
INFORMATICA, 1996, Vol. 7, No. 3,295-310

RUNNING FINITE-DIFFERENCE SCHEMES FOR
3D DIFFUSION PROBLEMS ON PARALLEL COMPUTERS

WITH DISTRIBUTED MEMORY

Raimondas CIEGIS

Institute of Mathematics and Infonnatics
Akademijos 4, 2600 Vilnius, Lithuania
Email: raimondas.ciegis@fm.vtu.lt

Juozas SIMKEVICIUS

Vytautas Magnus University
Vileikos 8, 3000 Kaunas, Lithuania

Jerzy WASNIEWSKI

The Danish Computer Center for Research and Education
UNI-C, DTH, Bldg. 305, DK-2800 Lyngby, Denmark

Abstract. In this papper we consider the problem of solving 3D diffusion problems
on distributed memory computers. We present a parallel algorithm that is suitable for
the number of processors less or equal 8. The pipelining method is used to enlarge
the number of processors till 64. The computational grid decomposition method is
proposed for heterogenous clusters of workstations which preserves the load balancing
of computers. The numerical results for two clusters of workstations are given.

Key words: finite difference schemes, parallel algorithms, LOD methods, distributed
memory computers.

1. Introduction. Parallel and parallel/vector computers are widely used

for modelling a large variety of physical phenomena. Such processes can be

described by means of partial differential equations, and numerical solutions

of such equations are considered. Resent advances in parallel hardware and

software are giving us a pos..<;ibility to achieve the following goals (Freeman

and Phillips, 1991):

• to decrease the execution time of programs so that results can be obtained

296 Running finite-difference schemes

in reasonable time (possibly even in real time),

• to obtain higher accuracy or more accurate modelling of the underlying

physical problem by increasing the problem size.

Distributed memory computers have enabled the mathematical modelling of

applications requiring computational resources previously unavailable. The dis­

crete problems, obtained by finite difference method, for example, can become

very large as the number of grid points is increased and the time step is small.

In order exploit fully the computing power of parallel and/or vector comput­

ers, existing numerical algorithms must be re-examined. With parallel comput­

ers we again need to worry about details of data transfer time between memory
and processors and we must take into account which numerical operations are
most efficient. For many problems the fastest sequential algorithm does not

parallelize well and so a distinct algorithm is used. At the same time for paral­
lel computers with distributed memory the theory and compilators of automatic
parallelization are in the first stage of development.

As was mentioned above we deal with big variety of mathematical mod­
els and various computer systems. Hence the following goal is important in
scientific computing:

• to test the performance efficiency of parallel algorithms designed for
solving the most important types of PDE ..

It is well-known that complicated mathematical models can be effectivelly

solved by using the splitting method, when different physical processes are
solved numerically separately (Marchuk, 1990). Then results obtained for var­

ious types of PDEs will give a useful measure of computation speed likely to
be achieved for a large application. For example, air pollution models can be

splitted into the following four main parts: advection, deposition, diffusion and

chemistry (Zlatev and WaSniewski, 1992). The discrete approximations of air

polution models are used as important benchmarks for testing numerical algo­

rithms on various types of parallel computers (Zlatev et al., 1991). We note

that diffusion process was not included into these experiments.

The numerical methods for solving 3D diffusion problems on parallel com­

puters with distributed memory are considered in this paper. In fact we are

especially interested in algorithms which are efficient on clusters of worksta­
tions connected over local area network CLAN). A cluster of workstatios is a

useful environment for many simulations. Typically communication overheads

R. Ciegis et al. 297

between workstations are still quite high and must be taken into account. Hence

the problem of minimizing the amount of data communicated between proces­

sors is very important for such class of parallel computers. We have used PVM

for a practical realization of our algorithms (Geist et al., 1993).

2. Description ofthe model problem. Let Q be a cube in R3:

'Y be its boundary, (0, T] be a bounded half open interval in R and let QT =
Q x (0, T]. We consider the 3D, constant coefficient diffusion model problem

au ~ a2 u
at = L.. ax~ + I(x, t), (x, t) E QT'

;=1 '

(2)

u(x, t) = J.l(x, t), (x, t) E r = 'Y x (0, T],

u(x,O) = uo(x), x E Q.

Let W T , Wh be difference grids

W T = {tj+a/3 = (j + et/3)'T, (3)

0:=0,1,2,3, j=I,2, ... ,K, K'T=T},

Wh == {(Xli" X2i2' X3;3) , (4)

xa;e> = io.h, et = 1,2,3, ia = 1,2, ... ,N -1, Nh = I}.

