown coefficients of the poly­
nomial in (3.9). 

Step .2. Root the polynomial in (3.9) to determine its roots Z1, ... , Zp_ 

Step 3. Solve system (3.8) to find the complex amplitudes al, ... , ap • 

3.2. Prony method with prefiltering. It is well-known that Prony method is 

very sensitive to errors in the measured data - the resulting estimates are highly 
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biased. In order to improve performance of this method, Kumaresan and Feng 

(1991) proposed to. use prefiltering of data before applying it. The rationale 

of the prefiltering is to suppress some of the noise. They have suggested 

two methods for determining the impulse response 1, Wl, ••• , Wq of the FIR 

prefilter W(z) = 1 + WIZ- l + ... + wqz-q where 0 ~ q ~ N - 2p. In the first 

method, the prefilter W(z) is determined off-line before estimating the poles. 

This is a disadvantage of the method. In the second method, the prefilter is 

iteratively determined from the data itself. We use the second method. The 

impulse response of the prefilter 1, Wl, ... , Wq is determined in the following 

way. First, it is assumed that Wo = 1 and Wn = 0 for n = 1, ... , q. Then note 

that the polynomial X(z), the z-transform of Xn (3.2), 

N-l P 

X(z) = L: L:ukeSknz-n 
n=O k=l 

can be represented as a ratio of two polynomials 

where 

C(z) 
X{z) = B{z)' 

p p 

(3.14) 

(3.15) 

B{z) = IT (I - eSk z-l) = 1 + L: bkz-k (3.16) 
k=l k=l 

is a pth degree polynomial with roots at e' l , ••• , eSp and C(z) is a N + p -1st 

degree polynomial 

such that 

N+p-l 

C(z) = L: Ck Z - k , 

k=O 

Cp = Cp+l = ... = CN-l = O. 

(3.17) 

(3.18) 

RelationsHips (3.18) give the following N - p Prony difference equations: 

p 

L:Xn-kbk=O, n=p,p+l, ... ,N-l (bo =I). (3.19) 
k=O . 

They are exact only for noiseless complex exponential signals. Equation (3.19) 

can be rewritten as follows 

B{z)xn=O, n=p,p+l, ... ,N-l. (3.20) 
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We see that the polynomial B(z) tries to annul the signal. Therefore the 

zeros of B(z) are close to the regions where the signal energy is concentrated, 

and 1/ B(z) when calculated around the unit circle shows a. tendency to have 

peaks at these locations. Thus, in the next iteration, W(z) is chosen so that it 

approximates 1/ B(z): 
B(z)W(z) = 1 + E(z), (3.21) 

where E(z) is the z-transfonn of an error sequence en' In time domain, (3.21) 

corresponds to 

(3.22) 

The impulse response of the prefiller Wo, WI, ••. , Wq is obtained by minimizing 

p+q p+q 

l: lenl2 = l: 16n - bn * wn l2 • (3.23) 
n=O n=O 

Note that Wo = 1. This LS problem can be solved by the Levinson-Durbin 

recursive algorithm (Durbin, 1959) which ensures the obtained prefilter has its 

zeros inside the unit circle. 

Once the prefilter is computed, the data is filtered and the Prony equations 

for prefiltered data {x~} 

p 

l: x~_kbk = 0, n = p + q, p + q + 1, ... , N - 1 
k=O 

(3.24) 

are solved to obtain new coefficients bl , ... , bp (bo = 1). The procedure is 

repeated untill the coefficients {bi} do not change considerably from iteration 

to iteration. Then the roots of the polynomial B(z) are calculated. Once 

e01 , ••• , eOp are found, the determination of ab' .. , ap reduces to a simple 

least -squares fit. 

Note that in order to get the multiplicities of the estimated poles we need a 

special procedure to select closely-spaced poles and to take them as multiple. 

