
INFORMATICA, 1996, Vot. 7, No. 3,311-336

COMPUTER ANALYSIS OF THE OBJECTIVE
FUNCTION ALGORITHM

Gintautas DZEMYDA

Institute of Mathematics and Infonnatics
Akademijos 4, 2600 Vilnius, Lithuania
E-mail: dzemyda@ktl.mii.lt

Abstract. We consider a possibility of automating the analysis of a computer program
realizing the objective function of an extremal problem, and of distributing the calculation
of the function value into parallel processes on the basis of results of the analysis. The
first problem is to recognize the constituent parts of the function. The next one is to
determine their computing times. The third problem is to distribute the calculation of
these parts among independent processes. A special language similar to PASCAL has
been used to describe the objective function. A new scheduling algorithm, seeking to
minimize the maximal finishing time of processing units, was proposed and investigated.
Experiments are performed using a computer network.

Key words: Optimization,computer program analysis,parallel computing,scheduling.

1. Introduction. Extremal problems that arise in the design of technical

systems can often be transfonned into the form

min f(X),
XE[A,B)

where the objective function f(X): Rn -+ R is continuous and multiextremal

in the general case, A = (al, ... ,an), B = (b1, ... ,bn), X = (Xl, ... ,Xn),

[A,B] = {X: ai ~ Xi ~ bi, i = 1,n}.
The calculation of f value in optimization problems, occurring in scientific

and engineering applications, often requires much expenditure. of computing

time. Sometimes the expenditure is so great that it is impossible to solve the

problem by classical methods. In such cases it is reasonable to base optimiza­

tion methods not only on the functional characteristic of the objective function

(linearity, convexity, etc.) but also on the structure of a calculation process of

the function value.

312 Computer analysis of the objective

2. The main idea. Dzemyda and TieSis [1] suggested to take into account the

algorithmic structure of the objective function in local and global optimization

algorithms which are oriented to a single-processor execution. These algorithms

economize the computing time due to the coordinated calculation of function

values at the nodes of a rectangular lattice [1] by storing and using the quantities

that are common to several nodes.

The authors in [1] made use of

a) the known structure of function f:

(1)

where Yi ~ {Xl, ... , Xn},
b) the location of trial points at the nodes of a rectangular lattice consisting

n
of L = Il Li nodes:

i=l

(Xl + sI', ... , xn + s;.n),

si' E Si C R, 3s{i = 0,

ji = 1, L i , i = 1, n,

where Li is the number of discrete levels of the i-th coordinate of the lattice,

X = (Xl, ... , Xn) is the source point (node) of the lattice, Si is a discrete set

of Li elements.

For example, if we need to calculate the values of function f(XI, X2) =

!I (xd+ h(X2)+ h (Xl, X2) at four different points (X!, x;), (xi, x;*), (xi*, x;)
and (xi*, x2*)' it suffices to calculate four times the function h only: functions

!I and h may be calculated only twice. If the numbers of variables and points

are larger and the objective function is more composite, then the computational

economy grows significantly.

The approach [1] showed good results because optimization algorithms often

require to calculate values of the objective function at series of argument points

which, e.g., should cover uniformly the definition area in global search or are

specially located in the definition area for the evaluation of the gradient of

function f in local optimization.

In such cases it is often reasonable to use parallel computing which finds

wide applications in optimization. A particular type of parallelism in uncon­

strained optimization - simultaneous evaluation of the function to be

minimized - is reviewed, e.g., in [20].

G. Dzemyda 313

If we wish to calculate a fixed number of values of function f on a multiple
processor computer, we may concurrently evaluate as many its values as the
number of processors in the computer permits. But sometimes it isn't optimal

because there might be better to calculate concurrently constituent parts of
function f. Such situations arise when

• the calculation of the value of function f is computation-intensive,

• values of the function have to be calculated at the nodes of the rectangular
lattice.

In the first case, parallel calculations allow us to optimize the load of pro­

cessing units, and in the second one, the economy should be achieved by com­
puting only once the quantities that are common to several nodes of the rect­
angular lattice.

In this paper, we consider a possibility of automating the analysis of a
computer program that realizes the function f in order to recognize functions

It, h, ... , fm, and F, the evaluation of the computing time of constituent parts
of the function f, and the distribution of calculations of a single value of the
function f or of the set of values into p parallel processes. Different computers

or a computer with several processors may be used for parallel calculations.

A special optimization algorithm like that proposed in [1] or any other usual

algorithm may be used for seeking the minimum of function f when its values
are calculated in a parallel manner.

Our approach includes the following steps in solving the extremal problem:

1. Writing a program, that realizes the objective function, in a special

PASCAL-based language.

2. Analysis of this program in order to recognize the constituent parts

It, h, ... , fm, F of the objective function.

3. Evaluation of the computing time of functions It, h, ... , fm, F.

4. Making a schedule that distributes the tasks for calculating the values of

functions It, h, ... , fm at the desired points of argument into p inde­
pendent processes seeking to minimize the maximal finishing time of p

processing units.

