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Abstract. We consider a possibility of automating the analysis of a computer program 
realizing the objective function of an extremal problem, and of distributing the calculation 
of the function value into parallel processes on the basis of results of the analysis. The 
first problem is to recognize the constituent parts of the function. The next one is to 
determine their computing times. The third problem is to distribute the calculation of 
these parts among independent processes. A special language similar to PASCAL has 
been used to describe the objective function. A new scheduling algorithm, seeking to 
minimize the maximal finishing time of processing units, was proposed and investigated. 
Experiments are performed using a computer network. 
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1. Introduction. Extremal problems that arise in the design of technical 

systems can often be transfonned into the form 

min f(X), 
XE[A,B) 

where the objective function f(X): Rn -+ R is continuous and multiextremal 

in the general case, A = (al, ... ,an ), B = (b1, ... ,bn ), X = (Xl, ... ,Xn ), 

[A,B] = {X: ai ~ Xi ~ bi, i = 1,n}. 
The calculation of f value in optimization problems, occurring in scientific 

and engineering applications, often requires much expenditure. of computing 

time. Sometimes the expenditure is so great that it is impossible to solve the 

problem by classical methods. In such cases it is reasonable to base optimiza­

tion methods not only on the functional characteristic of the objective function 

(linearity, convexity, etc.) but also on the structure of a calculation process of 

the function value. 
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2. The main idea. Dzemyda and TieSis [1] suggested to take into account the 

algorithmic structure of the objective function in local and global optimization 

algorithms which are oriented to a single-processor execution. These algorithms 

economize the computing time due to the coordinated calculation of function 

values at the nodes of a rectangular lattice [1] by storing and using the quantities 

that are common to several nodes. 

The authors in [1] made use of 

a) the known structure of function f: 

(1) 

where Yi ~ {Xl, ... , Xn}, 
b) the location of trial points at the nodes of a rectangular lattice consisting 

n 
of L = Il Li nodes: 

i=l 

(Xl + sI', ... , xn + s;.n), 

si' E Si C R, 3s{i = 0, 

ji = 1, L i , i = 1, n, 

where Li is the number of discrete levels of the i-th coordinate of the lattice, 

X = (Xl, ... , Xn) is the source point (node) of the lattice, Si is a discrete set 

of Li elements. 

For example, if we need to calculate the values of function f(XI, X2) = 

!I (xd+ h( X2)+ h (Xl, X2) at four different points (X!, x;), (xi, x;*), (xi*, x;) 
and (xi*, x2*)' it suffices to calculate four times the function h only: functions 

!I and h may be calculated only twice. If the numbers of variables and points 

are larger and the objective function is more composite, then the computational 

economy grows significantly. 

The approach [1] showed good results because optimization algorithms often 

require to calculate values of the objective function at series of argument points 

which, e.g., should cover uniformly the definition area in global search or are 

specially located in the definition area for the evaluation of the gradient of 

function f in local optimization. 

In such cases it is often reasonable to use parallel computing which finds 

wide applications in optimization. A particular type of parallelism in uncon­

strained optimization - simultaneous evaluation of the function to be 

minimized - is reviewed, e.g., in [20]. 
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If we wish to calculate a fixed number of values of function f on a multiple 
processor computer, we may concurrently evaluate as many its values as the 
number of processors in the computer permits. But sometimes it isn't optimal 

because there might be better to calculate concurrently constituent parts of 
function f. Such situations arise when 

• the calculation of the value of function f is computation-intensive, 

• values of the function have to be calculated at the nodes of the rectangular 
lattice. 

In the first case, parallel calculations allow us to optimize the load of pro­

cessing units, and in the second one, the economy should be achieved by com­
puting only once the quantities that are common to several nodes of the rect­
angular lattice. 

In this paper, we consider a possibility of automating the analysis of a 
computer program that realizes the function f in order to recognize functions 

It, h, ... , fm, and F, the evaluation of the computing time of constituent parts 
of the function f, and the distribution of calculations of a single value of the 
function f or of the set of values into p parallel processes. Different computers 

or a computer with several processors may be used for parallel calculations. 

A special optimization algorithm like that proposed in [1] or any other usual 

algorithm may be used for seeking the minimum of function f when its values 
are calculated in a parallel manner. 

Our approach includes the following steps in solving the extremal problem: 

1. Writing a program, that realizes the objective function, in a special 

PASCAL-based language. 

2. Analysis of this program in order to recognize the constituent parts 

It, h, ... , fm, F of the objective function. 

3. Evaluation of the computing time of functions It, h, ... , fm, F. 

4. Making a schedule that distributes the tasks for calculating the values of 

functions It, h, ... , fm at the desired points of argument into p inde­
pendent processes seeking to minimize the maximal finishing time of p 

processing units. 