As we have already seen, Prony method with prefiltering gives estimates of the 

poles as the roots of the polynomial B(z). Usually, when rooting a polynomial 

with the help of a computer one seldom gets multiple roots. However, some 

of the roots can be rather close. One might expect to get better results when 

taking closely-spaced roots as a single multiple root. We use a procedure of 
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determination of multiple poles in our implementation of Prony mt:thod with 
prefiltering. 

3.3. Signal model estimation error. It follows from equations (2.5) and 

(2.9) that the noisy observation v = [vo, VI, ... , V N -If can be written in the 
following form: 

v = Da+e, (3.25) 

where e = [eo, el, ... , eN-IF' is the noise vector (we omit the variable q in 
(3.25) since we consider a single-experiment case). Once we have estimated 

the poles of the model, we get also the estimate D of the basis signal matrix 

D. Then equation (3.25) (with D replaced by D) can be used to determine the 

LS estimate a of the 2(I<1 + ... + J{L) x 1 vector a. The solution is given by 

(3.26) 

The N x 1 estimation error vector err is then obtained as 

err = v-Da, (3.27) 

and the N x 1 estimated signal model vector as 

~ ~~ ~ ~T~ _I~T ~~t 
U = v - err = Da = D(D D) D v = DD v. (3.28) 

The root-mean-square error (RMSE) of estimation of parameters of the model 
(3.25) is computed as 

RMSE = J(errT . err)/N. (3.29) 

3.4. Prony method with prefiltering and optimization. Consider again 

the model (2.1)-(2.3). The method under the title above is comprised of two 

stages. In the first stage, the initial estimates of the poles are obtained by Prony 

method with prefiltering. In the second stage, they are improved via an iterative 

optimization procedure. 

'The optimization procedure is as follows. Select a pole estimate obtained 

in the first stage and compute the estimation error in the three cases when the 

absolute value of the pole estimate is 1) increased by p percents, 2) decreased 
by p percents, and 3) not changed. The value of p can be taken arbitrarily 
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- for example; 10, 15, or 20. Then the three estimation errors obtained are 

computed, and the absolute value corresponding to the case with the smallest 

estimation error is selected. For the pole with the modified absolute value, 

the procedure is continued in the following way. The angle of the pole is 

1) increased by p percents, 2) decreased by p percents, and 3) not changed. 

Again, the three errors obtained are compared, and the angle corresponding to 

the case with the smallest estimation error is selected. After the procedure has 

been repeated for each pole, the final estimation error is compared to the initial 

error (obtained when the poles were not changed). If the final error is smaller 

than the initial one, then the final error is taken to be the initial one, and the 

procedure is repeated again one more iteration. In case the final error has not 

become smaller than the initial one after the iteration, p is divided by 2, and 

the next iteration is started. 

4. CRB of the poles. In order to evaluate the performance of our method, we 

compare it with the CRB. The CRB expression for estimation of frequencies and 

damping factors of the model of real quasipolynomials (2.1) - (2.3) is derived 

in (Slivinskas and Simonyte, 1995) and is given by 

where 

CRB(8) = o-2(pTTTHsTP)-1, 

8= (Al,Wl, ... ,AL,WL), 

T = [d~Kl' -d!K1 , d2K2 , -d2K2 ,···, dLKL , -dLKJ, 

d·e d de d·s d dS 

mKm = dAm mK"., mK". = dAm mKm' 

(d~Km and d:nK". are defined by (2.7)), 

HE = INxN - D(DTD)-lDT, 

P = blockdiag(P1 , P2, ... , PL), 

P ( sin 'PiK· cos 'PiK· ) i = aiKi I. t. 

- cos 'PiK, sm 'PiK, 

( 4.1) 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

(4.6) 

(4.7) 

Since we are more interested in estimating not the parameter 8 but the poles 

eA1 +JWl, ••. , eAL+JWL, we will derive the CRB expression with respect to the 

parameter 

8* = (Re(eAl+JWl), Im(eAl+Jwl), ... , Re(eAL+JWL), Im(eAL+JWL)) 

_ ( Al Al . AL AL·) - e cOSWl,e SlnWl, ... ,e cOSWL,e smWL. (4.8) 
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We have the transformation 

where 

is defined as follows 

{ 
g21-1(6) = eAZ COSWl, 

g21(6) = eAZ sinwl, 
(1= 1, ... ,L). 

