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Abstract. Weak approximation methods for initial value problem for the parabolic 
equation are considered. We propose some simple tests to investigate the quality of 
RNG used in Monte-Carlo simulations. Numerical examples are given to illustrate the 
application of stochastic approximation methods. 

Key words: parabolic differential equation, stochastic differential equation, weak 
approximation, pseudorandom number generators. 

1. Introduction. Consider the following initial value problem for the para­

bolic equation 

au(t,x) _! 2( )o2u(t,x) ( )au(t,x) 
at - 2 ut, x ax2 + at, x ox ' (1) 

u(O, x) = f(x), x E R. 

In the case of sufficiently smooth function f deterministic methods for solving 

this problem are well known (see Thomee, 1984, Samarskij, 1988). But this 

problem is much more complicated for "rough" initial data f E £2' The 

error estimates of order C( 7' -it h2
) are proved by Bramble et al. (1977) and 

Luskin and Rannacher (1981). The negative influence of quotent O(!) is most 

important for small time t and this effect dissipates away for large tintes t ~ O. 
However in many biological and chemical applications the small time behavior 

is important. The method of finite difference and the Galerkin method formally 

diverges as t - 0, therefore .the important problem is to study the suitability 

and performance of stochastic approximation methods. 

Consi4er the Ito stochastic differential equation (SDE) 

dX(t) = a(t, X(t))dt + u(t, X(t))dw(t), X(O) = x, (2) 



156 Analysis of the numerical stochastic approximation methods 

where w(t) is the Wiener process. We will suppose that drift a(t, x) and 

diffusion u( t, x) coefficients are Lipschitz continuous functions. We will also 

suppose that EIX(o)12 < 00, so we have that a unique solution of (2) exists. 
There is a simple connection between solutions of (1) and (2). We will 

prove it very briefly for the completness of our paper (see Milstein, 1995). 

Let denote X(t) a solution of the following SDE 

dX(s) = a(s, X(s)) ds + u(s, X(s))dw(s), 

X(t)=x,O=r::;s=r::;t. 

By Ito's formula we obtain for a sufficiently smooth function u(t, x) 

t t 

(3) 

u(t, x) - u(O, X(O)) = J Lu(s, X(s))ds + J Au(s, X(s))dw(s), (4) 

° 0 

where 

{) 
A=u(t,x){)x' 

Notice, that it is possible to get (2) from (3) by using the substitution 

s = t - s. Let us denote XO,.,(t) the solution of (2) satisfying initial condition 
X(O) = x. Then from (4) we get 

t 

u(t, x) - u(O, XO,.,(t)) = J Au(s, X(s))dw(s) 

° 

Let u(t, x) be a solution of (1). Then the first integral is equal to zero and 
we obtain the equality 

t 

u(t, x) - f(Xo,.,(t)) = J Au(s,X(s))dw(s). (5) 

° 
By taking the average in (5) we arrive at a probabilistic representation of the 
solution (1) 

u(t, x) = E/(Xo,,,(t)). (6) 
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2. Solution algorithm. In this section we define numerical algorithms for 

the evaluation of the quantity 

EJ(Xo,x(t)) 

and consider the errors introduced by the approximation schemes. 

We will simulate the approximating processes X(t), which can be obtained 

from the stochastic Taylor expansion of the solution of (2) (see Kloeden and 
Platen, 1992) 

t+h t+h 

X(t + h) = X(t) + er J dw(s) + ah + Aer J (w(s) - w(t))du:(s) 
t t 

t+h t+h 

+ Ler J (s - t)dw(s) + Aa J (w(s) - w(t))ds 
t t 

. t+h $ . 

+AAer J J (w(st)-w(t))dW(Sl)dw(s)+La~2 +p, 
t t 

where the remainder p has at least the second order of smallness. This expansion 

contains all terms of order of smallness up to 3/2 and one term of the second 
order. for the last term it is characteristic that the integral in it does not involve 

Wiener processes, and so its mathematical expectation is not equal to zero. 

DEFINITION (see Milstein, 1995). If an approximation X is such that 

IEJ(X(t)) - EJ(X(t)) I ~ ChP , h = tin 

for f from a sufficiently large class of functions, then the order of weak con­

vergency of the approximation X is p. 

In this paper we consider numerical integration methods, which have the 

first or the second order of accuracy. 
A simple approximation method for solving (2) is the Euler method (see 

Milstein, 1995) 

X(t + h) = X(t) + a(t, X(t))h + er(t, X(t))~tw(h), (7) 

where ~tw(h) = w(t + h) - w(t). 
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The global error satisfies the inequality 

IEf(X(t)) - Ef(X(t))1 ~ Ch, 

where C depends only on f. 
A more simple method (see Milstein, 1995) 

(8) 

can be also used to approximate the exact solution X(t), where 

and c: k are independent random variables taking the values + 1 and -1 with 

probabilities 112. This method also has the first order of accuracy in the sense 

of weak approximation. 

