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Abstract. Recurrent neural networks of binary stochastic units with a general dis­
tribution function are studied using Markov chains theory. Sufficient conditions for 
ergodicity are established and under some assumptions, the stationary distribution is 
determined. The relation between fixed points and absorbing states is studied both theo­
retically and through simulations. For numerical studies the notion of almost absorbing 
state is introduced. 
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1. Introduction. Neural networks with feedback connections, known as 
Little-Hopfield models, provide computing models that perform like auto-asso­
ciative memories (Hopfie1d, 1982; Hertz et al., 1991) or are capable to solve 
optimization problems (Tagliarini, 1991; Hertz et al., 1991). 

The stochastic modelling of neural networks is motivated by some charac­
teristics of the biological neurons (random fluctuations of threshold, stochastic 

nature of synaptic processes etc.) and by improvements of retrieval capabilities 

of these systems when they are used like auto-associative memories (Bressloff 

and Taylor, 1990; Hertz et al., 1991). 

Reccurent neural networks of binary neurons with stochastic discrete dy­

namics were mainly studied, on the basis of their analogy with Ising spin 
glasses, through statistical mechanics techniques (Perreto, 1984; Amit et al., 
1985a; Amit et al., 1985b; Derrida, 1990; Treves, 1990). An excellent review 

of the main results obtained in this field can be found in Hertz et al. (1991). 

A network of this type consists of N units, each of them receiving signals 
from all others (sometimes even from itselfs) and producing a binary output 
(for example ±1) on the basis of a distribution probability (known as Glauber 
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distribution) PG: 

1 
PG(Yi = +1) = 1 + exp( -(3(hi - 8i ))' 

1 
PG(Yi = -1) = 1 + exp({3(hi - 8i))' 

(1) 

In relations (1) Yi denotes the output produced by the i-th unit, hi denotes the 

total input received by the same unit and 8i denotes the neuronal threshold. 

Usually, hi = 2:f=rWijYj where W;j ER denotes the strength of the connec­
tion between the unit j and the unit i. The parameter {3 specifies the slope, in 

0, of the distribution function. 

This form of PG created the opportunity to apply statistical mechanics tools 

in neural networks studies. For general probability distribution functions the 

analogy with spin glasses is no more available, thus the same technique cannot 

be applied. 

On the other hand, under some assumptions, neural networks with stochastic 

discrete dynamics define Markov chains, so their behaviour could be studied 

using the theory of Markov processes. In fact, this tool was already used by 

Bressloff (Bressloff and Taylor., 1990) and Fran~ois (Fran~ois et al., 1992) but 

only in the study of the above mentioned model with Glauber dynamics. 

In this paper we shall study, using results of Markov chains theory, the 

synchronous discrete dynamics of a network with stochastic units characterized 

through a general probability distribution function defined by: 

P(Yi = +1) = !(hi), 

P(Yi = -1) = 1- !(hi), 
(2) 

where! : R -+ [0,1] is a function on which we do not impose any restriction, 

at least for the moment. 

The paper is organized as follows. In Section 2 the stochastic dynamics 

is presented, the transition probabilities are determined and some well known 

models are obtained like particular cases of the proposed model. 

In Section 3 the ergodic properties of the system are studied and under 

some assumptions on ! a general form of the stationary distribution function is 

obtained. 

In Section 4 the relation between the absorbing states of the corresponding 

Markov chain and the fixed points of a related deterministic variant is studied. 



D. Zaharie 257 

In the same section the notion of almost absorbing state is introduced and some 

simulation results are presented. 

In Section 5 some concluding remarks and open problems are presented. 

2. Networks with synchronous stochastic dynamics. We shall consider a 

network of N stochastic units of type (2) characterized at a moment 

t E {O, 1, ... } through the output vector, Y(t) = (Yl (t), Y2(t), ... , YN(t)) E 
{ -1, l}N, considered the state of the system. At one moment, all of the N 
units can change their state (i.e., the output they produce), thus the dynamics of 

the system is a synchronous (parallel) one (Little, 1974; Bressloff and Taylor, 

1990). 