5. Parallel computing of the values of functions !1 , h ... , f m at the desired 

points of argument. 

6. Calculation of the value (or a set of values) of function F on the basis 

of values of the constituent parts It, h, ... , fm calculated in parallel. 



314 Computer analysis of the objective 

Steps 1 - 3 should be executed before the optimization algorithm starts. The 

sequence of execution of steps 4 - 6 ought to be managed by the special opti­

mization algorithm. Step 4 may be executed before the optimization algorithm 

starts if any stage of the optimization algorithm requires to calculate the values 

of the objective function at the nodes of rectangular lattices having identical 

configuration, i.e., having the same numbers Lj, i = 1, n. 

We assume here that the computing time of any function fr, h, ... , f m does 

not depend on the chosen point of argument. 

Let us denote computing times of all the functions, composing the function 

f, by t1,"" tm and tF. The calculation having the known values of functions 

fr , h, ... , f m are used for computing F. Therefore, the computing time of 

function f will be equal approximately to tf = t1 + ... + tm + tF. The 

necessary conditions for our approach to be more effective are such: 

• t1 + ... + tm is considerably greater than tF, 

• m~p. 

3. Analysis of computer codes. A special PASCAL-based language for 

description of the algorithm for calculating the function f at the point X = 
( X 1, ... , X n) has been developed. It is necessary to prepare a text of function 

f in this language. A special computer program analyzes this text, recognizes 

constituent parts fr, 12, ... , fm, F of function f (see (1)), converts this text 

into the PASCAL-program, and evaluates t1, ... , t m, and tF. 

The idea of analysing computer codes of programs, realizing scientific 

and engineering applications to their further solution in a parallel way, is not 

new. The reason is that such applications are very complex and computation­

intensive. Since the scientific/engineering applications domain has been desig­

nated as the primary beneficiary of parallel processing, there have been several 

attempts to make parallel computers targeted for scientific/engineering appli­

cations [2-6]. The problem arises to estimate the extent of possible solution 

of the scientific/engineering application in a parallel way. Some early mea­

surements of parallelism in FORTRAN programs are reported in [7]. These 

measurements were obtained by analysing the programs (statically) and deter­

mining which statements can execute in pantilel because the most common 

method for exposing parallelism is to write the program in a conventional lan­

guage (e.g., FORTRAN) and then detect the opportunities for parallel execution 

by a compiler. Moreover, the greatest advantage of using FORTRAN is that 
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existing programs only have to be recompiled for new high-performance ar­
chitectures (see [8]). The authors in [9] measured the total parallelism present 

in a FORTRAN program. This total parallelism can be observed if the pro­
gram is executed on a computer which has unlimited processors and memory, 

does not incur any overhead in scheduling tasks and managing computer re­

sources, does not incur any communication and synchronization overheads, 

and detects and exploits all the parallelism present in the program. Although 
an ideal computer which can exploit the total parallelism is not realizable, 
such measures are helpful in search for the optimal way of solving the prob­

lem. 

An example of description of the algorithm for calculating the function I: 

uses functions; 

function f1; begin 11 := integration (xl, x2); end; 

function 12; begin 12 := integration (x3, x5); end; 

function 13; begin 13 := integration (xl, x7); end; 

function 14; begin 

/4 := 9.60211 * cos(x1)+ sqr (x2-0.1292*x1 *x1+1.59155*xl-6)+10; 

end; 

function /5; var s: real; begin 

differ (x2, x4, x7, s); 

/5 := 2*3.1414*s; end; 

function 16; var i: integer; s: real; 

begin s := 0; 

for i := 1 to 10 do s := s + diller1(i, x5, x6); 

16 := sqr(s); end; 

function F; begin 

F := ((11 + /2)/2 + 13* 14* 15))/16; end; 

The functions and procedures integration, differ and differl are compiled 
in the TURBO-PASCAL unit functions seeking a shorter input program text 

for analysis. xl, ... , x7 are variables, 11, ... ,16 and F are the functions 

composing 1 (see (1)). 

As a result of analysis of the text of function I, some table is completed. 
An example of the table for the text above is shown in Table 1. 
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Table 1. The results of analysis of computer codes 

Name Name Names Computing 
of function of variables of variables time 

11 2 xl x2 10 
12 2 x3 x5 17 
13 2 xl x7 15 
14 2 xl x2 24 
15 3 x2 x4 x7 7 
16 2 x5 x6 17 
F 6 11 12 13 14 15 16 1 

4. Distribution of calculations. The scheduling problem is to partition the 

tasks of calculating the values of functions h, h, ... , 1 m at a single point or 

at the set of argument points into p non-intersecting groups A1 , ... , Ap, i.e., to 

find a schedule how to calculate the values of functions composing the function 

1 on p processing units. 

