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Abstract. In the papers (Pupeikis, 1988a, bi 1989a, b, c) 
the problems of efficiency determination, stopping and increase of 
the effectiveness of asymptotically optimal recursive algorithms are 
considered respectively by means of estimating time delay in an ob­
ject and also introducing their robust analogues, stable to outliers 
in observations. The aim of the given paper is the development of 
the robust method for a determination of the model order on the 
basis of determinant ratio. The three methods forming the initial 
moment matrices are consid~red .. By the first method the elements 

'of the matrix, being the corresponding values of the sample co­
variance and cross-covariance functions, are calculated by classical 
formulas. In the case of the second method the same elements are 
substituted by their robust analogues. The third method is based 
on an application of auxiliary variables. The results of numerical 
simulation on a computer (Table 1) indicate the advisability to 
apply the robust method for determining the model order. in the 
presence of outliers. 
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Statement of the problem. Suppose that the recursive 
least squares algorithm used for the. current estimation of the 
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unknown parameters of a mathematical model of the dynamic 
object, described by the linear difference equation 

(1) 

appeared to be non-effective. Let the reason for this be a 
disagreement between the model order and the object order. 

In equation (1) 

A(Z-l) = aIz-1 + ... + anz-n, 

B(Z-l) = b1z-1 + ... + bnz-n, 
(2) 

aT = (al,"" an), bT = (bl , ... , bn ) are object parame­
ters, subject to estimating; z-l is a backward shift operator; 
Xk, Uk = Yk+~k are input and output sequences of the object; 
Yk is a noise free sequence of the object, 

(3) 

is the sequence of independent identically distributed variables 
with c-contaminated distribution of the shape 

(4) 

p(~k) is a probability density distribution of the sequence ~k; 
'Yk is a random variable, taking the values of 0 and 1 with 
the probabilities p('Yk = 1) = c, p('Yk = 0) = 1 - c; Vk, 'f/k 
are the sequences of independent Gaussian variables with the 
zero means and (Jr, (Ji, respectively; n is the order of dif­
ference equation (1), further called the model order; ~k = 
= [1 + A(z-l )]-l~k' 

It is possible to divide the existing multiva:riate meth­
ods of determination of the model order into two groups de­
pending on the determination of n, i.e. before or after the 
parametric identification of an object. To the first group the 
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methods present,ed in the papers (Soderstrom, 1977; Unbe­
hauen and Gohring, 1974; Van den Boom and Van den En­
den, 1974) are referred, which are used after an estimation 
of the parameters aT, bT when n is arbitrarily defined. On 
the other hand the methods in the second group, presented 
in the papers (Lee, 1966; Set suo Sagara, Hiromu Gotanda, 
Kiyoshi Wada, 1982; Unbehauen and Gohring, 1974; Van den 
Boom and Van den Enden, 1974; Wellstead and Rojas, 1982) 
allow to determine the model order before the beginning of the 
parametric identification of an object 'what is their essential 
advantage over the methods of the first group. It should be 
noted that until now their efficiency has not been investigated 
in the presence of the outliers in observations, and the ways 
to increase their effectiveness have not been searched out yet. 
The present paper is devoted to the solution of these problems. 

Model order determination in the absence of out­
liers in observations. Suppose that in equation (4) £ = 0, 
therefore p( ~ k) = N (0, aD. In this case to determine model 
order test statistics of the shape 

I det «pT(m) «P(m) I 
f3m+l = det «pT(m + 1) «P(m + 1) m = 1,2, ... , (5) 

is applied, where 

«pT(m)«P(m) = s (<<P11 «P12) (6) 
«P21 «P22· 

«pT(m+1)«p(m+1)=s(<<P[1 «P[2) (7) 
«P21 «P22 , 

are -2m X 2m and 2( m + 1) X 2( m + 1) symmetric covariance 
matrixes, respectively: 

, (RU(O) 

«P11 = 

Ru(m - 1)) 
Ru(m - 2) 

Ru(O) 



( 

-Rux(O) 
-Rux(1) 

4?12 = . 

-Rux(~ -1) 
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-Rux(m - 2) 
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... -Rxu(m - 1)) 

... -Rxu(m - 2) 

-Rux(O) 

(

RX(O) Rx(1) ... Rx(m - :)) 
Rx(O) ... Rx(m - 2) 

4?22 = .. . . . . 
Rx(O) 

are the m x m symmetric and non-symmetric submatrices, 
respectively, where 4?fl = 4?12 and 

Ru(l) 
Ru(O) 

Ru(m) ) 
Ru(~ - 1) 

Ru(O) 

... -Rxu(rn)) 

... -Rxu(m - 1) 

-Rux(O) 

Rx(rn) ) 
R'(~ - 1) 

Rx(O) 

are the (m + 1) x (m + 1) symmetric and non-symmetric sub­
matrices, respectively, where 4?if = 4?h. 