In this case the evolution of the network's state can be described through: 

N 

P(Yi(t + 1) = +IIY(t) = Y) = J(L: WijYj - (Ji), 
i=l 

(3) 
N 

P(Yi(t + 1) = -IIY(t) = Y) = 1- f(L: WijYj - (Jd, 
j=l, 

with f : R....,. [0,1] a function and PCI·) a conditional probability. 

Clearly, the state at the moment (t + 1), Y(t + 1), depends only on the state 

at the moment t, Y(t), thus Yt = {Y(t)lt E {O, I, ... }} is an homogeneous 
Markov chain with 2N states: {y1, y2, ... , y2N}. 

Let us denote through P(k, I) the probability of one-step transition from 

state yk = (yf, ... ,y~) to state yl = (yL ... ,ykr): P(k,l) = P(Y(t + 
1) = ylIY(t) = yk). Using the fact that the dynamics of the network is 

synchronous, follows that, for each unit i, the output at moment (t + 1), Yi(t + 
1), depends only on the outputs produced at the previous moment, thus on 

Y1(t), ... , YN(t). Hence 

N 

P(k, I) = IT P(Yi(t + 1) = Y;IY(t) = yk). 
;=1 

On the other hand, because Y; E {-I, I} relations (3) can be written in a single 

relation: 

P(Yi(t + 1) = ylIY(t) = yk) = 1 ~ Y; + YU(t wiiyj - (Ji)' 
J=1 
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Using these remarks, follows that the one-step transition probabilities, P(k, I), 
can be expressed through: 

1- Yj 1 k N (I N ) 
P(k,/) = g -2-+ Y;!([;WjjYj -OJ) . (4) 

Sometimes it is useful to change f with 9 : R --+ [-1,1], g(u) = 2f(u) - 1, 
for any u ER. In this case (4) becomes: 

N 
N 1 + y;g( E Wjjyj - 0;) 

P(k, I) = IT j=12 
i=1 

(5) 

In the following we shall use the notation hf = Ef=l Wij yj. It is easy to verify 
that the matrix T with nl = P(k, I), for k, I E {1, ... , 2N} is a stochastic 

matrix because: 

2N N 

E P(k, /) = IT [f(hf - Oi) + (1- f(hf - 0;))] = l. 
1=1 ;=1 

A system with stochastic dynamics will, in general, evolve differently every 

time it is run. To obtain some informations of the system behaviour we can, for 

example, reduce them to a deterministic variant or study them for large values 

of t (the asymptotic behaviour). 

There are at least two strategies to reduce the stochastic dynamics (3) to a 

deterministic one: 

(a) At each moment the system will go in the state with the greatest proba­

bility: if Y(t) = yk then Y(t + 1) = yl with P(k, I) = maxj P(k, j). 
It follows that yi =sgn(g( M - OJ)) with sgn the classical signum func­

tion (sgn( u) = -1, u < 0; sgn( u) = 1, u ~ 0). This dynamics includes, 

like a particular case, the deterministic Little model (Little, 1974). 

(b) At each moment the system will go in a state which is obtained through 

averaging: if Y(t) = yk then Yi(t + 1) = E(ylIY(t) = yk) with 

E(-I·) the conditional mean of the binary random variable yi. Thus 

Yi(t + 1) = g(hf - Oi) which is the dynamics of a deterministic neural 
network with continuous units (Marcus and Westervelt, 1989). 
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On the other hand, any variant of the Little model with stochastic threshold 

(Bressloff and Taylor, 1990) can be obtained from the dynamics (3) if we take 

f = Fe, where Fe is the distribution function of the random variable B. 
To conclude this section we remark that the network with stochastic dy­

namics (3) is a general one, which includes some of other known models. The 

asymptotic behaviour of the system described through (3) is studied in the next 

section. 