5. Parallel computing of the values of functions !1 , h ... , f m at the desired

points of argument.

6. Calculation of the value (or a set of values) of function F on the basis

of values of the constituent parts It, h, ... , fm calculated in parallel.

314 Computer analysis of the objective

Steps 1 - 3 should be executed before the optimization algorithm starts. The

sequence of execution of steps 4 - 6 ought to be managed by the special opti­

mization algorithm. Step 4 may be executed before the optimization algorithm

starts if any stage of the optimization algorithm requires to calculate the values

of the objective function at the nodes of rectangular lattices having identical

configuration, i.e., having the same numbers Lj, i = 1, n.

We assume here that the computing time of any function fr, h, ... , f m does

not depend on the chosen point of argument.

Let us denote computing times of all the functions, composing the function

f, by t1,"" tm and tF. The calculation having the known values of functions

fr , h, ... , f m are used for computing F. Therefore, the computing time of

function f will be equal approximately to tf = t1 + ... + tm + tF. The

necessary conditions for our approach to be more effective are such:

• t1 + ... + tm is considerably greater than tF,

• m~p.

3. Analysis of computer codes. A special PASCAL-based language for

description of the algorithm for calculating the function f at the point X =
(X 1, ... , X n) has been developed. It is necessary to prepare a text of function

f in this language. A special computer program analyzes this text, recognizes

constituent parts fr, 12, ... , fm, F of function f (see (1)), converts this text

into the PASCAL-program, and evaluates t1, ... , t m, and tF.

The idea of analysing computer codes of programs, realizing scientific

and engineering applications to their further solution in a parallel way, is not

new. The reason is that such applications are very complex and computation­

intensive. Since the scientific/engineering applications domain has been desig­

nated as the primary beneficiary of parallel processing, there have been several

attempts to make parallel computers targeted for scientific/engineering appli­

cations [2-6]. The problem arises to estimate the extent of possible solution

of the scientific/engineering application in a parallel way. Some early mea­

surements of parallelism in FORTRAN programs are reported in [7]. These

measurements were obtained by analysing the programs (statically) and deter­

mining which statements can execute in pantilel because the most common

method for exposing parallelism is to write the program in a conventional lan­

guage (e.g., FORTRAN) and then detect the opportunities for parallel execution

by a compiler. Moreover, the greatest advantage of using FORTRAN is that

G. Dzemyda 315

existing programs only have to be recompiled for new high-performance ar­
chitectures (see [8]). The authors in [9] measured the total parallelism present

in a FORTRAN program. This total parallelism can be observed if the pro­
gram is executed on a computer which has unlimited processors and memory,

does not incur any overhead in scheduling tasks and managing computer re­

sources, does not incur any communication and synchronization overheads,

and detects and exploits all the parallelism present in the program. Although
an ideal computer which can exploit the total parallelism is not realizable,
such measures are helpful in search for the optimal way of solving the prob­

lem.

An example of description of the algorithm for calculating the function I:

uses functions;

function f1; begin 11 := integration (xl, x2); end;

function 12; begin 12 := integration (x3, x5); end;

function 13; begin 13 := integration (xl, x7); end;

function 14; begin

/4 := 9.60211 * cos(x1)+ sqr (x2-0.1292*x1 *x1+1.59155*xl-6)+10;

end;

function /5; var s: real; begin

differ (x2, x4, x7, s);

/5 := 2*3.1414*s; end;

function 16; var i: integer; s: real;

begin s := 0;

for i := 1 to 10 do s := s + diller1(i, x5, x6);

16 := sqr(s); end;

function F; begin

F := ((11 + /2)/2 + 13* 14* 15))/16; end;

The functions and procedures integration, differ and differl are compiled
in the TURBO-PASCAL unit functions seeking a shorter input program text

for analysis. xl, ... , x7 are variables, 11, ... ,16 and F are the functions

composing 1 (see (1)).

As a result of analysis of the text of function I, some table is completed.
An example of the table for the text above is shown in Table 1.

316 Computer analysis of the objective

Table 1. The results of analysis of computer codes

Name Name Names Computing
of function of variables of variables time

11 2 xl x2 10
12 2 x3 x5 17
13 2 xl x7 15
14 2 xl x2 24
15 3 x2 x4 x7 7
16 2 x5 x6 17
F 6 11 12 13 14 15 16 1

4. Distribution of calculations. The scheduling problem is to partition the

tasks of calculating the values of functions h, h, ... , 1 m at a single point or

at the set of argument points into p non-intersecting groups A1 , ... , Ap, i.e., to

find a schedule how to calculate the values of functions composing the function

1 on p processing units.

