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Abstract. Adaptive Control Distributed Parameter Systems (ACDPS) with adaptive 
learning algorithms based on orthogonal neural network methodology are presented 
in this paper. We discuss a modification of orthogonal least squares learning to find 
appropriate efficient algorithms for solution of ACDPS problems. A two times problem 
linked with the real time of plant control dynamic processes and the learning time for 
adjustment of parameters in adaptive control of unknown distributed systems is discussed. 

The simulation results demonstrate that the orthogonallearning algorithms on a neu­
ral network concept allow to find perfectly tracked output control distributed parameters 
in ACDPS and have rather a good perspective in the development of generalised ACDSP 
theory and practice in the future. 
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1. Introduction. A number of identification and adaptive control proposals 

have been presented in journals, books, in the past. Before 1970s the analogous 

realisations of control systems will more developed. The development of dig­

ital computers reactivated the creation of different classes of discrete adaptive 

control algorithms. 

Fundamental studies on identification and adaptive control systems were 

conducted by Astrom (1970), lserman (1974), Tsypkin (1971), Feldbaum (1965), 
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Landau (1979), Nerendra (1980), Parks (1966) and others. 

Regarding to Iserman (1974) or Nerendra (1980), different identification and 

adaptive control models are known either without neural implementations or 

with fcedforward, feedback, and recurrent single-input single-output (SISO) or 

multi-input multi-output (MIMO) neural networks (Nerendra and Parthasarathy, 

1990; Jin et al., 1994). One frequently meets adaptive control models with the 

reference model approach. 

Although there were published very many works on adaptive control the­

ory and applications with a neural networks paradigm or least mean squares 

(LMS) method for learning models, but little attention is paid to two times 

problem appearing in design of dynamic adaptive control systems working 

in real time. One time is the real time of plant processes in dynamics. If 

we regard these processes as discrete ones described by some order differ­

ence equations, we will have a short sampling time. The sample time is 
the shorter, the quicker a dynamic process of the plant is in reality. An­

other time is the leaming time for adjustment of parameters for identifica­

tion or adaptive control processes by LMS or neural network approaches, as 
a rule, by means of gradient methods which are very slowly. To learn the 

middle size neural network it takes several hundred thousand epochs (steps) 

(e.g., 50-100 thousand time steps for neural network SISO Nf.lo.lO.l using the 
static back propagation method by Nerendra et al. (1990) were required). 

It means, either the computing devices must be very fast or learning algo­

rithms requiring a short time of calculations, or the plant processes are suffi­

ciently slow. No one of the investigators assessed the relation between these 

two times. As a rule, the instances are restricted by simplified schemes of a 

plant with bounded-input bounded-output and stable in the assumed class of 

input. 

Hereby, we choose a class of control objects with distributed parameters ao;; 

slow plants and suggest speeding up the Orthogonal Least Squares Learning 

(OLSL) algorithm to overcome two times difficulties without using superpower 

computers. In Section 2, the general adaptive control of distributed parameter 

systems and two time (the first of which is the delay time, the second is the 

learning time) problems are discussed. Mathematical descriptions of concrete 

heat and gao;; dynamics systems considering adaptive control peculiarities are 
presented in Section 3. Orthogonal least squares learning algorithms with neu-
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ral network control are proposed for improving the computational methods are 

presented in the next section. In Section 5, a practical importance of the pro­

posed theoretical and applied methodologies, for example of gas pipeline as a 

distributed parameter control system, is demonstrated. 

2. General adaptive control distributed parameter system 

2.1. General mathematical description. Most of physical systems are spe­

cially distributed and their nature is described by partial differential equations. 