Let us suppose we are given p (abstract) identical processing units Pi, 

i = r,p, and a set of independent tasks T = {T1, ... , Tr } which is to be 

processed by the processing units. Let J.Lj be the units of time required for 

completing 7j. Once a processor Pi begins to execute a task 7j, it works 

without interruption until the completion of that task, requiring altogether J.Lj 

units of time. In a general case, it is required that the partial order -< on T be 

respected in the following sense: if Ti -< Tj then 7j cannot be started until Ti 

has been completed. But in our case -< is empty. The scheduling problem is 

as follows: find a schedule minimizing the maximum finishing time. However, 

various computer architectures and ways of exploiting parallelism influence the 

scheduling strategy, too (e.g., see [10, 14-17]). Therefore, the scheduling may 

be performed in several ways. The issues of concern and arising problems are 

summarized in [10]. NP-completeness of various restricted cases of the general 

scheduling problem is shown in [18, 19]. 

4.1. Scheduling. There are various scheduling criteria and strategies (e.g., 

see [11, 12]). The shortest-processing-time scheduling (8PT) [11] tends to 

reduce the mean number of unfinished tasks at each point in the schedule and to 
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minimize the mean finishing time for p processing unite;. The largest-processing­

time scheduling (LPT) [12] produces schedules which tend to maximize mean 

finishing time at each point in the schedule but minimize the maximum finishing 
time 

Let 

(2) 

• S PT" denote an S PT schedule which minimizes the maximum finish­
ing time among all S PT schedules; 

• 0 PT denote a schedule which gives the minimal possible value of CA 
among all possible schedules; 

• t(5) be the maximum finishing time of schedule S. 

In [12] the following best possible bounds are given: 

1 ~ t (S PT·) ~ 2 _ ~ 
'" t(OPT) '" p' 

t(LPT) ~ 4 1 
1 ~ t(OPT) '" 3 - 3p' 

This means that in most cases LPT will be better than SPT* in the sense of 

the maximum finishing time. 

1be LPT strategy minimizing the maximum finishing time is proposed and 

investigated by Graham [12]: a free processor always starts to execute the 

longest remaining unexecuted task. In our case, the scheduling algorithm is as 

follows (let us denote it by G): 

• initially all groups AI, ... ,Ap are empty; 

• find an unpartitioned task Ti whose execution time J.li is the longest 

among unpartitioned tasks, and find a group Ak whose tasks have the 

shortest total execution time: k = arg min l: J.lj; 
L=l,PTjEAL 

• put task Ti into the group Ak; 

• the algorithm stops when there are no unpartitioned tasks. 

In cae;e of an arbitrary allocation of tasks into groups, Graham [12] noted 

two acceptable ways of minimizing.the maximum finishing time: 

• interchanging single tasks between two groups, 

• moving a single task from its group to another one. 

We propose below another criterion characterizing the scheduling quality 

and assisting in search for a schedule minimizing the maximum finishing time. 
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Let us seek a schedule such that the sums of execution times of the tasks 

composing each group be similar, i.e., the best partition (actually impossible) 

is 

Let us analyse three equivalent criteria: 

p P 2 

Cl = L L ( L J11 - L J11) , 
L=l k=L+l TrEAL TrEAk 

P2 1 r 

C2=L( L J11-Ji), whereJi=-LJ1j, 
L=l TrEAL p j=l 

P 2 

C= L ( L J11) . (3) 
L=l TrEAL 

It is necessary to minimize these criteria seeking the best partition of 

Tl, ... ,Tr • 

REMARK 1. Partitions corresponding to the global minima of criteria C, Cl, 
and C2 are the same. 

The result of Remark 1 becomes obvious if we make the following trans­

formations of Cl and C2 : 

Cl = pC - p2Ji, 
C2 = C - (2p - 1)Ji2, 

in which only C depends on the partition of tasks. 

The criteria C, Cb and C2 extend a set of possible scheduling strategies, 

and allow to create special scheduling algorithms. C is simpler as compared to 

Cl or C2 • Therefore, we shall describe the minimization of C more in detail. 

Proposition 1. Let the partition of tasks Tb ... , Tr into groups Ab ... , Ap 

be given. Let us analyse some task T,. Let T, E Ak. The value ofC will 
decrease after transferring TB from the group Ak to the group AL (L =f. k) 
if 

(4) 
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Proof. Let a part of (3) containing the groups Ak and AL be C· be­

fore transferring T. from the group Ak to the group AL, and C** after trans­
ferring T •. 

o*-C··=( L tt1r +( L ttlr 
~EAL ~EAL 

(T.EAL) (T.tI!Ak) 

=2/1-. L /1-1 - 2/1-. E /1-1 - 2/1-; 
T/EAk T/EAL-

(T.EAk) (T.EAd 

=2/1-.( E /1-1-
T/EAk 

(T. EAk) 

Considering /1-. > 0 in (5), it follows that 

C· - C** > 0 

when (4) is satisfied. The proposition is proved. 