Let us suppose we are given p (abstract) identical processing units Pi,

i = r,p, and a set of independent tasks T = {T1, ... , Tr } which is to be

processed by the processing units. Let J.Lj be the units of time required for

completing 7j. Once a processor Pi begins to execute a task 7j, it works

without interruption until the completion of that task, requiring altogether J.Lj

units of time. In a general case, it is required that the partial order -< on T be

respected in the following sense: if Ti -< Tj then 7j cannot be started until Ti

has been completed. But in our case -< is empty. The scheduling problem is

as follows: find a schedule minimizing the maximum finishing time. However,

various computer architectures and ways of exploiting parallelism influence the

scheduling strategy, too (e.g., see [10, 14-17]). Therefore, the scheduling may

be performed in several ways. The issues of concern and arising problems are

summarized in [10]. NP-completeness of various restricted cases of the general

scheduling problem is shown in [18, 19].

4.1. Scheduling. There are various scheduling criteria and strategies (e.g.,

see [11, 12]). The shortest-processing-time scheduling (8PT) [11] tends to

reduce the mean number of unfinished tasks at each point in the schedule and to

G. Dzemyda 317

minimize the mean finishing time for p processing unite;. The largest-processing­

time scheduling (LPT) [12] produces schedules which tend to maximize mean

finishing time at each point in the schedule but minimize the maximum finishing
time

Let

(2)

• S PT" denote an S PT schedule which minimizes the maximum finish­
ing time among all S PT schedules;

• 0 PT denote a schedule which gives the minimal possible value of CA
among all possible schedules;

• t(5) be the maximum finishing time of schedule S.

In [12] the following best possible bounds are given:

1 ~ t (S PT·) ~ 2 _ ~
'" t(OPT) '" p'

t(LPT) ~ 4 1
1 ~ t(OPT) '" 3 - 3p'

This means that in most cases LPT will be better than SPT* in the sense of

the maximum finishing time.

1be LPT strategy minimizing the maximum finishing time is proposed and

investigated by Graham [12]: a free processor always starts to execute the

longest remaining unexecuted task. In our case, the scheduling algorithm is as

follows (let us denote it by G):

• initially all groups AI, ... ,Ap are empty;

• find an unpartitioned task Ti whose execution time J.li is the longest

among unpartitioned tasks, and find a group Ak whose tasks have the

shortest total execution time: k = arg min l: J.lj;
L=l,PTjEAL

• put task Ti into the group Ak;

• the algorithm stops when there are no unpartitioned tasks.

In cae;e of an arbitrary allocation of tasks into groups, Graham [12] noted

two acceptable ways of minimizing.the maximum finishing time:

• interchanging single tasks between two groups,

• moving a single task from its group to another one.

We propose below another criterion characterizing the scheduling quality

and assisting in search for a schedule minimizing the maximum finishing time.

318 Computer analysis of the objective

Let us seek a schedule such that the sums of execution times of the tasks

composing each group be similar, i.e., the best partition (actually impossible)

is

Let us analyse three equivalent criteria:

p P 2

Cl = L L (L J11 - L J11) ,
L=l k=L+l TrEAL TrEAk

P2 1 r

C2=L(L J11-Ji), whereJi=-LJ1j,
L=l TrEAL p j=l

P 2

C= L (L J11) . (3)
L=l TrEAL

It is necessary to minimize these criteria seeking the best partition of

Tl, ... ,Tr •

REMARK 1. Partitions corresponding to the global minima of criteria C, Cl,
and C2 are the same.

The result of Remark 1 becomes obvious if we make the following trans­

formations of Cl and C2 :

Cl = pC - p2Ji,
C2 = C - (2p - 1)Ji2,

in which only C depends on the partition of tasks.

The criteria C, Cb and C2 extend a set of possible scheduling strategies,

and allow to create special scheduling algorithms. C is simpler as compared to

Cl or C2 • Therefore, we shall describe the minimization of C more in detail.

Proposition 1. Let the partition of tasks Tb ... , Tr into groups Ab ... , Ap

be given. Let us analyse some task T,. Let T, E Ak. The value ofC will
decrease after transferring TB from the group Ak to the group AL (L =f. k)
if

(4)

G. Dzemyda 319

Proof. Let a part of (3) containing the groups Ak and AL be C· be­

fore transferring T. from the group Ak to the group AL, and C** after trans­
ferring T •.

o*-C··=(L tt1r +(L ttlr
~EAL ~EAL

(T.EAL) (T.tI!Ak)

=2/1-. L /1-1 - 2/1-. E /1-1 - 2/1-;
T/EAk T/EAL-

(T.EAk) (T.EAd

=2/1-.(E /1-1-
T/EAk

(T. EAk)

Considering /1-. > 0 in (5), it follows that

C· - C** > 0

when (4) is satisfied. The proposition is proved.

(5)

Proposition 2. Let the partition of tasks T1 , .•• ,Tr into groups A 1 , ..• ,Ap

be given. Let us analyse two subgroups Ak and Ai, of tasks from Ak and
AL (L 1= k, Ak C Ak, Ai, C AL). The value of C will decrease after
interchanging Ak and Ai, between the groups Ak and AL if

Proof. Let a part of (3) containing the groups Ak and AL be C· before

the interchanging of subgroups, and C·· after the interchanging.