We consider the following Locally One Dimensional (LOD) scheme

Ya - Ya-1 _ A Ya + Ya-l +
'T - a 2 'Pa,

Yet = I/o"

y(x, 0) = uo(x),

(x,t) E Wh x W T ,

(x,t) E l'h X W T , 0: = 1,2,3,

y(tj+1) = Y3,

(5)

where Aa is the discrete approximation, resulting from the use of 2nd-order

central differences in the x 0. direction. There we have used the notation for

grid functions

Ya = Yj,a = y(tj + o:/p), 0: = 0,1,2,3.

298 Running finite-difference schemes

The analysis of the convergence of LOD schemes is given in Ciegis and

KiSkis (1994a), Ciegis and Kiskis (l994b).

Some theoretical problems are still not solved completely, hence numerical

experiments with 3D LOD schemes are also important in order to test some

theoretical hypothesis (Ciegis and Kiskis, 1 994b).

3. Parallel algorithm. We will consider the realization of LOD scheme (5)

on a distributed-memory multiprocessor or on a cluster of workstations. We

will make the following assumptions (see also Lin and Chen, 1994):

1. There are p processors that are connected through a network. Each

processor contains a local memory that is sufficient to hold all data

needed. There is no global memory.

2. A cluster of processors is heterogeneous, the execution time of all com­

putations (addition, mUltiplication, division) can be different for each
processor.

3. Different processors can perform computations concurrently; different

pair of processors can communicate each other concurrently.

In order to get a solution of LOD scheme (5) at each time level t j, one

must solve 3(N - 1) x (N - 1) tridiagonal systems of size N - 1. The splitting

direction also changes at each fractional time step, hence sequential factorization

algoritms are not efficient in the case of large number of processors.

There exist many parallel algorithms to solve tridiagonal systems; see, e.g.,

Lin and Chen (1994), Demmel et al. (1993), or to solve multimidimensional

problems by using alternating-direction type methods; see, e.g., 10hnson (1990),

Ortega (1988). However, all known parallel direct tridiagonal solvers carry a

high floating-point overhead (typically 2.5 times more arithmetic operations).

Hence we restrict our analysis to the well-known modification of the Thomas ,

algoritm, which requires the same amount of floating-point operations as the

basic Thomas methods.

Let consider the system of linear equations

TY=F, (6)

R. Ciegis et al. 299

where T is a tridiagonal matrix

bl Cl 0 0 0 0
a2 b2 C2 0 0 0

T= (7)

0 0 0 aM-I bM-I CM-I

0 0 0 0 aM bM

In the 2-way Gaussian elimination algorithm (this method is called twisted

factorization algorithm in Demmel et al., 1993) the sequential elimination pro­

cess is carried out in parallel from both sides. In the first elementary loop we

calculate factorization parameters Qi, J3i :

. _ Cj /3. _ fi - aiJ3i-1
Q, - - " - ,

bi + ajQi-l bi + ajQi-l
(8)

Qo = 0, J30 = 0, i = 1,2, ... , Lj

aj fi - ciJ3i+1
Cl'i = - , f3i = ,

bi + CjQi+l bi + CiQi+l
(9)

QM+l = 0, J3M+l = 0, i = M,M -1, .. . ,L+ 1.

In our case coefficients Qi must be calculated only once. Then processors

exchange coefficients (Q k, J3k) and (Q k+ 1, J3k+ d by using one message and
compute the boundary components of the solution

(10)

After this both processors in parallel evaluate the back-substitution loop

Yi = QiYi+1 + J3i, i = L - 1, L - 2, ... ,1, (11)

Yi = 0iYj-l +J3i, i=L+2,L+3, ... ,M.

We see that 2~way Gaussian elimination takes as many arithmetic operations

as the standard factorization, and can be carried out with twofold parallelism.

4. Data layout on distributed memory computer. It is well-known that

for distributed-memory computers an important issue is data layout, or how the

computational grid is partitioned across the processors. This determines both the

300 ~unning finite-difference schemes

amount of parallelism and the cost of communication. TIle latter characteristic

is very important for cluste1'$ of WOrkstatiODS, because communication between

processors is slow in comparence 'with computation speeds.

The 2-way Gaussian elimination algoritms defines a distribution of N x N x

N computational grid over P ~ 8 processors grid. Let consider a docomp?sition

of the three-dimensional cube into 8 subdomains (see Fig. 1).

x,

x.