100 Model Order Robust Detp.rmination 

Rx(i) = _1_. 
s-z 

L XkXk+i, 
s - z 

k=l 

1 
s-i 

Rx(u) =-. L UkUk+i, 
s - Z 

k=l 

Rux(i) = _1_. 
s-i 

L UkXk+i, 
s-z 

k=l 

(8) 

are the' values of covariance and cross-covariance functions, 
which are calculated by the sequences Xk and Uk of a sam­
ple size s; det is a determinant symbol of the corresponding 
matrix; I· 1 is an absolute value of the corresponding variable. 

In the capacity of the order n such a value n = m is se­
lected, under which f3m+l sharply grows, i.e. f3m+l ~ 13m. It 
occurs due to the fact that the matrix <1>T(m. + 1)<1>(m + 
+ 1) is close to the degenerated matrix. In this connection 
det <1>T(i) <1>(i) Vi = m + 1, m + 2, ... takes the values signi­
ficant~y not differing from the zero value. 

In the case of independent additive noise according to the 
paper (Woodside, 1971) it is necessary to have a noise matrix 
r at the output of an object, moreover AI {rTr} = (72G, where 
G is a given positively determined matrix, (72 is an unknown 
dispersion of noises. 

Then in equation (5) instead of the matrices <1>( ), the 
matrices D(· ) are substituted, which are of the shape 

(9) 



R.Pupeikis 101 

The model order determination method, based on statistics 
(5), loses its efficiency if additive noise is a sequence, corre­
lated in time. For an increase of its effectiveness in the pa­
per (Young, Jakeman and McMartrie, 1980) it is suggested to 
change the noise observations Uk in the matrices cI>(. ) by the 
corresponding values of the sequence of the auxiliary variable 
hk • In this case the second, third and fourth equations in the 
systems of equations (8) will be written in the following way: 

Rhx(i) = _1_. 
8-l 

L hkXk+i, 
S - Z 

k=l 

Rxh(i) = _1_. 
8-l 

L Xkhk+i (i=O,rn). 
s - z 

(10) 
k=l 

The values of the covariance and cross-covariance func­
tions, calculated according to (10), are substituted instead of 
the corresponding values Ru(i), Rux(i) and Rxu(i) in matrices 
(6), (7). 

The efficiency of statistics (5) depends 011 the way of 
choice of hk' therefore in the capacity of the values of an aux­
iliary variable it is proposed to use the corresponding values 
of an input sequence Xk introduced with some known lag­
ging. There also exist some other variants of hk selection 
(Soderstrom and Stoica, 1983). 

Model order determination in the presence of out­
liers in observations. It was assumed earlier that in equa­
tion (4) c = O. Now let us consider such a case when this 
assumption is not valid. It is known (Gnanadesikan and Ket­
tenring, 1972; Hampel et al., 1989; Huber, 1984) that then 
equations (8), (10) give strongly biased estimates of the sample 
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covariance functions and therefore test statistics (5) becomes 
of little us~. In order to increase its efficiency it is necessary 
in equations (8), (10) to substitute the 'averagi.ng linear op­
erators by their non-linear robust analogues according to the 
formulas 

Rux(i) = _1_. """ ?jJ(Uk - u) ~)(Xk+i - x), 
s - z L...JOI 

Rxu(i) = _1_. """ ?jJ(Xk - x) ?jJ(Uk+i - u) (11) 
s - z L...JOI 

for the additive independent noise or 

for the additive correlated noise at the output or at the input 
of an object, where (i = 0, m - 1). 

Here ?jJ = ?jJ(.) is a monotone function, x, U, h are the 
robust analogues of the corresponding means, e.g. sample 
medians, calculated by the equations 

for odd s 

for even s 
(13) 
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for odd s 

for even s 

for odd s 

for even s 
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(14) 

(15) 

respectively, where Xl ~ X2 ~ ... ~ Xs , UI ~ U2 ~ ... ~ 

~ Us, hI ~ h2 ~ ... ~ hs ; 2:0 is a non--linear analogue of 
the sum, which is based on a rejection of lateral terms of the 
variational series and summing up of the remaining ones by 
the equation 

s-r 

La Ui = s(s - 2r)-1 L U(i), r = [as] 
i=r+l 

U(i) is the i-th order statistics of the sample {ud (i = 1, s); 
m(. ) is a sample median; [as] is an integer part of the variable 
as; 1> a> O. 

Since for a = 0.5 the operation of robust summing up 
converges to the use of the sample median, in matrices (6) 
and (7) the values of the sample covariance functions Ru(O), 
Ru(1), ... , Ru(m - 1),' Ru(m), Rux(O), Rux(l), ... , Rux 
(m - 1), Rux(m), Rx(O), Rx(1), ... , Rx(m - 1), Rx(m) 
are substituted correspondingly by m( uD, m( UkUk-I), ... , 
m(ukUk-m+I), m(ukUk-m),m(ukxk), m(ukxk+I}, ... , 
m(ukXk+m-I), m(ukXk+m),m(x~), m(;Tkxk-d, ... , 
m(xkXk-m+I), m(xkXk-m)' For a = 0 the operations an or­
dinary and robust summing up coincide. 