C· -C** =(E /1-1f + (·E /1-1r
TIEAk TIEAL

(A~ CAk) (Ai, CAd

-(E
T/EAk

(A~ CA.)

320 Computer analysis of the objective

-(L
T/EAL

(Ai CALl

-2(L f-II- L f-Ilf
T/EAk T/EAi

=2(L f-II- L f-II)(L f-II
T/EAk T/EAi T/EAk

(AkCAk)

(7)

If (6) is satisfied, then (7) implies that C* - C n > O. The proposition is

proved.

Proposition 3 follows as a partial case of Proposition 2.

Proposition 3. Let there be given a partition of tasks T l , ... , Tr into
groups Ab ... , Ap. Let us analyse two tasksTs E Ak and1j E AL (L i= k).
The value of C will decrease after interchanging Ta and 1j between the
groups Ak and AL if

L f-II - L f-II > f-Is - f-Ij > O.

Minimization algorithms of C may be based on the following strategies:

• on the analysis of tasks in consecutive order and on the search for a

group where to transfer a separate task with a view to decrease the value

ofC:

• on the analysis of the pairs of tasks from different groups for their further
interchanging;

• on the analysis of the subgroups of tasks from different groups for their

further interchanging.

G. Dzemyda 321

The algorithms use different strategies of determining when the task Ts must

be transferred from its group to another. For example, in the case of analysis

of a separate task Ts (let Ts E Ak), it may be transferred, e.g., into the group

AL(L # k), where C decreases most, or into the first group found where (4)

is satisfied. The realization of the third strategy is very computation-intensive.

The algorithms stop when the transfer of any task, by the chosen strategy, does

not decrease the value of C.

Two algorithms minimizing C are investigated.

Algorithm PI:

• initially all groups A l , ... , Ap are filled out using some algorithm of the

initial partition of tasks;

• analyse tasks in consecutive order and search for a group AL of transfer­

ring an individual task Ts (let Ts E A k , L # k) with a view to reduce

the value of C: the transfer starts if

• the algorithm stops when the transfer of any task, by the above strategy,

does not decrease the value of C.

Algorithm P2:

• initially all groups Al , ... , Ap are filled out using some algorithm of the

initial partition of tasks;

• analyse pairs of tasks (Ts E Ak, Tj E AL, L # k, s < j) in consecutive
order and seek a pair of groups Ak and AL for a possible interchange of

the tasks Ts and Tj with a view to reduce the value of C: the interchange

starts if

l: PI - l: PI > Ps - Pj > Dj
T,EAk T,EAL

(T,EAk) (TjEAL)

• the algorithm stops when the transfer of any task, by the above strategy,

does not decrease the value of C.

Algorithms PI and P2 require for the initial partition of tasks. Let us denote

by VI the following algorithm of initial partition:

• initially all groups Al , ... , Ap are empty;

• consider tasks T;, i = G, in consecutive order and put the current task

Tc into the group having the smallest number of tasks.

322 Computer analysis of the objective

Algorithm Ul is very simple and yields a schedule that is far from optimal.

REMARK 2. [12] yields the best possible bounds for U1 such as

~ t(Ul) ~ I
1 ~ t(OPT) ~ 2 - P

REMARK 3. Propositions 1 - 3 determine the necessary and sufficient con­

ditions for the largest processing time to be reduced in the case of two groups

of tasks.

REMARK 4. The algorithms, which minimize C by using the results of

Propositions I - 3, also tend to minimize the maximum finishing time CA (2),

because at any step for arbitrarily selected pair (Ai, Aj , i # j) of groups, they

try to minimize the maximum finishing time (ma:x: L PI) of tasks in these
L=I,) TIEAL

two groups. The algorithms stop when it is impossible to reduce the maximum

finishing time CA by transferring the tasks between any pair of groups.

REMARK 5. Different schedules yielding different values of C may give

the same value of CA'

REMARK 6. If Graham's algorithm [12] is used as the initial partition of

tasks for further analysis employing the algorithms based on Propositions 2-
3, then the result of Graham's algorithm may be improved.

4.2. Results of the analysis of computing times. As a result of the analysis

of computing times PI, ... ,Pr of the functions 11, h, ... , f m at various points

of argument, a list of tasks for each processing unit Pi, i = !,P, is completed.

Note that r ~ m. In case of the above program, an example of the list of tasks

for one of the processing units is shown in the first two columns of Table 2.

The last column is filled out by the processing unit.

5. Experimental investigation. The goal of experimental investigation was

• to estimate the efficiency of scheduling algorithms (Graham's (G), PI

and P2);

• to evaluate the case when it is reasonable to calculate the values of

the objective function at the nodes of the rectangular lattice by using a

computer network.