(5) 

Proposition 2. Let the partition of tasks T1 , .•• ,Tr into groups A 1 , ..• ,Ap 

be given. Let us analyse two subgroups Ak and Ai, of tasks from Ak and 
AL (L 1= k, Ak C Ak, Ai, C AL). The value of C will decrease after 
interchanging Ak and Ai, between the groups Ak and AL if 

Proof. Let a part of (3) containing the groups Ak and AL be C· before 

the interchanging of subgroups, and C·· after the interchanging. 

C· -C** =( E /1-1f + ( ·E /1-1r 
TIEAk TIEAL 

(A~ CAk) (Ai, CAd 

-( E 
T/EAk 

(A~ CA.) 
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-( L 
T/EAL 

(Ai CALl 

-2( L f-II- L f-Ilf 
T/EAk T/EAi 

=2( L f-II- L f-II)( L f-II 
T/EAk T/EAi T/EAk 

(AkCAk) 

(7) 

If (6) is satisfied, then (7) implies that C* - C n > O. The proposition is 

proved. 

Proposition 3 follows as a partial case of Proposition 2. 

Proposition 3. Let there be given a partition of tasks T l , ... , Tr into 
groups Ab ... , Ap. Let us analyse two tasksTs E Ak and1j E AL (L i= k). 
The value of C will decrease after interchanging Ta and 1j between the 
groups Ak and AL if 

L f-II - L f-II > f-Is - f-Ij > O. 

Minimization algorithms of C may be based on the following strategies: 

• on the analysis of tasks in consecutive order and on the search for a 

group where to transfer a separate task with a view to decrease the value 

ofC: 

• on the analysis of the pairs of tasks from different groups for their further 
interchanging; 

• on the analysis of the subgroups of tasks from different groups for their 

further interchanging. 
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The algorithms use different strategies of determining when the task Ts must 

be transferred from its group to another. For example, in the case of analysis 

of a separate task Ts (let Ts E Ak), it may be transferred, e.g., into the group 

AL(L # k), where C decreases most, or into the first group found where (4) 

is satisfied. The realization of the third strategy is very computation-intensive. 

The algorithms stop when the transfer of any task, by the chosen strategy, does 

not decrease the value of C. 

Two algorithms minimizing C are investigated. 

Algorithm PI: 

• initially all groups A l , ... , Ap are filled out using some algorithm of the 

initial partition of tasks; 

• analyse tasks in consecutive order and search for a group AL of transfer­

ring an individual task Ts (let Ts E A k , L # k ) with a view to reduce 

the value of C: the transfer starts if 

• the algorithm stops when the transfer of any task, by the above strategy, 

does not decrease the value of C. 

Algorithm P2: 

• initially all groups Al , ... , Ap are filled out using some algorithm of the 

initial partition of tasks; 

• analyse pairs of tasks (Ts E Ak, Tj E AL, L # k, s < j) in consecutive 
order and seek a pair of groups Ak and AL for a possible interchange of 

the tasks Ts and Tj with a view to reduce the value of C: the interchange 

starts if 

l: PI - l: PI > Ps - Pj > Dj 
T,EAk T,EAL 

(T,EAk) (TjEAL) 

• the algorithm stops when the transfer of any task, by the above strategy, 

does not decrease the value of C. 

Algorithms PI and P2 require for the initial partition of tasks. Let us denote 

by VI the following algorithm of initial partition: 

• initially all groups Al , ... , Ap are empty; 

• consider tasks T;, i = G, in consecutive order and put the current task 

Tc into the group having the smallest number of tasks. 
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Algorithm Ul is very simple and yields a schedule that is far from optimal. 

REMARK 2. [12] yields the best possible bounds for U1 such as 

~ t(Ul) ~ I 
1 ~ t(OPT) ~ 2 - P 

REMARK 3. Propositions 1 - 3 determine the necessary and sufficient con­

ditions for the largest processing time to be reduced in the case of two groups 

of tasks. 

REMARK 4. The algorithms, which minimize C by using the results of 

Propositions I - 3, also tend to minimize the maximum finishing time CA (2), 

because at any step for arbitrarily selected pair (Ai, Aj , i # j) of groups, they 

try to minimize the maximum finishing time (ma:x: L PI) of tasks in these 
L=I,) TIEAL 

two groups. The algorithms stop when it is impossible to reduce the maximum 

finishing time CA by transferring the tasks between any pair of groups. 

