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Abstract. In this papper we consider the problem of solving 3D diffusion problems 
on distributed memory computers. We present a parallel algorithm that is suitable for 
the number of processors less or equal 8. The pipelining method is used to enlarge 
the number of processors till 64. The computational grid decomposition method is 
proposed for heterogenous clusters of workstations which preserves the load balancing 
of computers. The numerical results for two clusters of workstations are given. 
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1. Introduction. Parallel and parallel/vector computers are widely used 

for modelling a large variety of physical phenomena. Such processes can be 

described by means of partial differential equations, and numerical solutions 

of such equations are considered. Resent advances in parallel hardware and 

software are giving us a pos..<;ibility to achieve the following goals (Freeman 

and Phillips, 1991): 

• to decrease the execution time of programs so that results can be obtained 
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in reasonable time (possibly even in real time), 

• to obtain higher accuracy or more accurate modelling of the underlying 

physical problem by increasing the problem size. 

Distributed memory computers have enabled the mathematical modelling of 

applications requiring computational resources previously unavailable. The dis­

crete problems, obtained by finite difference method, for example, can become 

very large as the number of grid points is increased and the time step is small. 

In order exploit fully the computing power of parallel and/or vector comput­

ers, existing numerical algorithms must be re-examined. With parallel comput­

ers we again need to worry about details of data transfer time between memory 
and processors and we must take into account which numerical operations are 
most efficient. For many problems the fastest sequential algorithm does not 

parallelize well and so a distinct algorithm is used. At the same time for paral­
lel computers with distributed memory the theory and compilators of automatic 
parallelization are in the first stage of development. 

As was mentioned above we deal with big variety of mathematical mod­
els and various computer systems. Hence the following goal is important in 
scientific computing: 

• to test the performance efficiency of parallel algorithms designed for 
solving the most important types of PDE .. 

It is well-known that complicated mathematical models can be effectivelly 

solved by using the splitting method, when different physical processes are 
solved numerically separately (Marchuk, 1990). Then results obtained for var­

ious types of PDEs will give a useful measure of computation speed likely to 
be achieved for a large application. For example, air pollution models can be 

splitted into the following four main parts: advection, deposition, diffusion and 

chemistry (Zlatev and WaSniewski, 1992). The discrete approximations of air 

polution models are used as important benchmarks for testing numerical algo­

rithms on various types of parallel computers (Zlatev et al., 1991). We note 

that diffusion process was not included into these experiments. 

The numerical methods for solving 3D diffusion problems on parallel com­

puters with distributed memory are considered in this paper. In fact we are 

especially interested in algorithms which are efficient on clusters of worksta­
tions connected over local area network CLAN). A cluster of workstatios is a 

useful environment for many simulations. Typically communication overheads 
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between workstations are still quite high and must be taken into account. Hence 

the problem of minimizing the amount of data communicated between proces­

sors is very important for such class of parallel computers. We have used PVM 

for a practical realization of our algorithms (Geist et al., 1993). 

2. Description ofthe model problem. Let Q be a cube in R3: 

'Y be its boundary, (0, T] be a bounded half open interval in R and let QT = 
Q x (0, T]. We consider the 3D, constant coefficient diffusion model problem 

au ~ a2 u 
at = L.. ax~ + I(x, t), (x, t) E QT' 

;=1 ' 

(2) 

u(x, t) = J.l(x, t), (x, t) E r = 'Y x (0, T], 

u(x,O) = uo(x), x E Q. 

Let W T , Wh be difference grids 

W T = {tj+a/3 = (j + et/3)'T, (3) 

0:=0,1,2,3, j=I,2, ... ,K, K'T=T}, 

Wh == {(Xli" X2i2' X3;3) , (4) 

xa;e> = io.h, et = 1,2,3, ia = 1,2, ... ,N -1, Nh = I}. 

We consider the following Locally One Dimensional (LOD) scheme 

Ya - Ya-1 _ A Ya + Ya-l + 
'T - a 2 'Pa, 

Yet = I/o" 

y(x, 0) = uo(x), 

(x,t) E Wh x W T , 

(x,t) E l'h X W T , 0: = 1,2,3, 

y(tj+1) = Y3, 

(5) 

where Aa is the discrete approximation, resulting from the use of 2nd-order 

central differences in the x 0. direction. There we have used the notation for 

grid functions 

Ya = Yj,a = y(tj + o:/p), 0: = 0,1,2,3. 
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The analysis of the convergence of LOD schemes is given in Ciegis and 

KiSkis (1994a), Ciegis and Kiskis (l994b). 