G. Dzemyda 323

Table 2. The list of tasks

Name Values Value of
of function of variables function

12 0.50.5 1.5
12 0.50.6 2.7
13 0.70.7 5.4
13 0.70.8 7.1
13 0.70.9 5.2
15 0.50.60.7 6.7
15 0.50.70.7 9.5

5.1. Comparison of scheduling algorithms. Four strategies were investi-

gated:

• algorithm G;

• algorithm Vl+Pl;

• algorithm G+PI;

• algorithm Vl+(PI+P2).
The second and third strategies use algorithms VI and G, respectively, for

initial partitioning of tasks; further optimization is performed by PI. (PI +P2)

means a combination of PI and P2: Pl+P2+PI+ ... as long as any transfer

of a task from its group to another one or any interchange of two tasks from

different groups do not reduce the value of C (and the value of CA (see Remark

4)).

The experiments were carried out on the set of 100 randomly generated

problems, and the results were averaged. J.li E [1, 100], i = r;r, were generated

at random, i.e., the situation, when the tasks having various execution times

from the interval [1,100] appear with the same probability, was examined.

REMARK 7. The experiments showed that

• algorithm G yields a partition of tasks which cannot be improved by PI;

• partitioning quality of algorithms G, Vl+PI and VI+(PI+P2) is similar;

G yields a partition a bit better than that of U1+PI; VI+(Pl+P2) yields

a partition a bit better than that of G;

• algorithm Vl+Pl operates significantly faster (about 15-200 times de­

pending on the number of tasks) than Vl+(Pl+P2) because P2 is very

324 Computer analysis of the objective

computation expensive;
• algorithm Ul+Pl operates faster than G in the case of a small number

p of processing units.
Fi.gures 1 - 3 illustrate the conclusions of Remark 7.

a)

b)

0.8
0.6

0.4
0.2
0.0 -W--I"".--+-4",..-+-'-Ib..-+-l==bm-+-l-b..-+-Y....-I-r-...."....-1 r

-0.2
-0.4
-0.6

-0.8
-1.0

1.2
1.0
0.8
0.6
0.4
0.2

100 200 300 400 &X) em 700

M r
-0.2 .~

-0.4
-0.6

-0.8

-1.0 100 200 300 400 &X) 000 700

Fig. 1. The difference among values of CA obtained by G, Ul+Pland
Ul+(Pl+P2).

Fig. la illustrates the difference among the values of CA obtained by G,
UI+Pl and UI+(PI+P2), in case p = 3. Dark rectangles correspond to
the difference CA (Ul+(Pl+P2))-CA(G), and white rectangles correspond to

G. Dzemyda 325

the difference CA(U1+P1)-CA(0), where CA(S) denotes the value of CA ob­
tained by algorithm S. Taking into account that the obtained average values of
CA(Ul+(PI+P2», CA(O), and CA(UI+P1) during the experiments are equal
to 6751.76, 6752.26, and 6752.56, respectively, we may conclude that the par­
titioning quality ofthesetbree algorithms is similar. Attempts to complicate
.tests by setting the values Pi of five randomly selected tasks to be equal to 250
and generating other values of P.i at random in [1,100] led to similar results
as in 'Fig. la; the obtained average values of CA(UI+(Pl+P2», CA (0), and
CA (UI +Pl) during the experiments are equal to 7082.19, 7082.68, and 7083.04,
respectively (see differences in Fig. lb).

The scope of algorithm 0, in fact, is to search for a new order of tasks

T;, i = 1, r, where they m:e arranged in decreasing order of their execution
time.. 1\vo simple sequential strategies. for solving the problem of reordering
the tasks are given in [13]. The authors in [13] also suggest; how to solve the
above problem ina parallel ~er using some processors. The first strategy
from [13] is realized in O. This strategy is based on the interchange of pairs of
tasks, and in [21,22] it is called "bubble sorting". This strategy requires many
paired ·comparisons of computing times. The way of optimizing computation
expensiveness of 0 is to use a IT,lOre sophisticated sorting. In our experiments,
the algOrithm of quick sorting by Hoare [23] was used, too.

t
0.5 -r-:-----------,
0.4

0.4

0.3

0.3

0.2

0.2

0.1

n1 U1+P1
M r

100 200 3X) 400 500 a:o 700

Fig. 2. Dependence of the average computing time t (in seconds) on the
number r of tasks (0 uses bubble sorting).

326 Computer analysis of the objective

t
p=2

4.0 -r--------...-...,

3.5

3.0

2.5

2.0

1.5

1.0

0.5

r
0.0 ~--I__-__+---l

t p=3
4.0.,..--------...,

3.5

3.0

2.5

2.0

1.5

1.0

0.5

r
0.0 +----;~---+--~

o 500. 1CXX)1500 0 500 1000 1500

t p=4 t p=5
4.5 -r---------..., 5.0.,..--------......