3. Ergodic properties. It is known (Perreto, 1984; Bressloff and Taylor, 

1990; Derrida, 1990; Frant;ois et aI., 1992) that a network of stochastic units of 

type (1) and synchronous dynamics defines an ergodic Markov chain and the 

expression of the stationary distribution is known too. For the stochastic units 

with general distribution function (2) the main results which we obtained are 

presented in the next two propositions. 

Proposition3.1. Iff(R) C (0,1) (orequivalentlyg(R) C (-1,1») then 

Yt is an ergodic Markov chain. 

Proof. From (4) and (5) and the hypothesis of the proposition follows that 

P(k, I) E (0,1) for all k, lE {1, ... , 2N}, so T is a regular stochastic matrix. 
Applying the Perron-Frobenius theorem follows that Yt is an ergodic Markov 

chain. 

For an ergodic Markov chain the stationary distribution is unique but, in 

general, is difficult to determine its analytical expression. There are only some 

particular cases when the stationary distribution can be explicitly calculated. 

For the general stochastic dynamics (3) we obtained: 

Proposition3.2. Ifg(R) C (-1,1) and 

I (hk B) 2N N 1 + Yjg i - ; - ~IT 
I k -~ 

1 - Yjg(h i - Bi ) k=1 ;=1 

1 + yfg(hl- Bi) 
1- Yfg(h~ - Oi) 

for all yl, yk E {-1, 1}N then the stationary distribution is 

N 

P*(k) - ~ IT 1 
- Z i=1 J1- g2(hf - Bi) 

with 

(6) 

(7) 



260 A Markovian study of recurrent neural network 

a normalization constant. 

Proof. The unicity of the stationary distribution of an ergodic Markov chain 

implies that it is sufficient to verify: 

2N 

L P(k, l)P*(k) = P*(l) 
k=l 

for' all 1 E {I, ... , 2N}. This follows through some calculations: 

2N 

1 + yfg(hl- (Jd 
1- yfg(hl- (Ji) 

1 + Ylg(hf - (Ji) 
1 - Ylg(hf - (Ji) 

= E P(l, k)P*(l) = P*(l). 
k=l 

The classical result for stochastic units of type (1) can be obtained like a 

particular case if we take g(u) = tanh(,8u). Indeed, after some calculations 

follows: 

ITN 1 + Yl tanh(,8(hf - (Ji)) (~ I k) 
;=1 1 - Yl tanh(,B(hf - (Ji)) = exp 2,8 j~l WijYiYj . 

If the connections between units are symmetric (Wij = Wji for all i, j E 

{I, ... , N}) then exp(2,8L:~=1 wijylYj) = exp(2,8L:G=1 wjjYfY}) thus the 
hypothesis of Proposition 3.2 is satisfied. So we reobtained for the case of a 

synchronous Glauber dynamics the stationary probability 

1 N 
P*(k) = z IT cosh (,8(hf - (Ji)) 

i=l 

with Z a normalization constant. 
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We must remark that for this particular case it is satisfied even a more 

restrictive condition than (6), the equality of corresponding terms: 

N 

IT 
i=l 

1 + yfg(hl- 8i) 

1- yfg(hl- 8i )· 

From this relation results that for the stochastic dynamics (1) it is satisfied the 

hypothesis of a known result (Bressloff and Taylor, 1990): 

If {Y(t)lt E N} is an ergodic Markov chain with a finite set of states, 
{y1, ... , ym}, and if there exists a function a : R --+ R+ such that the 
transition probabilities satisfy: 

then the stationary distribution is 

P*(k) = 
a(yk) . 

m ' 2: a(YP) 
p=l 

for a particular choice of a, a(u) = 1/v'(1- g2(u». 
In the general case when the relation (6) is satisfied but the corresponding 

terms are not equal, the Proposition 3.2. can be used but this last result cannot 

be applied. However, even the hypothesis of Proposition 3.2 could be too 

restrictive. 