X,

Fig. 1. Decomposition of 3D cube into 8 subcubes.

The algorithm of assigning 8 subcubes to P processors is implemented in

three steps. We will describe in detail the first step of cube decomposing in th~

X3 direction.

If P = 1, then an subcubes Ql, Q2, ... , Qs are assigned to the first proces­

sor. If p > 1, then we divide all processors into two sets. Let denote

PL = [P/2J, PR = P - PL'

The subcubes Qlo Q2. Qs. Q4 are assigned to processors 1,2, ... ,PL and

subcubes Qs. Q6. Q7. Qs are assigned to processors PL+1,PL+2"" ,po Next
we repeat this procedure in :1:2 direction for both groups of processors inde­

pendently. In the third stage we simillarly divide computational grid in Xl

direction.

The examples of data layouts for P = 3 and p = 6 processors are given in

Fig. 2.

, '
... .. ,/

R. Ciegis et al.

;
... __ /l-__ ,~ __ .

.. ~.,

a) b)

Fig.2. Data layouts for p = 3 (a) and'p= 6 processors (b).

301

We finish this section with estimation of data amount which must be commu­

nicated between processors. Let consider the case when we have 8 processors

and processors can no.t communicate concurrently. The number of elements

transmitted by each processor to its neighbors is equal to the number of bound­

ary grid pointS. In the case of p = 8 processors the total number of such grid

points is equal to 3(N -1) x (N -1). It is easy to see that this number is min­

imal possible for different partitions. For example, if we consider the partition

of the cube, which is given in Fig. 3, then the number of internal boundary grid

points is equal to7(N - n x (N - n.

1 23 4 5 6 7 8

Fig. 3. A partition of the cube for 8 processors.

302 Running finite-difference schemes

Simillar results are valid when processors can communicate concurrently.

For the proposed basic data layout each processor must transmit 0.75 (N - 1) x

(N - 1) elements. In the case of grid partition, which is given in Fig. 3, the

number of such elements is equal to 2(N - 1) x (N - 1).

5. Load balancing. In this section we consider the case of heterogeneous

workstation cluster. Let's assume that performance rates of processors satisfy

the following inequalities

In previous sections it was shown that implementation of LOD scheme (5)

requires O(N3) floating-point operations and processors must communicate

O(N2) elements. Hence Amdahl's Law suggests that for large problems the

algorithm can be effectively parallelized and we can take into account only

computational time when we solve a load balancing problem.

Let's denote by Mj the number of grid points assigned to jth processor. In

order to get the equitable distribution of the total computational work we must

solve the following optimization problem

min rn~x tj = t*,
Mi l~J~p

subject to the constraints

(12)

The solution of (12) is well known for real-valued Mj and it is defined as

Ml = M2 = ... = Mp. (13)

Now we will finish the definition of the partitioning algorithm from Sec­

tion 4. It is sufficient to consider one step of the algorithm, for example the first

step. Suppose that according to the layout defined in Section 4 all processors
are divided into two sets

R. Ciegis et aL 303

and both sets are not empty. We denote Wl, W2 the total computational rates

of processors" belonging to sets Ql, Q2, respectively:

The block size of grid points in Zs direction, assigned to processors from the

first group, is obtained by finding the integer valued solution of the optimization

problem (12). It is given by

(14)

if

otherwise

(15)

where lz J ,denotes the greatest integer less than or equal to z. Such ~rocedure

is applied in, all threedireetions.Theexamp1e of computational grid partition

for p = 8 processors in the case of heterogeneous cluster is given in Fig. 4.

Fig. 4. Partition of 3D coInputational grid for 8 processors.

6. Plpeliuing method. In this section we consider a generalization of our

algorithm. Here we assume that the number of processors p ~ 64. We assign

304 Running finite-difference schemes

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Fig. S •. Assignment of the subdomains to 16 processors of a- 4 x 4 grid .

the· subcubes of the computational grid to 4 processors in each direction as
shown in Fig. 5 for the first layer of processors. For the realization of LOD
scheme (5) we apply the method of pipelining the computation (Hofhaus and
van de Velde, 1996).

The forward sweep is started from both ends by two processors with only
one tridiagonal system in each of the processors. As soon as· these processors
are finished with their part of Gaussian elimination· of their first tridiagonal
system they send the information to their neighbours and start the forward
sweep on the second tridiagonal system, while the other two processors start
working on their part of the first tridiagonal.system. Thus after first step all
processors will be active. The backward sweep is similar.