REMARK 5. Different schedules yielding different values of C may give 

the same value of CA' 

REMARK 6. If Graham's algorithm [12] is used as the initial partition of 

tasks for further analysis employing the algorithms based on Propositions 2-
3, then the result of Graham's algorithm may be improved. 

4.2. Results of the analysis of computing times. As a result of the analysis 

of computing times PI, ... ,Pr of the functions 11, h, ... , f m at various points 

of argument, a list of tasks for each processing unit Pi, i = !,P, is completed. 

Note that r ~ m. In case of the above program, an example of the list of tasks 

for one of the processing units is shown in the first two columns of Table 2. 

The last column is filled out by the processing unit. 

5. Experimental investigation. The goal of experimental investigation was 

• to estimate the efficiency of scheduling algorithms (Graham's (G), PI 

and P2); 

• to evaluate the case when it is reasonable to calculate the values of 

the objective function at the nodes of the rectangular lattice by using a 

computer network. 
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Table 2. The list of tasks 

Name Values Value of 
of function of variables function 

12 0.50.5 1.5 
12 0.50.6 2.7 
13 0.70.7 5.4 
13 0.70.8 7.1 
13 0.70.9 5.2 
15 0.50.60.7 6.7 
15 0.50.70.7 9.5 

5.1. Comparison of scheduling algorithms. Four strategies were investi-

gated: 

• algorithm G; 

• algorithm Vl+Pl; 

• algorithm G+PI; 

• algorithm Vl+(PI+P2). 
The second and third strategies use algorithms VI and G, respectively, for 

initial partitioning of tasks; further optimization is performed by PI. (PI +P2) 

means a combination of PI and P2: Pl+P2+PI+ ... as long as any transfer 

of a task from its group to another one or any interchange of two tasks from 

different groups do not reduce the value of C (and the value of CA (see Remark 

4)). 

The experiments were carried out on the set of 100 randomly generated 

problems, and the results were averaged. J.li E [1, 100], i = r;r, were generated 

at random, i.e., the situation, when the tasks having various execution times 

from the interval [1,100] appear with the same probability, was examined. 

REMARK 7. The experiments showed that 

• algorithm G yields a partition of tasks which cannot be improved by PI; 

• partitioning quality of algorithms G, Vl+PI and VI+(PI+P2) is similar; 

G yields a partition a bit better than that of U1+PI; VI+(Pl+P2) yields 

a partition a bit better than that of G; 

• algorithm Vl+Pl operates significantly faster (about 15-200 times de­

pending on the number of tasks) than Vl+(Pl+P2) because P2 is very 
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computation expensive; 
• algorithm Ul+Pl operates faster than G in the case of a small number 

p of processing units. 
Fi.gures 1 - 3 illustrate the conclusions of Remark 7. 

a) 

b) 

0.8 
0.6 

0.4 
0.2 
0.0 -W--I"".--+-4",..-+-'-Ib..-+-l==bm-+-l-b..-+-Y....-I-r-...."....-1 r 

-0.2 
-0.4 
-0.6 

-0.8 
-1.0 

1.2 
1.0 
0.8 
0.6 
0.4 
0.2 

100 200 300 400 &X) em 700 

M r 
-0.2 .~ 

-0.4 
-0.6 

-0.8 
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Fig. 1. The difference among values of CA obtained by G, Ul+Pland 
Ul+(Pl+P2). 

Fig. la illustrates the difference among the values of CA obtained by G, 
UI+Pl and UI+(PI+P2), in case p = 3. Dark rectangles correspond to 
the difference CA (Ul+(Pl+P2))-CA(G), and white rectangles correspond to 
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the difference CA(U1+P1)-CA(0), where CA(S) denotes the value of CA ob­
tained by algorithm S. Taking into account that the obtained average values of 
CA(Ul+(PI+P2», CA(O), and CA(UI+P1) during the experiments are equal 
to 6751.76, 6752.26, and 6752.56, respectively, we may conclude that the par­
titioning quality ofthesetbree algorithms is similar. Attempts to complicate 
.tests by setting the values Pi of five randomly selected tasks to be equal to 250 
and generating other values of P.i at random in [1,100] led to similar results 
as in 'Fig. la; the obtained average values of CA(UI+(Pl+P2», CA (0), and 
CA (UI +Pl) during the experiments are equal to 7082.19, 7082.68, and 7083.04, 
respectively (see differences in Fig. lb). 