Some theoretical problems are still not solved completely, hence numerical 

experiments with 3D LOD schemes are also important in order to test some 

theoretical hypothesis (Ciegis and Kiskis, 1 994b). 

3. Parallel algorithm. We will consider the realization of LOD scheme (5) 

on a distributed-memory multiprocessor or on a cluster of workstations. We 

will make the following assumptions (see also Lin and Chen, 1994): 

1. There are p processors that are connected through a network. Each 

processor contains a local memory that is sufficient to hold all data 

needed. There is no global memory. 

2. A cluster of processors is heterogeneous, the execution time of all com­

putations (addition, mUltiplication, division) can be different for each 
processor. 

3. Different processors can perform computations concurrently; different 

pair of processors can communicate each other concurrently. 

In order to get a solution of LOD scheme (5) at each time level t j, one 

must solve 3( N - 1) x (N - 1) tridiagonal systems of size N - 1. The splitting 

direction also changes at each fractional time step, hence sequential factorization 

algoritms are not efficient in the case of large number of processors. 

There exist many parallel algorithms to solve tridiagonal systems; see, e.g., 

Lin and Chen (1994), Demmel et al. (1993), or to solve multimidimensional 

problems by using alternating-direction type methods; see, e.g., 10hnson (1990), 

Ortega (1988). However, all known parallel direct tridiagonal solvers carry a 

high floating-point overhead (typically 2.5 times more arithmetic operations). 

Hence we restrict our analysis to the well-known modification of the Thomas , 

algoritm, which requires the same amount of floating-point operations as the 

basic Thomas methods. 

Let consider the system of linear equations 

TY=F, (6) 
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where T is a tridiagonal matrix 

bl Cl 0 0 0 0 
a2 b2 C2 0 0 0 

T= (7) 

0 0 0 aM-I bM-I CM-I 

0 0 0 0 aM bM 

In the 2-way Gaussian elimination algorithm (this method is called twisted 

factorization algorithm in Demmel et al., 1993) the sequential elimination pro­

cess is carried out in parallel from both sides. In the first elementary loop we 

calculate factorization parameters Qi, J3i : 

. _ Cj /3. _ fi - aiJ3i-1 
Q, - - " - , 

bi + ajQi-l bi + ajQi-l 
(8) 

Qo = 0, J30 = 0, i = 1,2, ... , Lj 

aj fi - ciJ3i+1 
Cl'i = - , f3i = , 

bi + CjQi+l bi + CiQi+l 
(9) 

QM+l = 0, J3M+l = 0, i = M,M -1, .. . ,L+ 1. 

In our case coefficients Qi must be calculated only once. Then processors 

exchange coefficients (Q k, J3k) and (Q k+ 1, J3k+ d by using one message and 
compute the boundary components of the solution 

(10) 

After this both processors in parallel evaluate the back-substitution loop 

Yi = QiYi+1 + J3i, i = L - 1, L - 2, ... ,1, (11) 

Yi = 0iYj-l +J3i, i=L+2,L+3, ... ,M. 

We see that 2~way Gaussian elimination takes as many arithmetic operations 

as the standard factorization, and can be carried out with twofold parallelism. 

4. Data layout on distributed memory computer. It is well-known that 

for distributed-memory computers an important issue is data layout, or how the 

computational grid is partitioned across the processors. This determines both the 
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amount of parallelism and the cost of communication. TIle latter characteristic 

is very important for cluste1'$ of WOrkstatiODS, because communication between 

processors is slow in comparence 'with computation speeds. 

The 2-way Gaussian elimination algoritms defines a distribution of N x N x 

N computational grid over P ~ 8 processors grid. Let consider a docomp?sition 

of the three-dimensional cube into 8 subdomains (see Fig. 1). 

x, 

x. 

X, 

Fig. 1. Decomposition of 3D cube into 8 subcubes. 

The algorithm of assigning 8 subcubes to P processors is implemented in 

three steps. We will describe in detail the first step of cube decomposing in th~ 

X3 direction. 

If P = 1, then an subcubes Ql, Q2, ... , Qs are assigned to the first proces­

sor. If p > 1, then we divide all processors into two sets. Let denote 

PL = [P/2J, PR = P - PL' 

The subcubes Qlo Q2. Qs. Q4 are assigned to processors 1,2, ... ,PL and 

subcubes Qs. Q6. Q7. Qs are assigned to processors PL+1,PL+2"" ,po Next 
we repeat this procedure in :1:2 direction for both groups of processors inde­

pendently. In the third stage we simillarly divide computational grid in Xl 

direction. 