111 

(4.9) 

(4.10) 

(4.11) 

The CRB with respect to the parameter 6* is then expressed in the following 
way 

CRB(6*) = g,T CRB(6)g,' (4.12) 

where 

ag1 ag1 ag1 ag1 ag1 ag1 
0).,1 aWl 0)..2 aW2 a).,L OWL 
ag2 ag2 ag2 ag2 ag2 ag2 

g' = 0)..1 aWl 0)..2 aW2 a).,L OWL 

ag2L ag'2L ag'2L ag'2L ag'2L a9'2£ 

0)..1 aWl a)..2L aW2L a).,L OWL 

= blockdiag (G1 , ... , GL). (4.13) 

Matrices {G I, I = 1, ... , L} are defined as follows 

(4.14) 

For each noise realization, we get the pole estimates {e);z +;;;;z, I = 1, ... , L} 
in the complex plane. 'These estimates make a "cloud" around each pole. It 

is of interest to know how widely scattered the "cloud" of each pole may 

be. For this purpose, we select a pole z = eA+;w and decompose it into its 

real and imaginary parts (Rez, Imz) = (eA COSW, eA sinw). We compute the 

CRB for Rez, Imz according to (4.12)-(4.14) and plot the 2JCRB(Rez) and 

2JCRB(lmz) in the complex plane. This procedure is repeated for each pole. 
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1..+ jCl) 
z=e 

\,~xa. 

fRe z)cx' == e.A ed(1J-<:Y-) 

i<'e z = e A. cos Cl) 

Fig. 4. Decomposition of a pole with respect to the old and new coor­

dinate systems. 

Then we turn the coordinate axes :c, y around the origin at an angle a to obtain 

the new axes :COl, YCt and decompose again each pole into its real and imaginary 
parts with respect to the new coordinate system (see Fig. 4). Denote the new 

real and imaginary parts by (Rez)Ct, (Imz)Ct. One can easily see from Fig. 4 
that 

(Rez)Ct = eA cos(w - a), 

(Imz)Ct = eA sinew - a). 

It is not difficult to see that the CRB( 9~) where 

a* _ (AI ( ) Al • ( ) 1701 - e cos Wl - a ,e SIn Wl - a , ... , 

eAL COS(WL - a), eAL sin(WL - a») 

(4.15) 

(4.16) 

is given by (4.12)-(4.14) with 9* replaced by 9: and w/ (I = 1, ... , L) by 

w/-a. 

Having computed the CRB( 9:), we can now take its diagonal entries and 

plot 2v'CRB«Rez)Ct) and 2v'CRB«Imz)Ct). When a runs from 0 to 7r/2, the 

values of 2v'CRB«Re z)Ct) and 2JCRB«Imz)Ct) form a closed curve which 

surrounds the pole z. One can consider that curve as the 20'-bound of the pole 

in the complex plane. As we will see in the numerical simulations section, the 

curve is not necessarily a circle; sometimes it becomes an ellipsis, a modified 

ellipsis, and the like. 
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5. Short description of the main software units. The software considered 

contains the functions for computation of: 

• the C:ramer-Rao bound for the covariance matrix of unbiased estimates 

of the damping factors and frequencies of quasipolynomials in noise 

(function cramrao); 

• the denominator of the transfer function estimate from a data using LS 

Prony or LS Prony method with prefiltering. A FIR-prefilter is iteratively 

computed from the data samples (function denomj); 

• the nominator of the transfer function estimate by a least-squares method 
(function optim); 

• the Cramer-Rao bound for the covariance of unbiased estimates of the 

real and imaginary parts of the poles of a quasipolynomial model. The 

real and imaginary parts of the poles are computed with respect to the co­

ordinate system turned at an angle a around the origin (function pagcrh); 

• the basis signal matrix from the signal poles and their multiplicities 
(function sysmatri); 

• the roots from the upper half-plane and their mUltiplicities given all the 

roots of a quasipolynomial (function verify); 

• the poles of the model from the upper half-plane after optimization, their 

multiplicities, the estimated signal model and its root-mean-square error. 