7. Numerical raults. Some results of experiments performed with different
clusters of workstati~ will be presented in this section. The test problem
described in Section 2 was solved. We have used the f0110wing initial condition
and right hand side fun~on

U(2:1' 2:2, %3, 0) = sin 11'2:1 sin 11'2:2 sin 11'2:3,

f(2:1,2:2,2:3) = 311'.2 sin 11'2:1 sin 11'2:2 sin 11'2:3'

The LOD algorithm(5) was run on four grids: (62x62 x 62), (82 x 82 x 82),
(102 x 102 x 102)" (122 x 122 x 122) and 16time steps were performed on
each grid.

R. Ciegis et al. 305

First we present results obtained for the homogeneous cluster of two MO­

TOROLA workstations. Our goal was to investigate the efficiency of the algo­
rithm in unfavourable conditions when:

• the computational speed of wokstations is rather high,

• the communication rates are rather low (the computers were included into

the cluster with commercial OMNITELNET and the distance between

them was about 100 km).

We note that the best efficiency and speedup results can be achieved for

homogeneous clusters of workstations with low computational speed and high

communication speed.

In Table 1 we show the execution time TE and parallel efficiency E2 , which
is defined as

T(I)
E2 = 2T(2) ,

where T(k) is the time required to execute the program on k processors.

Table 1. Execution times and efficiency indices for various space grids

N 62 82 102 122

TE 0:33 1:12 2:15 3:54

E2 0.82 0.89 0.94 0.96

Our second cluster was heterogeneous and included 2 SUN SPARe stations

(with SOLARIS), HP 90001720, 2 PC PENTIUM (with SOLARIS), PC AT/486

(with SOLARIS). All these workstations were clustered in one local network.

The relative computational speeds of workstations are presented in Table 2.

Table 2. The relative computational speed of workstations

Workstation SUNSPARC PC AT/486 HP 9000 PC PENTIUM MOTOROLLA

Speed 100 110 180 220 500

Firstly we treated this cluster as homogeneous cluster of workstations of

the slowest type, using the homogenous partitioning algorithm. The obtained

306 Running finite-difference schemes

execution times and efficiency indices E6 , are presented in Table 3 where the

parallel efficiency is defined as

E _ TS[JN(I)
6- 6T(6) ,

Table 3. Execution times and efficiency indices for homogeneous cluster

of 6 workstations

N 42 62 82 102

TB 0:29 1:05 2:15 3:54

E6 0.50 0.76 0.86 0.91

We then solved LOD scheme (5) by taking into account the relative com­

putational rates of workstations. The results are given in Table 4, where the

parallel efficiency is defined as

TsuN(1)
10.3.5 T(6) ,

and VV6 is the total relative computational speed of the cluster.

Table 4. Execution times and efficiency indices for heterogeneous cluster

of 6 workstations

N 42 62 82 102

lE 0:21 0:44 1:29 2:23

E6 0.40 0.65 0.79 0.87

We see that parallel efficiency degrades a little due to higher computational

speeds of workstations. Even with the lower efficiency, however, execution

times are shorter with heterogeneous cluster than for homogeneous cluster.

8. Conclusions. We have demonstrarated the effectiveness of parallel algo­

rithms for solving 3D diffusion problem on distributed memory computers. The

R. Ciegis et al. 307

problem is approximated by LOD scheme and solved by the 2 way Gaussian
elimination method.

The domain decomposition method is proposed for heterogeneous clusters
of workstations which preserves the load balancing of computers. The basic

method can be implemented on 8 processors and the pipelining metod is used

to enlarge the number of processors till 64. The performance of the algorithm
is demonstrated for two clusters of workstations.

REFERENCES

Ciegis, R., and K. Kiskis (1994a). On the stability of additive finite difference schemes

with respect to boundary conditions. Differenc. Uravnenya, 30(..\), ..\80-487 (in

Russian).

Ciegis, R., and K. Kiskis (1994b). On the stability of LOO difference methods with
respect to boundary conditions. Informatica. 5, 297-323.

Demmel, J.W., M.T. Heath and H.A. van der Vorst (1993). Parallel numerical linear

algebra. Acta Numerica, 111-197.

Freeman, T.L., and C. Phillips (1991). Parallel Numerical Algorithms. Prentice Hall,

New York, London, Toronto, Sydney, Tokyo, Singapure.