The examples of data layouts for P = 3 and p = 6 processors are given in 

Fig. 2. 
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Fig.2. Data layouts for p = 3 (a) and'p= 6 processors (b). 
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We finish this section with estimation of data amount which must be commu­

nicated between processors. Let consider the case when we have 8 processors 

and processors can no.t communicate concurrently. The number of elements 

transmitted by each processor to its neighbors is equal to the number of bound­

ary grid pointS. In the case of p = 8 processors the total number of such grid 

points is equal to 3(N -1) x (N -1). It is easy to see that this number is min­

imal possible for different partitions. For example, if we consider the partition 

of the cube, which is given in Fig. 3, then the number of internal boundary grid 

points is equal to7(N - n x (N - n. 

1 23 4 5 6 7 8 

Fig. 3. A partition of the cube for 8 processors. 
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Simillar results are valid when processors can communicate concurrently. 

For the proposed basic data layout each processor must transmit 0.75 (N - 1) x 

(N - 1) elements. In the case of grid partition, which is given in Fig. 3, the 

number of such elements is equal to 2(N - 1) x (N - 1). 

5. Load balancing. In this section we consider the case of heterogeneous 

workstation cluster. Let's assume that performance rates of processors satisfy 

the following inequalities 

In previous sections it was shown that implementation of LOD scheme (5) 

requires O(N3 ) floating-point operations and processors must communicate 

O(N2) elements. Hence Amdahl's Law suggests that for large problems the 

algorithm can be effectively parallelized and we can take into account only 

computational time when we solve a load balancing problem. 

Let's denote by Mj the number of grid points assigned to jth processor. In 

order to get the equitable distribution of the total computational work we must 

solve the following optimization problem 

min rn~x tj = t*, 
Mi l~J~p 

subject to the constraints 

(12) 

The solution of (12) is well known for real-valued Mj and it is defined as 

Ml = M2 = ... = Mp. (13) 

Now we will finish the definition of the partitioning algorithm from Sec­

tion 4. It is sufficient to consider one step of the algorithm, for example the first 

step. Suppose that according to the layout defined in Section 4 all processors 
are divided into two sets 
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and both sets are not empty. We denote Wl, W2 the total computational rates 

of processors" belonging to sets Ql, Q2, respectively: 

The block size of grid points in Zs direction, assigned to processors from the 

first group, is obtained by finding the integer valued solution of the optimization 

problem (12). It is given by 

(14) 

if 

otherwise 

(15) 

where lz J ,denotes the greatest integer less than or equal to z. Such ~rocedure 

is applied in, all threedireetions.Theexamp1e of computational grid partition 

for p = 8 processors in the case of heterogeneous cluster is given in Fig. 4. 

Fig. 4. Partition of 3D coInputational grid for 8 processors. 

6. Plpeliuing method. In this section we consider a generalization of our 

algorithm. Here we assume that the number of processors p ~ 64. We assign 
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1 5 9 13 

2 6 10 14 

3 7 11 15 

4 8 12 16 

Fig. S •. Assignment of the subdomains to 16 processors of a- 4 x 4 grid . 

the· subcubes of the computational grid to 4 processors in each direction as 
shown in Fig. 5 for the first layer of processors. For the realization of LOD 
scheme (5) we apply the method of pipelining the computation (Hofhaus and 
van de Velde, 1996). 

The forward sweep is started from both ends by two processors with only 
one tridiagonal system in each of the processors. As soon as· these processors 
are finished with their part of Gaussian elimination· of their first tridiagonal 
system they send the information to their neighbours and start the forward 
sweep on the second tridiagonal system, while the other two processors start 
working on their part of the first tridiagonal.system. Thus after first step all 
processors will be active. The backward sweep is similar. 