4. Absorbing states and fixed points. A deterministic neural network 

which implements an auto-associative memory for static vectors is characterized 

through the fact that the corresponding dynamical system has some fixed points 

which have the property of local asymptotic stability. These fixed points are 

included into the system through an appropriate choice of the parameters Wij' 

From a theoretical viewpoint the ergodicity is an undesirable property for 

networks used for auto-associative memory applications. There are at least two 

ways to breakdown the ergodicity (Bressloff and Taylor, 1990): considering the 

thermodynamic limit, N --+ 00, variant which allows in the case of dynamics (1) 

the use of statistical mechanics tools, or choosing f (g) such that f (R) n { 0, I} :I 
o (g(R) n {-I, I} =j:. 0) variant which we will study in the following. 
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The relation between the absorbing states y k (characterized through 

P(k, k) = 1) and the fixed points of a deterministic variant is presented in 

the next two propositions. 

Proposition 4.1. A vector yk E {-I, 1}N is an absorbing state for the 

Markov chain Yt if and only if yk is a fixed point for G : {-I, I}N --'+ 

[-I,I]N with G(Y) = (g(hl - 01), ••• , g(hN - ON))T. 

Proof. yk is an absorbing state if and only if P(k, k) = 1 that implies 

1 + yfg(hf - Oi) = 1 
2 

for any i E {I, ... , N}. For yf E {-I, I} this is equivalent with yf = 
g(hf - 0;). 

For a particular choice of the parameters Wij which assures the storage of 

some vectors {e, ... , ep } E {-I, I}N (Hebb rule): 

1 P 

W;j = N "L, er er 
J.I=1 

i,j E {1, ... ,N}, (8) 

the absorbing states are characterized by: 

Proposition 4.2. If W;j are established through (8) starting from a set 
of un correlated vectors S = {e, ... ,ep } ((eJ.lfe = 0, for any J.t # 1/) then 
a vector e E S is an absorbing state if and only if 

g(er - 0;) = er for all i E {I, ... ,N}. (9) 

Proof. If S is a set of uncorre1ated vectors then Ef=1 W;je; = er, so 

applying Proposition 4.1 follows that e is an absorbing state if and only if 

er = g(er - 0;), for any i E {I, ... , N}. 
For 0; E (-1,1), one of the simplest and most used function 9 which 

satisfies (9) for all uncorrelated stored vectors is the signum function (sgn). 

But in this case the dynamics becomes deterministic. To keep the stochastic 

character of the dynamics and breakdown the ergodicity property we can choose 

9 such that g(u) = -1 for u E (-1-6, -1+6), g(u) = 1 for u E (1-6,1+6) 
(with 6> 0 a little real value) and g(u) E (-1,1) for other values of u. 

On the other hand we can keep the ergodicity property and impose the 

existence of almost absorbing states defined by: 



D. Zaharie 263 

DEFINITION 4.1. A state yk is an almost absorbing state if there exists 

c E (0,1) a little constant such that: 

P(k,k» I-c. (10) 

The existence of almost absorbing states can be achieved using functions 

9{3 which depend on a parameter (J and which satisfy: i) 9{3(R) C (-1,1) and 

ii) lim{3_oo 9{3(R) = {-I,D, I}. Clearly, for (J < 00 the Markov chain Yt 
cannot have absorbing states but if (J has a high value then there exists almost 

absorbing states. 

In numerical simulations we can use almost absorbing states instead of 

absorbing states to identify the stored vectors, but it is necessary to determine 

values of (J which assure the property of almost absorbing state for all stored 

vectors. 

In the following we shall study two functions 9 {3 which have the property 

Iim{3_oo 9{3(U) E {-I,D, I} for any u ER: 

exp((Ju) - 1 
91(U) = () , exp (Ju + 1 

(u) _ {l-exP(-(Ju) ifu ~ 0, 
92 - exp((Ju) - 1 if u < O. 