It is also possible to obtain the robust estimates of the co­
variance functions by the equations from the paper (Gnanade­
sikan and Kettenring, 1972) of the shape 

Rx(i) = p(Xk' Xk+i) (;;, 
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for the additive independent noise or 

for the additive correlated noise at the output of an object. 
Here 

(18) 

is a scale value the robust estimate; 

is a robust analogue of the correlation coefficient between the 
sequences Wk and rh. 

The estimates of the sample covariance and cross-cova­
riance functions may be calculated by equations (8), (10), if 
before this a rejection of the outliers was carried out or a 
robust smoothing of observations was realized. 

Simulation results. The efficiency of test statistics (5) 
was investigated by numerical simulation by means of a com­
puter. The noiseless sequence Yk was generated by the equa­
tion from the paper (Astrom and Eykhoff, 1971) 

Z-l + 0.5z-2 __ 

Yk = 1 _ 1.5z-1 + 0.7z-2 (k = 1.500). (20) 
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In the capacity of the input sequence x k the realization of 
the sequence of independent Gaussian' variables with the zero 
mean and unitary dispersion was used. In the capacity an 
additive noise ek the realization of a discrete process of au­
toregression - moving average was generated by t.he equation 
from the paper (Talmon and Van den Boom, 1973) 

t* _ 1 + 0.3z-1 t 
<"k - 1 _ 0.5z-1 <"k, (21) 

where ek is a sequeflfe of independent identically distributed 
variables of shape (3) with c - contaminated distribution of 
shape (4), where ai = 1, a~ = 100, and a~*7a~ = 0.5. 

In Table 1 t.he values of det.erminants of t.he matrices 
q,T(m) q,(m) are presented. They are calculated for various 
m by a pair (x k, Uk)' In this connection the first line of each 
m corresponds to the values of determinant.s of t.hese matrices, 
the elements of which were calculated by equations (8). The 
second line corresponds to the values of determinants the ele­
ments of which were substituted by sample medians according 
to the operation of robust summing up for 0: = 0.5. The third 
line is obtained in the same way as the first one in the table, 
though with such a difference that in equation (8) auxiliary 
variables hk were substituted instead of Uk. In the capacity of 
hk the values Xk were used, introduced with a lagging T == l. 
From the simulation results, presented in Table 1, it follows 
that for m > 2 only the values of determinants, given for each 
m in the second line of the table do not significantly differ 
from the zero values. Therefore further test statistics (5) was 
calculated on the basis of determinants, presented in this line. 
For m = (1,5) 10 experiments with different realizations of 
the additive noise ek at the noise level a~* / a~ = 0.5 were car­
ried out. In each i-th experiment the test statistics of shape 
(5) as well as the determinants of the matrices q, T (m) q,( m) 
were calculated. \Vhile simulating it was assumed that in ex­
pression (4) c = 0.25. 
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Table 1. Determinant values ofthe matrices cI>T(m)cI>(m), 
test statistics 13m values and their confidence in-
tervals depending on m 

m Determinant values 13m ± 813m 

25.687 
1 4.835 42.469±79.926 

1.038 

20.162 
2 0.269 16.750±17.144 

1.0576 

9.180 
3 1.4.10-2 18.432±23.483 

1.798 

3.992 
4 7.8.10-4 26.724±28.387 

2.156 

1.565 
5 3.023.10-5 43.971±64.273 

2.632 

0.567 
6 1.07.10-6 

3.244 

In Table 1 also the averaged by 10 experiments .variable's 
10 

-Pm = 110 L (3:n (22) 
i=l 



R.Pupeikis 107 

and their confidence intervals for an object (20), (21) are pre­
sented. From the simulation results, presented in Table 1, it 
follows that for m = 2 the variable 13m takes a minimal value. 
For m > 2 the values of this variable increase .. On the basis of 
the results of numerical experiments it is possible to make a 
conclusion that test statistics (5) may be applied to determine 
the model order if classical estimates of the sample covariance 
functions are substituted by their robust analogues. Compar­
atively large values of the confidence intervals are evidently 
explained by such a circumstance that classical formulas, de­
veloped in the absence of outliers in observations, have been 
applied for their calculation. It is advitable to continue the 
investigations in the determination of a threshold value for 
the decision rule of solution on the model order in the further 
works in this direction. 

Conclusions. The results of numerical simulation, car­
ried out by computer prove the efficiency of determinant ratio 
test (5) calculated on the basis of robust analogues of sample 
covariance and cross-covariance functions. It is possible to 
apply the developed method of robust determination of the 
model order as an alternative approach to the classical one in 
the case of outliers in observations. 
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