If we look at these systems from the point of view of ACDPS, control actions 

are applied to the boundary of the controlled area or in the interior to govern the 

system to a desired state. It is sometimes possible to approximate ACDPS by 

an ordinary differential equation model, if the spatial energy distribution of the 

system is sufficiently concentrated. However, almost as a rule, in many phys,ical 

systems the energy is wide dispersed, and it is impossible to foresee the system 

behavior without dealing directly with a partial differential equation descrip­
tion. Another peculiarity of ACDPS is a long time-delay, i.e., that the system 

pure delay time is much more greater than its ingredient transition time. In 
the lumped parameter theory, the delay time flows from the system parameters 

themselves, but when the delay time is much longer, there are no all-round the­

oretical results yet. Now the outstanding ACDPS theory considering the feature 
of ACDPS explains many questions dealing with a time-delay phenomenon. It 

proposes effective methods to overcome difficulties of the time-delay problem 

in distributed parameter systems (DPS). 

It should be emphasized that there exist very many practical tasks and ap­

plication areas. There are a lot of applied DPS some of which are: heating 

systems, oil-gas pipeline and sources objects, optimal control systems of meteo­

rology, nuclear reactors, refinery plants, electron, ion, and laser or piezoceramic 

affect in the context of mobile distributed parameter systems, and others. 

In the general case a nonlinear distributed parameter system (NDPS) is 

mathematically presented in dynamics by Butkovskiy et aI., (1991) with fixed 

sources 

8Q. . ) 
Tt=a(Q)'JQ+F(x,y,z,O-1/J(Q), (x,y,z EV, t>O, 

Q(x, y, z, 0) = Qo(x, y, z), (x, y, z) E V, 

[ 8Q] aQ +,\- = nQr, 
8n (x,y,z)Er 

(1) 

(2) 

(3) 
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where Q = Q (x, y, z, t) is an ingredient (heat, temperature, volume of oil or 

gas, pressure and others; hereby we orient ourselves to heat and gas pipeline 

cases) of distributed forward spatial coordinates x, y, z and the time t; 

a( Q) is a thermal conductivity coefficient; 

F ( x, y, z) is a heat source function; 

1jJ( Q) is the function for removing heat from the system; 

Qo(x, y, z) is an initial distribution of heat; 

Cl, A are constants; 

oQ / on is a derivative in the external normal direction to a domain of 
boundary; 

Qr is an assigned number; 
V is a bounded domain, where the system is determined. 

Eq. 1 defines the state parameters of NDPS in dynamics. Eqs. 2 and 3 

characterize the initial and boundary conditions, respectively. 
The heat source can be presented by such a function 

F(x, y, z, t) = u(t)<I>[x, y, z], (4) 

where u(t) is the power of a heat source at time t, <I>[x, y, z] ~ 0 is a heat 

source power distribution usually, the Gaussian distribution 

00 

J J J <I> [x , y, z] dxdydz = l. (5) 

-00 

A control problem of ACDPS will be as follows. Let a desired system 

state Qd(X, y, z), (x, y, z) E D be given. One needs to find the trajectory 

Q(x, y, z, t), provided by the heat source power u(t) as a control function 

contenting the limitations 0 ~ u(t) ~ Vm , (Vm is the maximum value of the 

control parameter function), which in the steady-state (t --+ 00) provides a 

minimal deviation from the desired state not exceeding the value 8, that is, 

1= min J [Qd(X, y, z) - Q(x, y, z, t)]2dxdydz ~ 8. (6) 
t-oo 

v 

If we accept the sampled period 8, then the steady-state decision can be 
found approximately replacing Eqs. 1 - 3 by the average stationary equations 

a(Q)\lQ + F(x, y, z) - 1jJ(Q) = 0, (x, y, z) E V (7) 
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with boundary conditions (3). Here Q(x, y, z) is average system state 

- 1 jt+B 
Q(x,y,z) = (j Q(x,y,z,r)dr, 

t 

and F(x, y, z) is as follows 

- 1 jt+B 
F(x,y,z) = (j u(r)~[x,y,z]dr. 

t 

The functional (6) will be changed to the following 

1st = j [Qd(X,y,Z) - Q(x,y,z)]2dxdydz ~ 6, 

v 
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(8) 

(9) 

(10) 

which is transformed to the minimum varying u(t) in the rate 0 ~ u(t) ~ Vm . 