A simple iterative pole optimization method is used (function optz); 

• the impulse response vector of length N of the system whose transfer 

function is of the form l/a(z) (function vectorh). 

Besides the functions described, the work contains MATLAB *.m files. 

These files include two demo files for estimation of the damping factors and 

frequencies of the sum of two damped sinusoids embedded in white Gaussian 

noise by LS Prony method with prefiltering and optimization. There is also a 

demo file illustrating how to compute the CRB for the error covariance ma­

trix of unbiased estimates of damping factors and frequencies of the sum of 

quasipolynomials in noise. The *.m files compute the RMSEs of the damp­

ings and frequencies for noisy damped sinusoid models as a function of the 

frequency separation and signal-noise ratio and compares them with the CRB. 
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,6. Numerical examples 
6.1. Example 1. In this example, consider the case of one damped sinusoid 

with the following parameters 

K = 1, A = 1, cp = 0, A = -0.03, w = 0.451r. (6.1) 

The model considered is the following 

Vn = exp( -0.03n) sin(0.451rn) + en (n = 0, 1, ... , N - 1), (6.2) 

where {en} is Gaussian white noise sequence with zero mean and variance u2. 
The standard deviation u is computed from the SNR expression as follows: the 

SNR is defined by the fannula 

where 

S 
SNR = 10log1o 2' u 

then u is computed using the expression 

u = ..;s . 1O-SNR/2o. 

(6.3) 

(6.4) 

(6.5) 

The data length N = 100. We have estimated the damping factor and fre­

quency of the model for various SNR values. Five hundred trials were used in 

each case. To estimate the parameters mentioned above, we have used three 
methods: LS Prony, LS Prony with prefiltering, and LS Prony with prefiltering 

and optimization. For the prefiltering and optimization procedures, the follow­

ing parameters were used: the prefiIter order q = 21, the maximal number 

of optimization iterations iternum = 10. Since the optimization procedure is 

rather costly, we have made an experiment to ascertain the minimal number 

of the optimization iterations for which the CRB is attained .. We obtained that 

iternum = 10 is optimal for the case of SNR = 2 dB. It is clear that this 
value of iternum will give good results for higher SNR, too. The estimated 
poles along with the true poles and the 2u-bounds (where u is given by the 



V.Slivinskas and v. Simonyte 115 

CRB fonnula (4.1» are shown in Fig. 5. The plots of the RMSE as a function 
of the SNR are shown in Fig. 6. 

6.2. Example 2. In this example, the case of two damped sinusoids with 
the following parameters 

J{ = [1, 1], A = [1, 1], r.p = [0, 0], A = [-0.1, -0.05]' Wl = 0.471" (6.6) 

was considered (W2 is specified below). Thus the following model of the 
damped sinusoids was generated: 

Vn = exp( -O.ln) sin(0.471"n) + exp( -0.05n) sin(w2n) + en, (6.7) 

where {en} is white noise sequence with zero mean and standard deviation 
u computed according to the expression (6.5). The number of observations 

N = 100. We have investigated how the perfonnance of estimation of the 

damping factors and frequencies depends upon the frequency separation ~W = 
IWl - w21. We have selected SNR=30 dB and investigated the behaviour of the 
RMSE for various ~w. The number of the trials used was 500, the range of 

~W = {0.0271", 0.0471", ... , 0.271"}. The plots of the poles and their estimates for 
the case ~w = 0.211" are shown in Fig. 7. Again, the three versions of Prony 
method - LS Prony method, LS Prony method with prefiltering and LS Prony 

method with prefiltering and optimization have been used. The RMSEs for 

damping factors and frequencies are shown in Fig. 8. In these figures, we omit 
the RMSEs of the estimates obtained by LS Prony method. These RMSEs are 

rather far from the CRB curve and their behaviour is not regular. The RMSEs 

obtained by LS Prony method with prefiltering are much closer to the CRB. 