Geist, A., A. Bequelin, J. Dong~rra, W. Jiang, R. Manchek and V. Sunderman (1993).
PVM 3.0 Users Guide and Reference Manual. ORNLffM-12187, USA.

Ho, C., and S. lohnson (1990). Optimizing tridiagonal solvers for alternating direction

methods on Boolen cube multiprocessors. SIAM J. Sci. Statist. Comput., 11(4),

563-592.

Hofhaus, J., and E.F. van de Velde (1996). Alternating direction line-relaxation methods

on multicomputers. SIAM J. Sci. Comput., 17(2), ..\54-478.

Johnson, S.L., Y. Saad and M. Schultz (1987). Alternating direction methods on

mUltiprocessors. SIAM J. Sci. Statist. Compl/t., 8(5), 686-700.

Lin, W.Y., and C.L. Chen (1994). A parallel algorithm for solving tridiagonal linear

systems on distributed-memory multiprocessors. International Journal of High

Speed Computing, 6(3), 375-386.

Marchuk, G.I (1990). Splitting and alternating direction methods. In P.G. Ciarlet,

J.L. Lions (Eds.), Handbook of Numerical A.nalysis 1. North-Holland, Amsterdam.

pp. 197-462.

Ortega, J.M. (1988). Introduction to Parallel and Vector Solution of Linear Systems.

Plenum Press, New York and London.

Sommeijer, B.P., and J. Kok (1994). Implementation and performance of a three­

dimensional numerical transport model. Report NM-R9402, CWI, Amsterdam.

308 Running finite-difference schemes

Zlatev, Z., J. Christensen, J. Moth and J. Wasniewski (1991). Vectorizing codes for
studying long-range transport of air pollutants. Math. Comput. Modelling, 15,

37-48.
Zlatev, Z., and J. Wasniewski (1992). Large scale computations in air pollution

modelling. Report UNIC-92-07, Denmark.

Received September 1996

R. Ciegis et al. 309

R. Ciegis has graduated from the Vilnius University Faculty of Mathematics
in 1982, received the Degree of Doctor of Physical and Mathematical Sciences

from the Institute of Mathematics of Byelorussian Academy of Sciences in

1985 and the Degree of Habil. Doctor of Mathematics from the Institute of

Mathematics and Informatics, Vilnius in 1993. He is a head of Mathematical

Modelling Department, Institute of Mathematics and Informatics. R. Ciegis is

also a Professor at the Kaunas Vytautas Magnus University and a Professor and

a head of Mathematical Modelling Department of Vilnius Technical University.
His research interests include numerical methods for nonlinear PDE, parallel

numerical methods and numerical modelling in physics, biophysics, ecology.

J. SimkeviCius is a researcher at the Department of Mathematics and Statis­
tics of Vytautas Magnus University, Kaunas, Lithuania. Scientific interest in­

clude parallel computing, wavelet transform, digital signal processing.

J. Wasniewski graduated at the University of Warsaw, Department of Math­
ematics in 1995. He received there his M.S and PhD. He worked at several
universities and research companies in several countries (Poland, Canada, Den­

mark, UK and USA). At present he is the Associate Professor and Senior

Researcher at the Danish Computing Centre for Research and Education (UNI­
C) in Lyngby, Denmark. His research interest is: numerical analysis software,
basic linear algebra subprograms, sparse matrices and parallel scientific com­
puting. He wrote many scientific publications in the international journals and

four books.

310 Running finite-difference schemes

TRIMACIO SILUMOS LAIDUMO UZDAVINIO

SPRENDlMAS LYGIAGRECIUOJU KOMPIUTERIU

SU PASKIRSTYT .\JA ATMINTIMI

Raimondas CIEGIS, Juozas SIMKEVICIUS, Jerzy WASNIEWSKI

Nagrinejami skaitiniai u~davinio sprendimo algoritmai, kurie yra efektyviis lygia­
gretiesiems kompiuteriams su paskirstytll,ja atmintimi. Pateikti algoritmai, kurie tinkami,
kai procesoriq skai<:ius yra ne didesnis u~ 8. Panaudojant konvejerio principlt sukon­
struota algoritmo modifikacija, leid~ianti panaudoti iki 64 procesoriq. Heterogeniskam
kompiuteriq klasteriui sprend~iamas tolygaus procesoriq apkrovimo uMavinys, pateik­
tas diskre<:iojo tinklo mazgq paskirstymo tarp procesorill algoritmas. Pateikti skaitiniq
eksperimentq, atliktq naudojant PVM, rezultatai.