2.2. ACDPS problem with dynamic neural network. In the general case, 
an ACDPS problem can be formulated and solved on the ground of Dynamic 

Recurrent Neural Networks (DRNN's). (Nerendra et al., 1990; lin et al., 1994). 
A continuous representation with nonlinear (1) - (3) mathematical description 

and DRNN'S learning is very hard for realisation, though it is possible in 

principle. A more convenient case is an approximation as continuous in time 

and discrete in space of a linear/nonlinear dynamic control system. Adaptive 

learning and control of such a system may be represented by linear/nonlinear 

differential (at the time of state variables) and difference (in space distributed 

parameters and control values) equations. Taking into account a pure discrete 

representation of equations (1) - (3) a discrete approximation of ACDPS and an 

application tor adaptive control of discrete DRNN'S are possible. But due to 

a great complexity in the SISO or SIMO case, we insist on refusing DRNN's. 

It was sought for other simpler and more efficient neural network presentations 

using the ideas of orthogonality. 

Since of the considered systems and their processes are nonlinear with un­

known parameters in nature and the control parameter functions are not separa­

ble or additive with respect to state functions; we must use a general form of an 

adaptive control model. We assume that for an unknown stable time-invariant 
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Fig. 1. Control system structure. 

system, the input and· output signals of discrete-time ACDPS are observable 

and measurable. The general form is as follows 

y(k) = F[Y(k - 1), ... , y(k - no), u(k - 1), ... , u(k - no)], (11) 

where u( k) and y( k) are multidimensional system input and output vectors, 

respectively, F(. ) is the system vector-function with unknown parameters, and 

y(k) is the estimated vector of y(k). There is an assumption that the system 

is a continuous functional ·of the input, i.e., even an insignificant change in the 

input results in a slight change in the output of the system. 

The models based on Eq. 10 are presented by Nerendra et al. (1990). We 

can construct an appropriate neural network model that produces an output 

vector y( k) as an estimate of y( k) by a specified cost function of errors 

e(k) = y(k) - y(k), (12) 

equals to the minimum. This error function can also be defined by the L 2-norm 

criterion 

E = 4 L le(k)12 • (13) 
k 

In order to concretise the unknown plant-control system,· we propose a direct 

parallel control method without the reference model. The scheme is repre­

sented in Fig. 1. There are two loops: the control loop with a Neural Network 

Controller (NNC) and the parameter adjustment loop with a. Neural Network 

Mapper (NNM) compensating the error (13). 
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3. One-dimensional spatial parameter DPS 

3.1. Heat-transfer DPS. Some DPS may be represented as a one-dimensional 

spatial distributed parameter system. There are, for example, heat, oil or gas 

transfer systems. Let us consider the a heat exchange system when hot water 

is transferring heat for heating cold water: two flows are flowing in opposite 

directions. 

Thus, we have one spatial and two state parameter systems whose mathe­

matical model for the heating process without loss of heat (Guangyuan et al., 
1994) is the following 

{ 
oQ oQ 

cp- + vcp- = a(P - Q) at ox 
oP oP 

drFt - udr ox = a(Q - P), 

(14) 

where Q and P are the temperature of cold and hot water, respectively; c, d 

are specific heats; p, r are densities; a is a heat-transfer coefficient; v, u are 

cold and hot water velocities. 
The initial and boundary conditions are as follows 

Q(x, 0) = Qo(x), 

{ 
Q(O, t) = Qo(t), 

Q(L, t) = QL(t), 

P(x, 0) = Po(x), 

P(O, t) = Po(t) 

P(L, t) = h(t), 

where expression (16) characterizes a couple of boundary conditions. 