If compared with the RMSEs of LS Prony method, their behaviour is more 

regular. Its monotonic character, however, is still missing (especially for the 

first damped sinusoid). As one can see from the figures, optimization improves 

the estimation accuracy significantly. Having applied a hundred optimization 

iterations, the CRB is attained.already for ~w = LlWperiodogram (and, of course, 

for the wider separations). 

6.3. Example 3. Wigren and Nehorai (1991) have derived the CRB on the 

parameters of superimposed real-valued damped sine waves in noise. When the 
multiplicities of quasipolynomials in our model (2.1) - (2.3) are equal to unity, 
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Poles and their estimates 
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FIg. 7. Poles and their estimates obtained by three versions of Prony 

method for the case &J = 0.211' (continuation). 

1~1r---____ ~ ________ ~ 

1~O~-------75--------1~O~ 

FIg. 8. The RMSE for {Ak' Wk} as a function of nOl1lllllim1 frequency 
separation &J expressed in Fourier bins. (For example, the point 

5 on the horizontal axis means I:1w = 5 ~). SNR = 30 dB. 
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both models coincide and we can compare the result given by (4.1) to that of 

Wigren-Nehorai. 

Consider the model (2.1) - (2.3) with the following parameters: N = 1000, 

L = 2, Kl = K2 = 1, all = a21 = 1, Al = A2 = -0.03, Wl = 0.2511", W2 = 
0.7511", ipl! = ip2l = 0, (J' = 0.5. SNR is defined as 10 !oglo(l/ (J'2). In this 

case, SNR = 6 dB. 

The asymptotic CRB expression derived by Wigren and Nehorai was ob­

tained under a number of assumptions (see Assumptions Al - AS in (Wigren 

and Nehorai, 1991)). Let's check their validity for our model. Assumptions Al 

and A3 are satisfied. Now check assumptions A2, A4 and AS. The expression 

of assumption A2 is 

N 2e).,k N = 10002e-O.03.1000 = 9.35· 10-8 ~ 1, 

for N = 1000, Ak = -0.03 (k = 1,2). 

Thus assumption A2 is satisfied. Now check assumption A4: 

I Ak I = 0.2511" = 0.038 ~ 1, { 

0.03 

Wk 0.03 
0.7511" = 0.012 ~ 1. 

(6.8) 

As we see from (6.8), this assumption is also satisfied. Finally, check AS. First 

compute 

We have 

~W12 = ~W21 = min(0.511", 11") = 0.511". 

Now 

I Al + A21 = I A2 + Al I = 0.06 = 0.038 ~ 1. 
~W12 ~W21 0.511" 

A<;sumption AS is also satisfied. Thus all the assumptions are satisfied and we 

can use the asymptotic CRB expression (Wigren and Nehorai, 1991). In our 

case, the asymptotic CRB for damping factors and frequencies are given by 
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where (J'2 is the noise variance. The plots of the asymptotic and exact CRB on 

the damping factors and frequencies are presented in Fig. 9. We can see that 

there is a good agreement between the exact and asymptotic CRB. 

Now change the damping factor values. Take A1 = A2 = -0.003. The 

corresponding plots of the CRB are shown in Fig. 9. We see that the exact 

CRR starts approaching the asymptotic CRB after a longer time period than in 

the previous example. When the damping decreases 10 times, the values of N 
smaller than 1000 become too small for the asymptotic formula to be valid. 