The scope of algorithm 0, in fact, is to search for a new order of tasks 

T;, i = 1, r, where they m:e arranged in decreasing order of their execution 
time.. 1\vo simple sequential strategies. for solving the problem of reordering 
the tasks are given in [13]. The authors in [13] also suggest; how to solve the 
above problem ina parallel ~er using some processors. The first strategy 
from [13] is realized in O. This strategy is based on the interchange of pairs of 
tasks, and in [21,22] it is called "bubble sorting". This strategy requires many 
paired ·comparisons of computing times. The way of optimizing computation 
expensiveness of 0 is to use a IT,lOre sophisticated sorting. In our experiments, 
the algOrithm of quick sorting by Hoare [23] was used, too. 

t 
0.5 -r-:-----------, 
0.4 

0.4 

0.3 

0.3 

0.2 

0.2 

0.1 

n1 U1+P1 
M r 

100 200 3X) 400 500 a:o 700 

Fig. 2. Dependence of the average computing time t (in seconds) on the 
number r of tasks (0 uses bubble sorting). 
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Fig. 3 •. Dependence of the average computing time t (in seconds) on the 
Dumber r .of tasks (0 uses quick sorting) and OD ·the number p 

of p1'()CeSSing units. 
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Figures 2 and 3 show the dependencies of average computing time t (in 
seconds on lOOMHz PC) on the number r of tasks to be scheduled and on the 
number p of processing units. Fig. 2 illustrates the dependence of the average 
compu'ting time t on r for G' (using bubble sorting) and Ul+Pl, respectively. 
The value of p was set to be equal to 3 in this case. Fig. 3 illustrates the 
depeildenceof the average computing ,time t on ~ and p for G (using quick 
sorting) and Ul+Pl, respectively. Fig. 3 implies that the rapidity of algorithm. 
Ul+Pl depends on p essentially. The rapidity of G has a weak dependence on 
p 'because the main, charge in G is put on the arranging of tasks, in decreasing 
order of their execution time. Such a sorting is independent of p. The results 
indicate that the app,lication of quick sorting in G is much faster than the bubble 
sortirig, b~t alg~thin UI+Pl is faster than G in both cases for s~ p (when 
p = 2, 3, and, in some cases, when p = 4 and even p = 5). Advantages 
of UI +PI over G, which uses the quick sorting, are observed mostly for a 
larger number of tasks. This is essential, since the calcu,1ationof values of the 
objective function at the nodes of the rectangular lattice leads to alarge number 
of tasks. 

Algorithms 'PI and P2 minimize both C and CA' In Fig. 4 the dynamics 
of the best found values of VC and CA by PI after the 'h-th transfer of task 
from one groul> to another is illustrated on the basis of the randomly generated 
l>l'Oblem (Ili E [1, 100], i = 1, r, were generated at random, r = 100, p= 3). 
The minimization starts from the initial partition of tasks obtained by Ul. 
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Fig. 4. Dynamics of ~e best found values of 'c and ,CA by PI. 
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The experiments allowed to draw preliminary conclusions on the efficiency 

of algorithm Ul+Pl as compared with G. Further theoretical investigations 

should provide more details. Solution of the scheduling problem is part of the 

search for minimum of the objective function (see Steps 1 - 6 in Section 2). In 

most cases, Steps 5 and 6 (calculation of values of the objective function) require 

much more computing time as compared to Step 4 (solving of the scheduling 

problem). So, even in the case of a small number p of processing units the 

usage of algorithm Ul+Pl instead of G would not bring notable economy of 

computing time. Nevertheless, the results of this paper extend a set of criteria 

characterizing the scheduling quality for seeking a schedule minimizing the 

maximum finishing time, and a set of possible scheduling strategies. 

5.2. Efficiency of parallel computing. Let us analyse a function of n vari­

ables involving functions that depend on all possible combinations of variables: 

n n n 

P(X) = L li1(Xi1) + L L /;li2 (Xi 1 , Xi 2 ) 

n n n 

+ L L L /;li2 i 3 (Xi 1 , Xi" Xi 3 ) + .... 
i.=l i 2 =;'+1 i3=;2+1 

The goal is to calculate values of function P at L nodes of the rectangular 
lattice. 

In the general case, the minimal number of functions depending on all 

possible combinations of variables Xl,"" Xn may be defined as the following 
sum: 

n I 
'" n. 

m = (;;t i!(n - i)!' 

Let Li = L *, i = 1, n. If we need to calculate values of function P at 

L = L*n nodes of the rectangular lattice, it is necessary to calculate 

* n L*in ! 

m = ~i!(n-i)! 

values of functions composing the function It at different points of argument. 

The values of function P may be calculated using four strategies: 
SI) uncoordinated calculations using one processor; 

S2) coordinated calculations using one processor; 
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S3) uncoordinated calculations using p processors; 

S4) coordinated calculations using p processors. 
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Which of these four strategies is better depends on the computing times of 

functions composing the objective function. 