(15) 

(16) 

We represent below a discrete description of differential Eqs. 14 and their 

initial and boundary conditions (15), (16). Continuous-time-space variables 

Q(x,t) and P(x,t) are sampled to obtain discrete-time-space variables Qj(k) 
and Pj (k), respectively, where k is a discrete-time instant and j is a discrete­

space index. (11) - (13) are transformed to a system of linear difference equa-

tions 

(17) 
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k=O,I, ... ,N; j=I,2, ... ,L-I, 
where Xj,j-l is the discrete length of the jth compartment of water pipeline. 

The appropriate conditions become 

Qj(O); Qj(O) (initial); j = 1,2, ... , L, 

{ 
Qo(k), Po(k) (boundary at the begining) 

QL(k), Pdk) (boundary in the end). 

(18) 

(19) 

Sometimes a steady-state situation of control is useful, therefore we present 

stationary equations 

{ 
oQ 

vcp ox = a(P - a) 

ov 
udr ox = a(Q - P), 

(20) 

and the difference ones 

The boundary conditions remain the same as (19). Analytic solutions of 
Eqs. 20 are presented by Guangyuan et al. (1994). 

3.2. Adaptive control. An adaptive control task is to find the unknown 
parameters of Eq. 14, if we bear in mind that the control parameter is the 

temperature Pl ( k) at the initial part of a hot water pipeline and a desired 

output is the cool water temperature' Q L (k) of the end of a cool water pipeline. 

This control task deals with a design of a heat pipeline system. Another task 

deals with the exploitation of a really existing system with dynamics under 

consideration. Now the parameters of the system are known. The problem of 

control is to design a controller that generates the desired control Pl (k) based 

on the information at the discrete moment k. 
From the general control theory consideration, a control distributed parame­

ter problem, according to Eqs. 17 - 19, is formulated as a discrete-time, nonlin­
ear non autonomous system (because of conditions (15», and in the case of Eqs. 
20,21 as a linear autonomous system. The first system is nonlinear due to the 
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initial conditions verified on the space. Sometimes it can be constant, that is, 

the set pojnt is not varying in time. In this case, it becomes a linear autonomous 

system too. The stability of a linear system with one equilibrium point, as the 

time is tending to infinity, is investigated and it is obvious (Nerendra et al., 
1990). 

If the adj~table parameters of a heat system are unknown, that is a design 

problem, it is possible to use for modeling multi-input single-output (MISO) 
neural network models. That means the output variable at time le + 1 is a linear 
combination of the past (at time le) values of both the input and the output ones. 

There are two structional models: a parallel model and a series-parallel model 

(Nerendra et al., 1990). 

3.3. Gas pipeline mathematical description. In the general case, problems 

based on the expansion of gas supply systems, deal with both the existing and 
newly designed pipelines with compressor plants. A conventional gas pipeline 

plant consists of pipeline sections and compressor. plan~ (CP) situated among 

sections, as shown in Fig. 2 (Garliauskas and Feigin, 1989) .. 

....... -... ,---, r-- .... ....... r----, r----. 
....... ~ ...... ~ 

$3 s, Sn 

Fig. 2. Pipeline with compressor plants (PCI). 

A mathematical description of a gas pipeline section with distributed pres­

sures Pl(X~ t) and flo~s G,(X,t) is as follows 

{}P/(x, t) 2DF {}2 P?(x, t) 
{)t - )'G,(X, t) {}x2 1 = 0, 1, ... ,M + 1, (22) 

where D, F are the diameter and the square of pipeline unchanging along the 
line, respectively, ). is the coefficient of hydraulic resistance, M is the number 

of sections. 

Allowing that the velocity of gas flow is average for section 1, we obtain a 

slightly simplified partial differential equations 

{}Pt(x, t) {}2 P?(x, t) ( ) 
{}t =a, {};c2 ,1=0,1, ... ,M+l, 23 
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h 2D. th f I .. . I - . th f were al = -_--, WI IS e mean 0 ve OClty In sectIOn ,PI IS e mean 0 
APt''?!1 

density in section I. 
The initial and boundary conditions are 

PI(X, 0) = p?)(x), 

Po(O, t) = fo(t), 

PM+1(M + 1, t) = fM+l(t). 