6.4. Example 4. In this example, we consider the case of five quasipolyno­

mials. As we have mentioned in Section 4, the 2(J'-bound (where (J' is given by 

the CRB formula) of a pole in the complex plane is not necessarily a circle -

sometimes it becomes an ellipsis, a modified ellipsis, and the like. To illustrate 

this statement, we investigate the following model 

Vn = h1,n + h2 ,n + h3 ,n + h4 ,n + hs,n + en (n = 0,1, ... , N - 1), (6.9) 

where 
h1 ,n = exp( -O.ln) sin(O.471'n + 0.571'), 

h2,n = exp(-0.07n) sin(0.3871'n + 71'/3), 

h3 ,n = 0.1 exp( -0.15n)n sin(0.271'n + 71'), 

h4 ,n = 0.1 exp(-0.18n)nsin(0.l7rn + 71'/4), 

hs,n = exp( -0.05n) sin(0.0571'n + 71'/6), 

(6.10) 

and {en} is Gaussian white noise sequence with zero mean and variance 

(J'2. Thus we have the following parameters of our model: the vector [{ = 
[1,1,2,2,1], the vector of amplitudes A = [1,1,0,0.1,0,0.1,1], the vec­

tor of phases if! = [71'/2,71'/3,0,71',0,71'/4,71'/6], the vector of damping fac­

tors A = [-0.1, -0.07, -0.15, -0.18, -0.05], and the vector of frequencies 

w = [0.471',0.3871',0.271',0.171',0.0571']. Note that since the degree of the third and 

fourth quasipolynomial is equal to one, i.e., f{3 = f{4 = 2, they have two am­

plitudes (0, 0.1) and two phases (0, 71') and (0,71'/4) each. The ·first, second, and 

fifth qua,>ipolynomials arc simply damped sinusoids as f{ 1 = f{ 2 = /{ 5 = 1. 

'The SNR is equal to 10 dB. The standard deviation (J' is computed using this 

SNR value according to expression (6.5). 'The data length N = 100. The plots 

of the poles surrounded by 2(J'-bounds are shown in Fig. 10. 
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Fig. 9. Asymptotic and exact CRB on the damping factolS and frequen­

cies for the model of two damped sinusoids. Four uppeI' plots: 

>'1 = >'2 = -0.03, four lower plots: >'1 = >'2 = -0.003. 
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Fig. 10. Poles and their 2c:r-bounds. 
l~ __ ~ __ ~~ __ ~~ 

Ul" 10' 

cIw cIw 

cIw dw 

Fig.n. The RMSEs for ~l' ~2,W1JW2 as a function of normalized fre­

quency separation Aw. The model parameters: K = [11], A = 
[1 1], I{J = [0 01, ~ = t-0.05 - 0.051, Wl = 0.41r, W2 = 
Wl + Aw. The bighec solid line = the v'CRB of the origi­

nal model, the lower solid line = the v'CRB of the approxi­

mating model with parameters: K = 2, A = [2, Awl, I{J = 
[0, 11"/21, ~ = -0.05, w = O.41r, '.' = the RMSE of Prony 
~od with prefiltering and optimization; number of optimiza­
tion iterations = 10). 
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6.5. Example 5. In this experiment, we consider the case of the sum of two 

damped sinusoids with equal damping factors Al = A2 and frequencies Wl and 

W2' The number of the available noisy observations N = 100. The specific 

values of parameters of the signals are as follows 

K = [1,1], A = [1,1]' '{J = [0,0], 

A = [-0.05, -0.05]' Wl = 0.41r, W2 = Wl + .6.W. (6.11) 

The frequency separation .6.w is taken from a wide range: 

.6.w = [10 - 2 , 10] .6.Wperiodogram. (6.12) 

where .6.Wperiodogram. = 21r / N = 0 .021r. So we consider the case of c1osely­

spaced damped sinusoids as well as far-spaced damped sinusoids. Taking into 

account the specific values of the parameters, we get the following model 

Vn =exp(-0.05n)sin(0.41rn) 

+ exp(-0.05n)sin((0.41r + .6.w)n) + en, (6.13) 

where {en} is Gaussian white noise sequence with zero mean and standard 

deviation (j computed according to the expression (6.5). The SNR = 30 dB. 