The second source of the error arises when we use the Monte-Carlo method 

to approximate the mathematical expectation by the finite sum 

N 

Ef(X(t)) Ri ~ EfCri)(t)), 
i=l 

where X<i)(t), i = 1, ... , N are independent realizations of the process X(t). 
The error of the method can be estimated as follows 

where Varf(X(t)) is variance and 11 = 0.68, ,2 = 0.95, 13 = 0.997 are level 

of significance. 

3. RNG testing. The key ingredient in the modelling of process X (t) and 

successful application of Monte-Carlo simulation methods lies in the quality of 

random numbers used, which are usually produced by deterministic pseudoran­

dom number generator algorithms (RNG). Using of bad quality RNG can lead 

to inaccurate results. Hence we have the third source of errors in our method 

for solving SDE. The analysis of this error is not so obvious as of previous two 
errors. The bounds from above are proved for both of the former errors and 
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these errors can be made sufficiently small by taking appropriate parameters h 
and N. 

We propose some simple tests to investigate the quality of RNG used in 

our experiments. On no account this examination does not claim on perfect 

all-round analysis of random number sequences. Our aim is to carry out min­

imal set of tests and fulfillment of these tests is a necessary condition for the 

convergence of algorithms used to solve the concrete problem. 

In the Euler method (8) we must generate the sequence {e k} of independent 

random variables taking the values +1 and -1 with probabilities 1/2. In 

order to construct {ck} we generate a random number sequence {ek}, which is 

uniformly distributed on [0,1), then {cd is introduced by the following rule 

_ {-I, 6 E [O,~), 
ek - [1 ) 1, ek E 2,1 . 

The algorithms RANDOM and URAND (see Forsythe et aI., 1977) were used 

for uniform random number generation. 

Test 1. Confidence interval estimate of the mean value of the Bernoulli 
process. 

Let outcome of number 1 of Ck be reffered as a success. If fJ is the number 

of successes in a random sample of size rn, according to the Central Limit 

Theorem the variable 
fJ - m/2 

77 = ~y'm 

approaches the standard normal distribution as rn approaches infinity. We only 

construct confidence interval estimate of the mean value of 77. 
Let us denote U a normal deviate value, that is a solution of the equation 

For large samples inequality 1771 ~ u~ is fulfilled with the probability 1 - a 

p{I771 ~ u~} ~ 1- a, 

where 1 - a is called the confidence coefficient. Then we have 

fJ 1 1 fJ 1 
- - --U2: ~ - ~ - + --u",. 
rn 2y'm 2 2 m 2y'm 2" 
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Hence the confidence interval for p! m can be written as 

~ (1- _l_ua) ~ 1: ~ ~ (1 + _l_ua). 
2 rm 2 m 2 rm 2 

The results of numerical experiments obtained with the confidence coefficient 

1 - Cl! = 0.8 are given in Table 1. 

Table 1. The confidence interval estimates 

RNG I m d s 

RANDOM 100 104 0.012900 79 
10 105 0.004079 7 
10 106 0.001290 8 

URAND 100 104 0.012900 80 
10 105 0.004079 9 
10 106 0.001290 9 

We have presented the number of testing samples I, the number of trials in 

one sample rn, the length of the confidence interval d and the number of suc­

cessful samples s, when the confidence interval actually contains the simulated 

value p!rn. 
We see that the first test was successfully passed by both generators. 

The first test is not very difficult and certainly it can not guarantee that 

some given sequence {c k} defines random sequence. For example the 

deterministic sequence { 1, -1, 1, -1, ... } also passes this test. 

Test 2. The Bernoulli scheme. 

The experimental sequences {ck} were used in the Bernoulli scheme experi­

ments with samples of small length m. We calculated experimental frequencies 

of all possible combinations. By the theory the frequency of such combina­

tions can be calculated by formula C:n (combination of i out of m trials). We 

estimated the error introduced by RNG by using the following norm 
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Table 2. The error of experimental frequencies in the Bernoulli scheme 

RNG n m=6 m=2 

RANDOM 1000 0.010070 0.010000 
2000 0.007500 0.001666 
4000 0.005142 0.009166 
8000 0.002964 0.005590 

16000 0.001232 0.001958 

URAND 1000 0.008142 0.016670 
2000 0.004928 0.00760 
4000 0.002892 0.00500 
8000 0.002142 0.006250 

16000 0.001571 0.003083 

where r(i), i = 1, ... , m is an experimental frequency of one specific combi­

nation in the n simulations of experimental samples. 

Test 3. Parabolic problem with smooth data. 

Next we will solve problem (1) with smooth initial data. We are interested 

in the comparision of effectivity of deterministic numerical methods and the 

methods of stochastic approximation. In the case of smooth problem the ad­

vantage of application of deterministic methods is indisputable and stochastic 

modelling is used only as the RNG quality test. 