The compressor plant work may be characterised by the following relation, 

that is the degree of compression 

(24) 

where Cl (qv) = alO + all qlv + al2 qfv is the polynomial of volume flow qlv, alO, 

all, a/3, C! are coefficients, UI is the ratio of compressor revolutions as a control 

parameter for section and compressor plant [. 

Continuous-time-space variables PI(X, t) are sampled to obtain discrete vari­

ables Plj (k), where j is the index of the jth compartment of pipeline section 

[, k is the time index or cycle number (positive integer) a unit of the sampling 

interval. Since partial differential Eqs. 23 are determined at discrete-time-space 

instants, they can be formulated as system of nonlinear equations 

Plj(k + 1) =P1j(k) + al { [P1;-1 ~;_~,jPI;(k)] 

_ [PI;(k) - PI;+l (k)]}, [ = 1,2, ... , M + 1, (25) 
Xj,Hl j = 0,1, ... , m - 1. 

The appropriate initial and boundary conditions are 

The main relation of a compressor plant now will be 

(27) 

which is a discrete presentation of Eq. 24. 
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3.4. Pipeline control problem on neural network. Consider a concrete 
pipeline system with compressor plants dynamic processes of which are de­

scribed by difference Eqs. 25 and conditions 26 - 27. Basing on the control 

system presented in Fig. 1, we try to concretise the presentation of neural net­
work control and mapper blocks joining them into onc general block with a 

function F {. }. 

A changed mathematical description (22) is presented for the first pipeline 

section (pipeline and CP) as follows: 

Pl1 (k + 1) = Pl1 (k) + al1f(Plo (k), Pl1 (k), P12(k)) 

P12 (k + 1) = P12(k) + al2!(Pl1 (k), P12 (k), P13(k)) 

Plm-l(k + 1) = Plm(k) + al m-d(Plm - 2(k) 

Plm - l (k), Plm(k)), 

where f{. } is an unknown function in the general case. 
Further, the initial conditions are expressed by the harmonic function 

PlO = f(k), (29) 

and the right side boundary condition by a setpoint at the beginning of the next 
pipeline section or a desired value of compression in the output of CP. 

(30) 

Now the error function will be the scalar 

Cd) e(k) = P20 - P2o(k). (31 ) 

. Eq. 30 allows us to include pJg) and the control parameter cl into the last 

expression of equation system (28) substituting Plm(k) of Eq. (30). 

Bearing in mind the realisation of a pipeline adaptive control system by 

neural networks, it will correspond to the multi-variable version of Nerendra's 
modeL We try to generalise this model by so called cascade subnetworks. 
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Fig. 3. Cascade of a subnetwork. 

P (k) 
11 

P (k) 
12 

The presentation of subnetworks of the first pipeline section in detail are 
shown in Fig. 3,4. Here the MISO neural network structure is proposed with 

crossed junctions between neighbour subnetworks' A specific feature of dis­

tributed control systems, in general, and the pipeline system, in part is that 

the output state variables P11(k), P12(k), ... , Plj(k), ... , Plm-l(k) are not 
controllable, they are used for modeling next subnetworks. Only the last com­

partment output PIm(k) as a CP input is controllable because it and the CP 
control parameter provide the achievement of a possible desirable state variable 
value of the next section, for example, p~;). 

Representing the subnetwork system in Fig. 4 by a common mapper func­

tion Fl{' } for section 1, we construct complete structure by the cascade prin­

ciple (Fig. 5). The modeling values of state variables at the end of sections 

are expressed by the vector function P(k) = {PI(k), P2(k), ... , PI(k), ... , 
PM+1(k)} and the'control vector u(k) = {uI(k), ui(k), ul(k), ... , uM(k)}. 
At time the vector P( k), converges to the desirable value. Under the assumption 

that the vector u( k) is bilaterally bounded and state functions are continuous, 
the stability of such a system is undoubted. 
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To next 
clIlICade 

or output 

Fig. 4. The recurrem:network of the cascade with a local control sub­
network. 