Note that this model has two pairs of complex-conjugate poles Zi, z; (i = 1, 2), 

where Zl = exp( -0.05+J0.41r), Z2 = exp( -0.05+J(0.41r+.6.w». To estimate 

the poles of the model, we first applied LS Prony method with prefiltering. The 

result is either two pairs of complex-conjugate numbers Zi, Z; (i = 1,2) or two 

real numbers rI, r2 and a pair of complex-conjugate numbers (, (*. Before 

applying the optimization procedure, we must select poles from the upper half­

plane. We use theRMSE obtained for a model with the selected poles as the 

selection criterion. We proceed in the following way: if the result of applying 

LS Prony method with prefiltering is two pairs of complex -conjugate numbers, 

we select an estimate Zi (i = 1,2) of a pole Zj from the upper half-plane, assign 

multiplicity 2 to it, and compute the difference between the data and the model 

corresponding to the selected pole. This difference is an N x 1 estimation error 

vector err obtained from (3.27). For a pole estimate Z with multiplicity 2, the 

matrix fi from (3.27) has the following form (see (2.8), (2.9»: 

(6.14) 
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with the following columns 

-c -. -- -- T 
dll = [1, eA cos(O), e 2A cos(20), ... , e(N-1)A cos«N - 1)0)] , 

d~l = [0, e>: sin(O), e2>: sin(20), ... , e(N -1)>: sin( (N - 1)0)] T, (6.15) 

d~2 = [0, e>: cos(O) , 2e2>: cos(2w), ... , (N _1)e(N-1»: cos«N - I)O)r, 

d~2 = [0, e>: sin(w), 2e2>: sin(20), ... , (N - l)e(N-1)>: sin«N - I)O)]T, 

where X = Re(log(z», 0 = Im(log(z)!J. Thus, taking Zl with multiplicity 

2 and Z2 with multiplicity 2, we get two RMSE values - rmsel and rmse2 -. 

computed according to (3.29). We also compute rrnse3 (obtained from (3.29)) 

with err computed by (3.27) with 15 of the following form 

where the four columns of 15 are as follows (see Section 2) 

d~ 1 = [1, e>:' cos(wI) , e2>:, COS(2W1), ... , 

e(N-1)>:, cos«N - I)W1)]T, 

~s [ >:,. (~ 2>:,. ( ~ ) d ll = 0, e sm W1)' e sm 2W1 , ... , 

e(N-1)>:, sin«N - I)W1)r, 

d~l = [1, e>:2 COS(02), e2>:2 COS(2W2)"'" 

e(N-1)>:2 cos«N - l)w2)]T, 

~s [ >:2' (~ ? >:2 . ( ~ ) d21 = O,e sm w2),e- sm 2W2 , ... , 

e(N-1)>:2 sin«N -1)w2)]T. 

(6.16) 

(6.17) 

Such fi corresponds to the model with two pairs of complex-conjugate poles 

Zl, Zi * and Z2, Z2 * of multiplicity one. We compare the rrnsel, rmse2, rmse3 

and select that case which corresponds to the smallest rmsei (i = 1,2,3). If 

rrnse3 is equal to either rmsel or rmse2, then we choose the case corresponding 

to the multiple root. In case the result of applying LS Prony method with 

prefiltering is two real numbers 1'1, 1'2 and a pair of complex-conjugate (, (* , 
we assign multiplicity 2 to 1'1, 1'2 and (, and compute the corresponding RMSEs 

which are denoted by rrnsel, rmse2 and rrnse4. By rrnse3 we denote the RMSE 
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obtained when taking a model with the poles rl and r2 of multiplicity 1. If 
the minimum of rmse1 and rmse2 is greater than rmse4, we assign rrnse4 

to rmsel. Now that rmse1 and rmse2 represent the RMSEs obtained for the 

models with poles of multiplicity 2, we compare them with rmse3 - the RMSE 

of the model with two simple poles. If the minimum of rmse1 and rmse2 is 

less than 2 times rmse3, we select the pole corresponding to that minimum and 

start the optimization procedure (note that the pole selected has multiplicity 2). 