Let 

• 1"1 be the computing time of objective function values at all nodes of the 

rectangular lattice without taking into account that the trial points are 

the nodes of the lattice; 

• 1'2 be the computing time of objective function values at all nodes of 

the rectangular lattice in the case of coordinated calculations of these 

values; 

In [1] two criteria are introduced for comparison of the calculation strategies: 

• computing time economy: E = Tl/T2; 

• the number of objective function values calculated in time 1'2 in an 

uncoordinated way: N = LT2/T1' 

Both criteria are related as follows: N . E = L. 
Assume that 

• computing times of any function composing the objective function are 

the same and equal to to; 
• computing time of all the functions composing the objective function is 

considerably greater than summation of their computed values. 

Thus, in a single-processor case 

n Ln! 
1'1 = to L: "( _ ')" , Z. n z. 

i=1 

In a p-processor case, 1'1 and 1'2 will be maximal finishing times of tasks 

scheduled for separate processors: 

[ ( n L i ) (n L' )] 
1'1 =to int I.: "( :. ')' /p + mod I.: "( :. ')" p , 

i=1 Z. n Z. i=1 Z. n z. 

[. (n L*i n!) (n L*in! )] 
1'2 =to mt L: "( _ .)/p + mod L: "( _ ")" p , 

i=i z. n z. i=1 z. n I. 
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where the functionint(v) returns the integer part of argument v, and the func­

tion modG1J,p) returns 1 if tberemainder part of division v by pis nonzero. 

Let fu;. consider the following situatioo: n = 1,4; Li = L" = 1,5; i = 
1, n; p = 1;3. The values of criteria Nand E, in this case, have an insignificant 
dependence on the number of processiog units p: the values of criteria vary io 

the range of some percent, and only in one case (L" == 2, p = 3, n = 2) this 

percent is abi~greater than 10. Fig. 5 shows the dependence of criteria N and E 
00 L" and n in a single-processor case for the function P taking intoaccouot the 

above assumptions. Investigations of the single-processor computing econonly 

for a wide number of cases and assumptions 00 the structure of the objective 

function may be fouod in [1] . 
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o~4~~~~L· 
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Fig. 5. Estimates of efficiency. 

TherelationofTl andT2, incase n = 4, p = T,3, Li = L" = T,5, i = l,n, 
is given in Fig. 6. Symbols '0' denote various values of L*: from 1 00 the left 
to 5 on the right 
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Fig. 6. Relation of 1'1 and 1'2. 

The dependence of 1'2 on Li = L* = l,5, i = 1, n, in ca.<;e n = 4, 
to = 1, p = 1,3, is illustrated in Fig. 7. 

Computational experiments were carried out on Iil Wmdows for Workgroups 
based 66 MHz personal computer (PC) netwodc. The scheme of the network 
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Fig. 7~ Dependence of T2 on L" . 

PC2 PC3 pep 
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Fig. 8. Computer network. 

is given in Fig. 8. Computers were connected using the hub "HP AdvanceS­

tack lOBase-T Hub-8U'·. The goal of experiments w~ to estimate the com­

puting expenditure on coordinated calculation of L values of function P in 

the case of fast calculation of functions composing the function P, i.e., when 

to = O. The rectangular lattice was defined as follows: X = (1, ... ,1), 
Si = {D, 1, ... ,L* - I}, i = 1, n. The dependence of computing time T2 (in 

seconds) on L" and p is demonstrated in Fig. 9. Any point in Fig. 9 is obtained 

by averaging the results of 100 independent experiments. The results of Fig. 9 

depend on the structure of data storing and the control of parallel calculations: 

most likely, they may be improved. 
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Fig. 10. The search for E > 1. 

Figures 6, 7 and 9 .a1lowus to estimate E and N in case to > O. Considering 
that, in our case, the management of independent calculations of L values of the 

function !' requires much less time than that of the cOordinated calculations, 
for any combination of L· and p we may get the following estimates: 

1"2 = 1"2(from Fig. 9) + to . 1"2 (from Fig. 7), 

Tt ::;: to . T1(from Fig. 6). 
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For example, in case L * = 5 and p = 3, the value of E becomes greater 

than I starting from to = 0.003 seconds (see Fig. 10). It means that starting 

from to = 0.003 the coordinated calculations become more effective than the 

uncoordinated ones. 

6. Conclusions. The results of research proved the possibility of automating 

the analysis of the computer program realising the objective function of an 

extremal problem, the recognition of constituent parts of the function, and the 

distribution of calculations of its single value or the set of values into parallel 

processes. 

Further investigations may be directed to 

• the use of the proposed approach in other computing architectures; 

• the extension of the fields of application. 

REFERENCES 

[1] Dzemyda, G., and v. Tie~is (1991). On the use of coordinated calculations in the 

solution of extremal problems. Informatica, 2(2), 171-194. 

[2] Beetem, J., M. Denneau and D. Weingarten (1985). The GFll supercomputer. In 

Proc. 12th Annual Symp. Comput. Architecture. pp. 108-113. 