(11) 

(12) 

The function 91 corresponds to the classical Glauber dynamics and 92 is 

a symmetric variant obtained starting with McCulloch Pitts units with expo­

nential distributed random threshold. For these functions we have determined 

lower bounds of (J which assure, in the uncorrelated case, for all stored vectors 

(through (8» the property of almost absorbing state (10). 

These lower bounds are: 

1. for 91: 
~ 

(J > m~xBi + In N~ = K 1 , 
• 1- y1-c 

1 
(J > m~Bi + In ( N~) = K 2 . , 21-yI-c 

Some numerical values of K1 and K2 corresponding to different values of 

absorption probability 1- c, for the case Bi = 0, i E {I, ... , N}, are presented 

in Table 1. 
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Table 1. Dependence of lower bounds K 1 anq K 2 on absorption proba­

bility 1- g 

1-g K1 K2 

0.5 2.5249 1.9088 
0.6 2.8404 2.2040 
0.7 3.2082 2.5547 
0.8 3.6847 3.0163 
0.9 4.4417 3.7062 

0.99 6.7968 6.1047 
0.999 9.1044 8.4113 

In the case of correlated vectors, theoretical lower bounds for (3 cannot 

be determined so easy. In this case we made some simulations studies for a 

little network with N = 9 which determines a Markov chain with 512 states. 

Some (p = 2,3,4,5,6) correlated vectors were successively embedded into 

the parameters of the network and we calculated the absorption probability 

of states corresponding to the stored vectors. For the deterministic case with 

9 =sgn if P > 3 (for N = 9 the critical capacity (Amit et al., 1985b) is 

Pc = N Qc = 9·0.138 = 1.242) some spurios absorbing states appears. 

For the stochastic case we denote through Pmin the minimal absorption 

probability of stored vectors. If S is the set of stored vectors, a vector Y k fj. S 
will be considered spurious almost absorbing state if P ( k , k) > P min. For the 

variants with 91 and 92 (for different values of (3 E {3, ... , IO} spurious almost 

absorbing states appears only for p > 5. The dependence of Pmin on (3 and p 

is presented in Fig. 1 for 91> respectively in Fig. 2 for 92. 

5. Conclusions. The reformulation in the terms of a Markov process of the 

stochastic dynamics of a neural network could be useful to obtain some infor­

mations even in the cases when statistical mechanics tools cannot be applied. 

Using the absorption probabilities, informations on the fixed points of a 

deterministic corresponding network (with discrete or continuous units) can be 

obtained. On the other hand the transition probabilities could be used to obtain 

informations on the region of attraction of the fixed points. 

There are, too, some unsolved problems: (1) to find other functions 9 which 

satisfy (6) or to relax this condition; (2) to establish, for the correlated case, the 
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Fig. 1. Dependence of the minimal absorption probability for the stored 
vectors, Pmiu, on the parameter (3 of 91' 
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Fig. 2. Dependence of the minimal absorption probability for the stored 
vectors, Pmiu, on the parameter (3 of 92' 

relation between the almost absorbing states and the fixed points of the deter­
ministic dynamics; (3) to extend the Markovian study for stochastic networks 
of continuous valued units using results from the theory of Markov chains with 
infinite set of states. 
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REKURENTINIQ NEURO TINKLlJ 

SU STOCHASTINE DINAMIKA MARKOVINE ANALIZE 

Daniela ZAHARIE 

Rekurentiniai neuro tinklai, sudaryti i§ stochastinht elementq su bendra pasiskirstymo 

funkcija, yra nagrinejami, naudojantis Markovo grandiniq teorija. Nustatytos pakanka­

mos ergodi§kumo slllygos, 0 padarius tarn tikras prielaidas, jvertintas stacionarus pa­

siskirstymas. SllIY§is tarp fiksuotq ta§kq ir absorbuojanl!iq bUkliq yra nagrinejamas 

teori§kai ir modeliavimo budu. Eksperimentiniams tyrimams ivesta beveik absorbuo­

janl!ios bUkles sllvoka. 