3.5

3.0

2.5

2.0

1.5

1.0

0.5

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 +---1__-__+---1
r

0.0 +---+-----+---1
o 500 1000 1500 o 500 1000 1500

Fig. 3 •. Dependence of the average computing time t (in seconds) on the
Dumber r .of tasks (0 uses quick sorting) and OD ·the number p

of p1'()CeSSing units.

G. Dzemyda 327

Figures 2 and 3 show the dependencies of average computing time t (in
seconds on lOOMHz PC) on the number r of tasks to be scheduled and on the
number p of processing units. Fig. 2 illustrates the dependence of the average
compu'ting time t on r for G' (using bubble sorting) and Ul+Pl, respectively.
The value of p was set to be equal to 3 in this case. Fig. 3 illustrates the
depeildenceof the average computing ,time t on ~ and p for G (using quick
sorting) and Ul+Pl, respectively. Fig. 3 implies that the rapidity of algorithm.
Ul+Pl depends on p essentially. The rapidity of G has a weak dependence on
p 'because the main, charge in G is put on the arranging of tasks, in decreasing
order of their execution time. Such a sorting is independent of p. The results
indicate that the app,lication of quick sorting in G is much faster than the bubble
sortirig, b~t alg~thin UI+Pl is faster than G in both cases for s~ p (when
p = 2, 3, and, in some cases, when p = 4 and even p = 5). Advantages
of UI +PI over G, which uses the quick sorting, are observed mostly for a
larger number of tasks. This is essential, since the calcu,1ationof values of the
objective function at the nodes of the rectangular lattice leads to alarge number
of tasks.

Algorithms 'PI and P2 minimize both C and CA' In Fig. 4 the dynamics
of the best found values of VC and CA by PI after the 'h-th transfer of task
from one groul> to another is illustrated on the basis of the randomly generated
l>l'Oblem (Ili E [1, 100], i = 1, r, were generated at random, r = 100, p= 3).
The minimization starts from the initial partition of tasks obtained by Ul.

JC C
2785 1000 A

2m
1S50

1800 • 2775 1750 • • •
2770 1700

• • 1e60 • •
27f!13 •••• 1EDl • •
27ED h 1560 h

0 123 4 5 6 7 8 0 2 3 4 5 6 7 8

Fig. 4. Dynamics of ~e best found values of 'c and ,CA by PI.

328 Computer analysis of the objective

The experiments allowed to draw preliminary conclusions on the efficiency

of algorithm Ul+Pl as compared with G. Further theoretical investigations

should provide more details. Solution of the scheduling problem is part of the

search for minimum of the objective function (see Steps 1 - 6 in Section 2). In

most cases, Steps 5 and 6 (calculation of values of the objective function) require

much more computing time as compared to Step 4 (solving of the scheduling

problem). So, even in the case of a small number p of processing units the

usage of algorithm Ul+Pl instead of G would not bring notable economy of

computing time. Nevertheless, the results of this paper extend a set of criteria

characterizing the scheduling quality for seeking a schedule minimizing the

maximum finishing time, and a set of possible scheduling strategies.

5.2. Efficiency of parallel computing. Let us analyse a function of n vari­

ables involving functions that depend on all possible combinations of variables:

n n n

P(X) = L li1(Xi1) + L L /;li2 (Xi 1 , Xi 2)

n n n

+ L L L /;li2 i 3 (Xi 1 , Xi" Xi 3) +
i.=l i 2 =;'+1 i3=;2+1

The goal is to calculate values of function P at L nodes of the rectangular
lattice.

In the general case, the minimal number of functions depending on all

possible combinations of variables Xl,"" Xn may be defined as the following
sum:

n I
'" n.

m = (;;t i!(n - i)!'

Let Li = L *, i = 1, n. If we need to calculate values of function P at

L = L*n nodes of the rectangular lattice, it is necessary to calculate

* n L*in !

m = ~i!(n-i)!

values of functions composing the function It at different points of argument.

The values of function P may be calculated using four strategies:
SI) uncoordinated calculations using one processor;

S2) coordinated calculations using one processor;

G. Dzemyda

S3) uncoordinated calculations using p processors;

S4) coordinated calculations using p processors.

329

Which of these four strategies is better depends on the computing times of

functions composing the objective function.

Let

• 1"1 be the computing time of objective function values at all nodes of the

rectangular lattice without taking into account that the trial points are

the nodes of the lattice;

• 1'2 be the computing time of objective function values at all nodes of

the rectangular lattice in the case of coordinated calculations of these

values;

In [1] two criteria are introduced for comparison of the calculation strategies:

• computing time economy: E = Tl/T2;

• the number of objective function values calculated in time 1'2 in an

uncoordinated way: N = LT2/T1'

Both criteria are related as follows: N . E = L.
Assume that

• computing times of any function composing the objective function are

the same and equal to to;
• computing time of all the functions composing the objective function is

considerably greater than summation of their computed values.