7. Numerical raults. Some results of experiments performed with different 
clusters of workstati~ will be presented in this section. The test problem 
described in Section 2 was solved. We have used the f0110wing initial condition 
and right hand side fun~on 

U(2:1' 2:2, %3, 0) = sin 11'2:1 sin 11'2:2 sin 11'2:3, 

f( 2:1,2:2,2:3) = 311'.2 sin 11'2:1 sin 11'2:2 sin 11'2:3' 

The LOD algorithm(5) was run on four grids: (62x62 x 62), (82 x 82 x 82), 
(102 x 102 x 102)" (122 x 122 x 122) and 16time steps were performed on 
each grid. 
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First we present results obtained for the homogeneous cluster of two MO­

TOROLA workstations. Our goal was to investigate the efficiency of the algo­
rithm in unfavourable conditions when: 

• the computational speed of wokstations is rather high, 

• the communication rates are rather low (the computers were included into 

the cluster with commercial OMNITELNET and the distance between 

them was about 100 km). 

We note that the best efficiency and speedup results can be achieved for 

homogeneous clusters of workstations with low computational speed and high 

communication speed. 

In Table 1 we show the execution time TE and parallel efficiency E2 , which 
is defined as 

T(I) 
E2 = 2T(2) , 

where T( k) is the time required to execute the program on k processors. 

Table 1. Execution times and efficiency indices for various space grids 

N 62 82 102 122 

TE 0:33 1:12 2:15 3:54 

E2 0.82 0.89 0.94 0.96 

Our second cluster was heterogeneous and included 2 SUN SPARe stations 

(with SOLARIS), HP 90001720, 2 PC PENTIUM (with SOLARIS), PC AT/486 

(with SOLARIS). All these workstations were clustered in one local network. 

The relative computational speeds of workstations are presented in Table 2. 

Table 2. The relative computational speed of workstations 

Workstation SUNSPARC PC AT/486 HP 9000 PC PENTIUM MOTOROLLA 

Speed 100 110 180 220 500 

Firstly we treated this cluster as homogeneous cluster of workstations of 

the slowest type, using the homogenous partitioning algorithm. The obtained 
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execution times and efficiency indices E6 , are presented in Table 3 where the 

parallel efficiency is defined as 

E _ TS[JN(I) 
6- 6T(6) , 

Table 3. Execution times and efficiency indices for homogeneous cluster 

of 6 workstations 

N 42 62 82 102 

TB 0:29 1:05 2:15 3:54 

E6 0.50 0.76 0.86 0.91 

We then solved LOD scheme (5) by taking into account the relative com­

putational rates of workstations. The results are given in Table 4, where the 

parallel efficiency is defined as 

TsuN(1) 
10.3.5 T(6) , 

and VV6 is the total relative computational speed of the cluster. 

Table 4. Execution times and efficiency indices for heterogeneous cluster 

of 6 workstations 

N 42 62 82 102 

lE 0:21 0:44 1:29 2:23 

E6 0.40 0.65 0.79 0.87 

We see that parallel efficiency degrades a little due to higher computational 

speeds of workstations. Even with the lower efficiency, however, execution 

times are shorter with heterogeneous cluster than for homogeneous cluster. 

8. Conclusions. We have demonstrarated the effectiveness of parallel algo­

rithms for solving 3D diffusion problem on distributed memory computers. The 



R. Ciegis et al. 307 

problem is approximated by LOD scheme and solved by the 2 way Gaussian 
elimination method. 

The domain decomposition method is proposed for heterogeneous clusters 
of workstations which preserves the load balancing of computers. The basic 

method can be implemented on 8 processors and the pipelining metod is used 

to enlarge the number of processors till 64. The performance of the algorithm 
is demonstrated for two clusters of workstations. 
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TRIMACIO SILUMOS LAIDUMO UZDAVINIO 

SPRENDlMAS LYGIAGRECIUOJU KOMPIUTERIU 

SU PASKIRSTYT .\JA ATMINTIMI 

Raimondas CIEGIS, Juozas SIMKEVICIUS, Jerzy WASNIEWSKI 

Nagrinejami skaitiniai u~davinio sprendimo algoritmai, kurie yra efektyviis lygia­
gretiesiems kompiuteriams su paskirstytll,ja atmintimi. Pateikti algoritmai, kurie tinkami, 
kai procesoriq skai<:ius yra ne didesnis u~ 8. Panaudojant konvejerio principlt sukon­
struota algoritmo modifikacija, leid~ianti panaudoti iki 64 procesoriq. Heterogeniskam 
kompiuteriq klasteriui sprend~iamas tolygaus procesoriq apkrovimo uMavinys, pateik­
tas diskre<:iojo tinklo mazgq paskirstymo tarp procesorill algoritmas. Pateikti skaitiniq 
eksperimentq, atliktq naudojant PVM, rezultatai. 