[3] Crowther, W., et at. (1985). Performance measurements on a 128-node butterfly 

parallel processor. In Proc. 1985 Cont Parallel Processing. pp. 531·-540. 

[4] Gurd, J.R., C.c. Kirkham and I. Watson (1985). The Manchester prototype dataflow 

computer. Commun. ACM, 28, 35-52. 

[5] Pfister, G.F., et at. (1985). The mM research parallel processor prototype (RP3): 

Introduction and architecture. In Proc. 1985 Cont Parallel Processing. pp. 

764-771. 

[6] Seitz, C.L. (1985). The cosmic cube. Commun. ACM, 28, 22-33. 

[7] Kuck, DJ. (1974). Measurements of parallelism in ordinary FORTRAN programs. 

Computer, 7,37-46. 

[8] Kuck, D.J., R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe (1981). Depen­

dence graphs and compiler optimizations. In Proc. ACM Symp. Principles of 

Programming Languages. pp. 207-218. 

[9] Manoj Kumar (1988). Measuring parallelism in computation-intensive scientific/en­

gineering applications. IEEE Transactions on Computers, 37(9), 1088-1098. 



G. Dzemyda 335 

[10] Iannucci, R.A. (1988). Toward a dataflowNon Neumann hybrid architecture. In 

IEEE International Symposium on Computer Architecture. pp. 131-140. 

[11] Bruno, J., E.G. Coffman Jr. and R. Sethi (1974). Scheduling independent tasks to 

reduce mean finishing time. Communications of the ACM, 17(7), 382-387. 

[12] Graham, R.L. (1969). Bounds on the multiprocessing timing anomalies. SIAM J. 

Appl. Marh., 17(2), 416-429. 

[13] Mani Chandy, K., and Jayadev Misra (1988). Parallel Program Design: a Founda­

tion. Addison-Wesley Publishing Company. 

[14] Lilja, D.J. (1991). Architectural Alternatives for Exploiting Parallelism. The Insti­

tute of Electrical and Electronics Engineers, IEEE Computer Society Press. 

[15] Polychronopoulos, C.D., and DJ. Kuck (1987). Guided self-scheduling: a practical 

scheduling scheme for parallel supercomputers. IEEE Transactions on Computers, 

C-36(12), 1425-1439. 

[16] Lam, M. (1988). Software pipelining: An effective scheduling techniques for 

VLIW machines. In Proceedings of the SIGPLAN'88 Conference on Programming 

Language Design and Implementation. The Association for Computing Machinery. 

pp. 318-328. 

[17] Svenson (Ed.) (1985). Introduction of Parallelism into Data Processing Algorithms. 

Naukova Dumka, Kiev (in Russian). 

[18] Ullman, J.D. (1975). NP complete scheduling problems. Journal of Computer 

and System Sciences, 10, 384-393. 

[19] Moiske, B. (1986). Scheduling problems on the 'evaluation of arithmetic expres­

sions. In M. Feilmeler, G. Joubert and U. Schendel (Eds.), Int. Con! "Parallel 

Computing 85". Elsevier Science Publishers. pp. 383-387. 

[20] Lootsma, EA. (1986). State-of-the-art in parallel unconstrained optimization. In 

M. Feilmeler, G. Joubert and U. Schendel (Eds.), Int. Con! "Parallel Computing 

85". Elsevier Science Publishers. pp. 157-163. 

[21] Knuth, D.E. (1973). The Art of Computer Programming. Vol. 3. Addison-Wesley. 

[22] Wirth, N. (1976). Algorithms + Data Structures == Programs. Prentice-Hall. 

[23] Hoare, C.A.R. (1971). Proof of recursive program: Quicksort. Computer Journal, 

14(4), 391-395. 

Received October 1996 



336 Computer analysis of the objective 

G. Dzemyda received his Ph.D. degree from the Kaunas Polytechnic Insti­

tute, Kaunas, Lithuania, in 1984. He is a senior researcher at the Optimization 

Department of the Institute of Mathematics and Informatics, and an Associate 

Professor at the Vilnius Pedagogical University. His research interests include 

interaction of optimization and data analysis. 

T~LOFUNKCUOSALGORITMO 

KOMPIUTERINE ANALlZE 

Gintautas DZEMYDA 

Straipsnyje parodyta galimybe automati~kai analizuoti optimizavimo u:ldavinio tik­
s10 funkcijos kompiuterin~ programll ir paskirstyti tos funkcijos reik~mes skai~iavimll 
lygiagre~iai keliems kompiuteriams. Paskalio tipo kalba panaudota funkcijos apra~ymui. 
Eksperimentams panaudotas kompiuterill tinklas. 