Consider parabolic equation (see Kloeden et al., 1995) 

ou(t,x) = ° 005 cFu(t,x) 2 ou(t,x) 
ot . ox2 + x ox ' 

u(O, x) == f(x) = x. (9) 

The corresponding SDE is defined as follows: 

dX(t) = 2X(t)dt + O.01dw(t), X(O) = x. 

We know that the exact value 

Ef(X(t» = EX(t) = xe2t . 
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Approximation (8) generates the simplified Euler method 

We have solved numerically problem (9) on the interval [0, t]. The functional 

E f ( X (t)) is calculated by using N discrete processes X (t) which are obtained 

with step sizes h = t / n. The maximal and the minimal errors and the confidence 

intervals for the error 

iEf(X(t)) - Ef(X(t))i ' 

and errors are given in Table 3 with X(O) = 0.1, t = 1, and the confidence 

'Y = 0.95. 

Table 3. Errors for problem (9) with smooth data 

n N cmin Cmax 6min 6max 

1 1000 0.001102 0.003737 0.001892 0.001894 
1 4000 0.000564 0.003557 0.009454 0.009468 
1 16000 0.001596 0.002820 0.000473 0.000473 
1 64000 0.002097 0.002250 6.000236 0.000236 
2 1000 0.000162 0.003728 0.001383 0.003535 
2 4000 0.000007 0.001617 0.001719 0.001746 
2 16000 0.000708 0.001660 0.000865 0.000873 
2 64000 0.000768 0.001291 0.000433 0.000435 

We have presented minimal and maximal global errors Cmin and cmax and 

also minimum and maximum of the Monte-Carlo approximation error 6 = 

2JVarf(X(t))/N for 10 samples. . 

Talay and Thbaro (1990) have proposed stochastic extrapolation methods 

for the numerical solution of SDE based on simulations of functionals of the 

stochastic Euler scheme with different step sizes. Extrapolation methods give 

good results only for N large enough, namely, in the case when 
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is independent from N (see Talay and Thbaro, 1990). 

We use the scheme (8) to obtain the second order extrapolation following 

Kloeden at al. 1995. At first we simulate the functional 

for step size h, then for step size h/2, and finally the two results are combined 

to yield the second-order extrapolation 

Errors of the Euler method and extrapolation errors are given in Table 4 

with X(O) = 0.1, t = 1. 

Table 4. Global errors of the Euler scheme and of the second order ex­

trapolation for the problem with smooth data 

n N gh gh/2 gextrap 

4 2000 0.2317 0.1427 0.0537 
8 2000 0.1433 0.0806 0.0179 

16 2000 0.0808 0.0426 0.0043 
32 2000 0.0431 0.0220 0.0010 

Test 4. Parabolic problem with discontinuos initial data. 

Consider the heat equation with discontinuos initial data 

where 

ou(t,x) 1 02U(t, x) 
at = 2 ox2 

u(O, x) = f(x) = I(O,l/4](X) - I(1/4,l/2](X) 

+ I(1/2,3/4](X) - I(3/4,l](X). 

L () { I, x E (a, b], 
(o,b] x = -1, d ( b] x 11= a, . 

(10) 
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Then we obtain the exact solution (see Fix and Korzeniowski, 1989) 

Using stochastic Taylor formula we get for the approximation 

t+h 

X(t + h) = X(t) + J dw(s). 
t 

Then we find numerical approximation of the solution by using the scheme 

(11) 

where cl: are independent two-point distributed random variables with P{ck = 
±1 = 1/2}. The second approximation scheme is defined as follows 

(12) 

where UI: are independent N(O, 1) distributed Gaussian random variables. Both 

schemes have the same first order of weak convergency. But scheme (11) is 

simpler in simulation. 

Table S. Errors for problem (10) with discontinuos data 

n N C!Din Cmax bmin bmax 

for (11) 
2 1000 0.00092 0.02992 0.02169 0.02252 
2 4000 0.00392 0.02454 0.01107 0.01121 
2 16000 0.00954 0.01970 0.00555 0.00561 
2 64000 0.01067 0.01397 0.00279 0.00280 

for (12) 
2 1000 0.00073 0.02473 0.04171 0.04497 
2 4000 0.00073 0.02352 0.02140 0.02197 
2 16000 0.00034 0.00834 0.01072 0.01098 
2 64000 0.00040 0.00424 0.00541 0.00544 
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NESTACIONARAUS TIESINIO DIFUZUOS UZDAVINIO 

SKAITINIAI STOCHASTINIAI APROKSIMAVIMO METODAI 

Raimondas CIEGIS ir Olga STIKONIENE 

Siarne darbe nagrinejarni parabolines lygties pradinio uZrlavinio silpnos ap­

roksimacijos metodai. Pateikti paprasti testai atsitiktiniq skaiCiq generatoriq 

kokybei tirti. Ivertinti pagrindiniai stochastiniq paklaidq tipai ir atlikta jq ana­

lire. Pateikti skaitinio eksperimento rezultatai, iliustruojantys teorines iSvadas. 