. 
P (k) .--____ iM.( 

-1 F~.~.I ~ 

Fig. 5. The cascade neural network of the pipeline. 

4. Orthogonal least square learning algorithms. Different orthogonal 
transfonns are widely used in applications of signal and image processing, 
control problems. We will discuss below a modification of the orthogonalleast 
squares learning (OLSL) algoritlun in order to find an appropJiate efficient 
algorithin' for solution of ACDPS problemS. . . .' , .. ' 

It is known that the orthogonality is a generalization of geometric perpen­
dicularity. In ·the general, case for complex functions, if they exist within the 
range -00. < {C < 00, the orthogonality can be written as follows 

00 

Berth = I ~r({C)~.(x)dx = 0, (32) 
-00 
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or for the discrete case and when the argument is finite 

r i- s, 
(33) 

r = s, 

where tP r, tP; (k) are complex conjugate functions in the continuous and the 

discrete case, respectively. or-. is the delta function. 

Further, we use a feedforward neural network (FNN) with a multi-input and 

single-output (MISO) modification for adaptive control systems of unknown dis­

tributed parameter plants. FNN can be simple two-layer or radial basis systems 

(RBS). The ohjective is to find an algorithm with optimal FNN weights and the 

amount of the first layer elements. 'The model based on a linear regression can 
be formulated as the continuous time ca<;e 

m 

y(l) = L::Pi(t)Oi + e(t), (34) 
i=l 

where Pi(t) = Pi(x(i)), ni is the weight of input independent of time, e(t) is 
the error function. The discrete-time case is as follows 

Y= Pfl+E, (34') 

where y = [y( 0), ... , y( IV - 1) V is a mea<;urable output signal called a the 

regressed variable column-vector P = [PI""'PmV, (Pi = (Pi(O), ... , 
Pi (N - 1)]), 1 :( i ~ m is the matrix of known quantities-regressors, fl = 
[nI, O2, ... , nml is the row-vector of unknown parameters to be estimated and 

E = [e(O), ... , e(N - l)V is the error column-vector of unknown variables, 

m is the number of the first layer elements, N is the upper limit of the time 

variable, i.e., 0:( t ~ N - 1 (Widrow et al., 1987; Wang, 1991). 

According to the LMS algorithm 

(35) 

where u is the control parameter of adaptation speed. 

It is well known that an arbitrary sequence at j can be transformed to the 

superposition of orthogonal family functions (Wang, 1991). 

Using the transform matrix tP; (k) a<; the Walsh-Hadamard transform (Ahmed 
and Rao, 1975), having, in a sense, a binary representation of xi vector, it is 
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possible to do a forward orthogonal transformation, because the orthogonality 

relation (33) becomes as follows. 

(36) 

Substituting ei values into (35) and allowing that the initial vector no equals 

zero, the weight vector versus time, using the orthogonality relation (36) at 

j = N, becomes 

N-l N-l N-l 

niv = 2u L: Ykxi; = 2u L: L: Yk<Ps(k). (37) 
k=O k=O .=0 

In order to obtain an inverse orthogonality transform of Y k and appropriate 

nN it is necessary to transform the matrix 4':(k) into 4'k(S), i.e., 4'k(S) = 
4';T ( k). Thus, we have built the orthogonal LMS learning algorithm for finding 

the dynamic neural network weight vectors. Another generalisation of LMS 

orthogonality can be found in the paper by Chen et al., 1991. 
Another objective is to define a rational subset of the number of neural 

element in MISO or the number of centers in RBS from the sample set. Such 

a number is m of (34) and the orthogonal number rnr is considerably smaller 

than m (mr ~ m). 
The projection P n is a part of the desired output Y energy defined by 

regression. The OLSL algorithm involves the mapping of Pi set onto an or­

thogonal basis vectors set. Therefore, Pi vectors allow to find contribution into 

the desired output energy. 