Otherwise, the optimization procedure is started with two simple poles. The 

number of the optimization iterations is equal to 10. 

In Fig. 11, we present the RMSEs for four parameters Al, A2, Wl, W2 obtained 

after the optimization procedure has been applied. The plots show the RMSE 

as a function of the frequency separatiQn Llw expressed in Fourier bins (one 

Fourier bin=211"/N). We also plot the VeRB. The higher solid line is the 

VeRB when the CRB is computed for the model of two damped sinusoids with 

the parameters described in (6.11). The lower solid line is the veRB plotted for 
~w values from the interval [10- 2 ,10] Fourier bins where the CRB is obtained 

for the model of one quasipolynomial of multiplicity 2 with the damping factor 

Al = -0.05, frequency Wl = 0.411", amplitudes A = [2, ~w], phases t.p = 
[0,11"/2]. These values of parameters are obtained from the following reasoning. 

Consider model (6.13). When ~w is small, 

sin(0.411"n + ~wn) =sinO.411"ncos~wn + cosO.411"nsin~wn 
~ sin 0.411"n + ~wn cos 0.411"n 

=sinO.411"n + ~wnsin(0.411"n + 11"/2). (6.18) 

So when ~w is small, the model (6.13) can be approximated by the following 
model: 

Vn = exp(-0.05n)(2sin(0.411"n) + ~wnsin(0.411"n + 11"/2)) + en. (6.19) 

But this is a noisy quasipolynomial of multiplicity 2 with the parameters speci­

fied above. Thus if we have two damped sinusoids with closely-spaced frequen­

cies, then it is worthwhile to estimate them as a quasipolynomial of multiplicity 

2 rather than two damped sinusoids with simple poles. In Fig. 12, we present 

the 20'-bounds (where 0' is given by the CRB formula (4.1)) for the models 
(6.13) and (6.19). The larger circles correspond to the CRB for the model with 
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Fig. U. The poles and their 2u-bounds for the model with parameters: 

N = 100, K = [1 1], A = [1 1], tp = [0 0], A = [-0.05 -
0.05], Wl = 0.411", W2 = Wl + ll.w. The frequency separation 

Aw = O.lwper (and O.2wper ) where wper = 211"/N. The larger 
circles = the bounds for the original model, the smaller circles = 
the bounds for the approximating model. 
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simple poles (6.13) while the smaller circles to the CRB for the model of a 

quasipolynomial (6.19). 
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UZTRlUKSMINTQ KVAZIPOLINOMQ IVERTINIMO 

PROGRAMINE SISTEMA, SUKURTA MATLAB PAGRINDU 

Vytautas SLIVINSKAS ir Virginija SIMONYTE 

Sio darbo tikslas - apraSyti autoriq sukurtos, naudojant MATLAB' l:b pro­

gramines sistemos teorinius ir algoritminius pagrindus. Programine sistema yra 

skirta laiko eiluCiq (signalq), kurias galirna modeliuoti kaip realiqjq kvazipoli­

nomq suma plius baltas triukSmas, tyrimui. ApraSytosios programines siste­

mos pagalba galirna apskaiciuoti kvazipolinomq gesimo koeficientq ir dafniq 

nepaslinktqjq iverCiq ivertinimo paklaidos kovariacijos matricos Kramero-Rao 

apatinio rezio israiSkas ir gauti siq p~ametrq jverCius, naudojant tris Prony 

metodo variantus. Naudojant si~ programin~ sisteml:b galima generuoti ivairius 

kvazipolinomq modelius, gauti jq poliq issidestymo vienetinio apskritimo atzvil­

giu grafikus, apskaiciuoti ir nubraizyti aplink kiekvien~ poliq 20--rezius (kur 0-

yra nusakoma KRR formule), 0 taip pat poliqjverCius, gautus kiekvienoje re­

alizacijoje. Pateikiami skaitiniq eksperimentq rezultatai. 