Thus, in a single-processor case

n Ln!
1'1 = to L: "(_ ')" , Z. n z.

i=1

In a p-processor case, 1'1 and 1'2 will be maximal finishing times of tasks

scheduled for separate processors:

[(n L i) (n L')]
1'1 =to int I.: "(:. ')' /p + mod I.: "(:. ')" p ,

i=1 Z. n Z. i=1 Z. n z.

[. (n L*i n!) (n L*in!)]
1'2 =to mt L: "(_ .)/p + mod L: "(_ ")" p ,

i=i z. n z. i=1 z. n I.

330 Computer analysis of the objective

where the functionint(v) returns the integer part of argument v, and the func­

tion modG1J,p) returns 1 if tberemainder part of division v by pis nonzero.

Let fu;. consider the following situatioo: n = 1,4; Li = L" = 1,5; i =
1, n; p = 1;3. The values of criteria Nand E, in this case, have an insignificant
dependence on the number of processiog units p: the values of criteria vary io

the range of some percent, and only in one case (L" == 2, p = 3, n = 2) this

percent is abi~greater than 10. Fig. 5 shows the dependence of criteria N and E
00 L" and n in a single-processor case for the function P taking intoaccouot the

above assumptions. Investigations of the single-processor computing econonly

for a wide number of cases and assumptions 00 the structure of the objective

function may be fouod in [1] .

.. E·
8...----------,
7
6
5
4
3

~~:i=~=:=l

~n=4

-I:r-n=3

-o-n=2

~n=1

o L*
2 3 4 5

N
100 ...----------,

80

60

40

20

~n=1

-6-n=2

-o-n=3

-<>-n=4

o~4~~~~L·
2 3 4 5

Fig. 5. Estimates of efficiency.

TherelationofTl andT2, incase n = 4, p = T,3, Li = L" = T,5, i = l,n,
is given in Fig. 6. Symbols '0' denote various values of L*: from 1 00 the left
to 5 on the right

G. Dzemyda 331

~
1CXXX1 1

p=l

8(XX)

fDX)

4CXXl

2000

0 ~2

0 EOO 1000 1500

~1 p=2
50CD

4OCO

3CXX)

200J

1CXD

0 Z"2
0 200 400 600 aoo

Z"l p=3
36XI
3COO

2500
2CXlO

1EOO
1000

500

0 Z"2
0 200 4C() 600

Fig. 6. Relation of 1'1 and 1'2.

The dependence of 1'2 on Li = L* = l,5, i = 1, n, in ca.<;e n = 4,
to = 1, p = 1,3, is illustrated in Fig. 7.

Computational experiments were carried out on Iil Wmdows for Workgroups
based 66 MHz personal computer (PC) netwodc. The scheme of the network

332 Computer analY$is o/the objective

'f2
1~ p=l
1200
1000

800

Em
400

200

p=2
p=3

o J-Oiiii!i!ii!~:::e:=--+------l L"
2 3 4 5

Fig. 7~ Dependence of T2 on L" .

PC2 PC3 pep

PC!

Fig. 8. Computer network.

is given in Fig. 8. Computers were connected using the hub "HP AdvanceS­

tack lOBase-T Hub-8U'·. The goal of experiments w~ to estimate the com­

puting expenditure on coordinated calculation of L values of function P in

the case of fast calculation of functions composing the function P, i.e., when

to = O. The rectangular lattice was defined as follows: X = (1, ... ,1),
Si = {D, 1, ... ,L* - I}, i = 1, n. The dependence of computing time T2 (in

seconds) on L" and p is demonstrated in Fig. 9. Any point in Fig. 9 is obtained

by averaging the results of 100 independent experiments. The results of Fig. 9

depend on the structure of data storing and the control of parallel calculations:

most likely, they may be improved.

G. Dze..myda 333.

.'(

9 2

8

7

6

5
--<>-p=1

4
-a-p=2

3
-Ir-p=3

2

0 t=*~~d~L*.
1 2 3 4 5

Fig. 9. Dependence. of computing timeT:! on L * and p.

E
3.-----------------------------------,

2

o ~
.001 .002 .003 .004 .«6 .006 .007 .008 .cm .010

Fig. 10. The search for E > 1.

Figures 6, 7 and 9 .a1lowus to estimate E and N in case to > O. Considering
that, in our case, the management of independent calculations of L values of the

function !' requires much less time than that of the cOordinated calculations,
for any combination of L· and p we may get the following estimates:

1"2 = 1"2(from Fig. 9) + to . 1"2 (from Fig. 7),

Tt ::;: to . T1(from Fig. 6).

334 Computer analysis of the objective

For example, in case L * = 5 and p = 3, the value of E becomes greater

than I starting from to = 0.003 seconds (see Fig. 10). It means that starting

from to = 0.003 the coordinated calculations become more effective than the

uncoordinated ones.

6. Conclusions. The results of research proved the possibility of automating

the analysis of the computer program realising the objective function of an

extremal problem, the recognition of constituent parts of the function, and the

distribution of calculations of its single value or the set of values into parallel

processes.