After decompositing the regression matrix P by 

P=VB, (38) 

where B is a triangular matrix and V is the matrix with orthogonal column 

vectors Vi which are basis vectors spanned in the same space as Pi and formula 

(34') changes into 

Y= Vq+E, (39) 

where the vectors Cl and il as solutions satisfy the condition 

Cl = 00. (40) 
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Using the well known classical Gram-Schmidt method (Bjorck, 1967) the en­

ergy of y( t) can be written 

m 

yT Y = E q~v'[Vi + ETE. ( 41) 
i=l 

The average value of energy will be such 

(yT y) = ~ ( ~ q;VTVi + ETE) , (42) 

h i 2VTV' . W ere N qj i i IS an mcrement. 
For definition of the best fitness of qj and Vi to the desired values, we 

derive a nomination of reliability 

Ri = 1- q;v'[V;J(yTy),. i = 1,2, ... , m. (43) 

Eq. 43 is the criterion for seeking an efficient procedure of a rational re­

gressor subset by to the Gram-Schmidt method. 

The selection procedure is such: 

Step 1. At the first step, define 

and a worse reliability suits 

V - v(i,) - P 
- 1 - i,' 

Step 2. At the second step, find 

IA~ = wfp;/(vfv1), 

(i) _ 1 (i) 
v1 - Pi - I: f3j2 Vj, 

j=l 

q~i) = (v~i)f y / h~i), 

R2R~i2)=I-,~~ {(q~i»2h~i)/(yTy)}, 
i;ti, 

(45) 
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1 

V - V(i2) - P "'{3' v 2 - 2 - i2 - L.J J 1 j. 

j=l 

Step k. At the kth step, where k ~ 2, compute 

and select 

max 
l=liti~m 

i:;b l ,.,,!i~ik_l 

k-l 

Vk = V~ik) = Pik - E {3jk Vj, 

j=l 

where {3j k = (3j~k), 1 ~ j < k, are the elements of matrix B. 

447 

( 46) 

After excluding all il,i2 , ... ,ik - 1 a definition of ms has been obtained 
upon satisfying this condition 

rn. 

Rs = 1 - E Rj ~ ro, 
j=l 

where 0 < ro < 1 is the desired reliability. 

(47) 

Thus, we have an efficient learning algorithm of neural networks unknown 

parameters and network architecture able to approximate a discrete distributed 
parameter system through on-line learning processes. 

5. Simulation results. In this section simulation result<; of a nonlinear 

pipeline plant, using the models suggested above, are presented. One sec­

tion of pipeline and the compression plant joined in the end of the pipeline 

were taken. 

The difference equations describing the state variables in dynamics for three 

compartments are presented: 

{ 

Pll(k + 1) = Pll (k) + a [P{o(k) - P{l(k)] - b[P{l(k) - P{2(k)] 

P12 (k + 1) = P12(k) + c[pMk) - P{2(k)] - d[p122(k) - pl3(k)] 

P13(k + 1) = Pdk) + e[P{2(k) - P{3(k)]- g[P{3(k) - P{4(k)], 

(48) 
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where Pij (k) are the pressure within pipeline the section i = 1 and the com­

partment j = 0, 4 at discrete time k, a, b, c, and d are parameters given a 

priori. 

The compression plant has been described by the nonlinear equation 

(49) 

where pJt) (k) is the desired pressure at the beginning of the second pipeline 

section at time k, u is the control parameter as a relative number of compressor 

revolution, h is the constant. 

The initial and boundary conditions were given as follows 

Pl1(O), P12(0), P13(0) (initial), 

211" 
r(k) = PlO(k) = A cos rk + Aa (boundary), 

on the left-hand side, and pJt\k) = pJt) = const on the right-hand side (to 

be more exact at the beginning of the second pipeline section) of the pipeline. 