Further investigations may be directed to

• the use of the proposed approach in other computing architectures;

• the extension of the fields of application.

REFERENCES

[1] Dzemyda, G., and v. Tie~is (1991). On the use of coordinated calculations in the

solution of extremal problems. Informatica, 2(2), 171-194.

[2] Beetem, J., M. Denneau and D. Weingarten (1985). The GFll supercomputer. In

Proc. 12th Annual Symp. Comput. Architecture. pp. 108-113.

[3] Crowther, W., et at. (1985). Performance measurements on a 128-node butterfly

parallel processor. In Proc. 1985 Cont Parallel Processing. pp. 531·-540.

[4] Gurd, J.R., C.c. Kirkham and I. Watson (1985). The Manchester prototype dataflow

computer. Commun. ACM, 28, 35-52.

[5] Pfister, G.F., et at. (1985). The mM research parallel processor prototype (RP3):

Introduction and architecture. In Proc. 1985 Cont Parallel Processing. pp.

764-771.

[6] Seitz, C.L. (1985). The cosmic cube. Commun. ACM, 28, 22-33.

[7] Kuck, DJ. (1974). Measurements of parallelism in ordinary FORTRAN programs.

Computer, 7,37-46.

[8] Kuck, D.J., R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe (1981). Depen­

dence graphs and compiler optimizations. In Proc. ACM Symp. Principles of

Programming Languages. pp. 207-218.

[9] Manoj Kumar (1988). Measuring parallelism in computation-intensive scientific/en­

gineering applications. IEEE Transactions on Computers, 37(9), 1088-1098.

G. Dzemyda 335

[10] Iannucci, R.A. (1988). Toward a dataflowNon Neumann hybrid architecture. In

IEEE International Symposium on Computer Architecture. pp. 131-140.

[11] Bruno, J., E.G. Coffman Jr. and R. Sethi (1974). Scheduling independent tasks to

reduce mean finishing time. Communications of the ACM, 17(7), 382-387.

[12] Graham, R.L. (1969). Bounds on the multiprocessing timing anomalies. SIAM J.

Appl. Marh., 17(2), 416-429.

[13] Mani Chandy, K., and Jayadev Misra (1988). Parallel Program Design: a Founda­

tion. Addison-Wesley Publishing Company.

[14] Lilja, D.J. (1991). Architectural Alternatives for Exploiting Parallelism. The Insti­

tute of Electrical and Electronics Engineers, IEEE Computer Society Press.

[15] Polychronopoulos, C.D., and DJ. Kuck (1987). Guided self-scheduling: a practical

scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,

C-36(12), 1425-1439.

[16] Lam, M. (1988). Software pipelining: An effective scheduling techniques for

VLIW machines. In Proceedings of the SIGPLAN'88 Conference on Programming

Language Design and Implementation. The Association for Computing Machinery.

pp. 318-328.

[17] Svenson (Ed.) (1985). Introduction of Parallelism into Data Processing Algorithms.

Naukova Dumka, Kiev (in Russian).

[18] Ullman, J.D. (1975). NP complete scheduling problems. Journal of Computer

and System Sciences, 10, 384-393.

[19] Moiske, B. (1986). Scheduling problems on the 'evaluation of arithmetic expres­

sions. In M. Feilmeler, G. Joubert and U. Schendel (Eds.), Int. Con! "Parallel

Computing 85". Elsevier Science Publishers. pp. 383-387.

[20] Lootsma, EA. (1986). State-of-the-art in parallel unconstrained optimization. In

M. Feilmeler, G. Joubert and U. Schendel (Eds.), Int. Con! "Parallel Computing

85". Elsevier Science Publishers. pp. 157-163.

[21] Knuth, D.E. (1973). The Art of Computer Programming. Vol. 3. Addison-Wesley.

[22] Wirth, N. (1976). Algorithms + Data Structures == Programs. Prentice-Hall.

[23] Hoare, C.A.R. (1971). Proof of recursive program: Quicksort. Computer Journal,

14(4), 391-395.

Received October 1996

336 Computer analysis of the objective

G. Dzemyda received his Ph.D. degree from the Kaunas Polytechnic Insti­

tute, Kaunas, Lithuania, in 1984. He is a senior researcher at the Optimization

Department of the Institute of Mathematics and Informatics, and an Associate

Professor at the Vilnius Pedagogical University. His research interests include

interaction of optimization and data analysis.

T~LOFUNKCUOSALGORITMO

KOMPIUTERINE ANALlZE

Gintautas DZEMYDA

Straipsnyje parodyta galimybe automati~kai analizuoti optimizavimo u:ldavinio tik­
s10 funkcijos kompiuterin~ programll ir paskirstyti tos funkcijos reik~mes skai~iavimll
lygiagre~iai keliems kompiuteriams. Paskalio tipo kalba panaudota funkcijos apra~ymui.
Eksperimentams panaudotas kompiuterill tinklas.