Parameters Aa, A, 11" and T are given. 

The pressure P14(k) unchanged in time may be expressed from equations 

(49) and be substituted into equations (48) as follows 

(50) 

or after a linearisation 

(51) 

where P14 iuQ = A, P{4iua = B are valus of the function and its derivative at 

the point Uo of linearisation. The comparison of the two functions is presented 

in Fig. 6. 

A reference model has been described hy a system of linear difference 
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equations using (51) as follows 

P~~)(k + 1) = p~~)(k)+a1 [P~;)(k) - P~~)(k)] 
b [p(r)(k) p(r)(k)] - 1 11 - 12 

pi~)(k + 1) = pi~)(k)+e1 [Pi;)(k) - pi~)(k)] 

- 91 [pi~)(k) - pi~)(k)] 

pi~)(k) = A - B(u-uo), pi~)(k) = r(k), 

where the variable pi;) (k) is the output one. 
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(52) 

Unknown pipeline difference Eqs. 48 - 51 have been modeled according to 
the OLSL algorithm, where the vector n has been defined. The identification 

error and accuracy versus the number of iterations are shown in Fig. 7. It takes 

only 60 sec. on the PC-386. It means that for a distributed system such as a 
pipeline where a dynamic proce..<;s is very slow, it is possible to control in real 

time. 

The comparison of the reference and the controlled pressure output, control 

parameter, and error are presented in Fig. 8, 9 and 10, respectively. The gas 

consumption was taken as a cosine function in time with a maximum at midday 

(Fig. 8) and minimum at midnight. 

The simulation results show that the output of the unknown pipeline tracked 

well the output of the reference model by orthogonal learning of MISO after 

some time of adaptation. 

6. Conclusions. Scientific literature sources in the control area do not reflect 

an adaptive control in distributed parameter systems based on a neural network 

learning paradigm, especially on orthogonal LMS network adaptive learning. 

Here is the first trial to consider these complex systems from the standpoint of 

neural network adaptive learning and identification. 
J 

An orthogonal least mean squares algorithm based on the linear regression 

and orthogonal transformations allows to find dynamic neural networks weight 

vectors and to reduce the learning time maximally. Only in this sense, there 

is an understanding of a neural network application to solving adaptive control 

problems in real time. 
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Fig. 10. Error pressure outputs. 

The simulation results illustrate that OLSL algorithms with a neural network 
concept are preferred for perfectly tracked output control parameters during the 
dynamic control processes and have a good perspective in developing theory 
and practice of generalised distributed parameter control systems in the future. 
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VALDYMO SISTEMOS SU PASISKIRSCIUSIAIS 

PARAMETRAIS IR ORTOGONALIQ NEURUfINKLQ 

MOKYMU 

Algis GARLIAUSKAS ir Madan M. GUPTA 

Straipsnyje yra pateikti adaptyvil.l valdymo sisteml.l su pasiskirs/!iusiais parametrais 

(AVSPP) mokymo algoritmai pagristi ortogonalil.l neurotinkll.l metodologija. Mes nag­
rinejame ortogonalaus ma:tiausil.l nuokrypil.l mokymo algoritmo modifikacijli tarn, kad 

surastume AVSPP probleml.l sprendimui atitinkamus efektyvius algoritrnus. Aptariama 

dviejl.l laikl.\, susiell.l su obj~kto valdymo dinaminil.l procesl.l realaus laiko ir derinimo 

paramelrl.l ndinoml.l pasiskirs/!iusil.l sisteml.l adaptyviame valdyme mokymo laiko prob­
lema. 

Modeliavimo rezultatai rodo, kad neurotinkll.l ortogonalil.l aJgoritrnl.l koncepcija su­
teikia galimyb~ surasti AVSPP geriausius valdymo illejimo pasislcirsl!iusius parametrus 

ir turi gerl! apibendrintos AVSPP teorijos if praktikos raidos perspektyvl!. 


