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Abstract. In the present paper, the method of structure analysis for multivariate 
functions was applied to rational approximation in classification problems. Then the 
pattern recognition and generalisation ability was investigated experimentally in numer­
ical recognition. A comparison with Hopfield Net was carried out. The overall results 
of using of new approach may be treated as a success. 
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1. Introduction. Traditional artificial neural network (ANN) models ex­

press functions !(Xl, ... , xn) of several variables as a composition of basic 
functions, called units or network nodes. The units are parametrized as a 

nonlinear transformation of linear combination of many variables. The attrac­
tiveness of the network methods is that functions of high dimensions, after the 

optimisation of parameters, are often closely approximated by compositions of 
lower dimensional functions. 

There are three ways of thinking about neural networks. The descriptive line 

of thought is concerned with the proximity of the artificial model to biological 

systems. The computational approach views this model as a novel computa­

tional paradigm. Finally, there is the normative view of neural networks, which 

examines the mathematical and statistical backdrop of neural architectures and 

learning algorithms. The last view attempts to analyse where neural networks 

either violate or extend what can be done by other, traditional models. 

The normative approach is nearest to the paper. Indeed, any brain per­
forms much better than any computer when recognising real objects. But 
it is doubtful if natural principles and algorithms are always efficient be-
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cause of a deep discrepancy between biological systems and modern comput­

ers. 
It is common knowledge, that ANN, trained by the back propagation algo­

rithm, require a great number of sweeps of the training sample data in order 

to minimise the classification error. A long training time is one of the prin­

cipal characteristics of the back propagation classifiers. ANN training is very 

slow, because optimisation of weights is a highly dimensional and multiextremal 

problem (Vysniauskas, 1994). 
It has been proven mathematically that almost any classification problem 

can be simulated by a neural network with only one hidden layer of neurones 

(Hornik, 1991). But the mathematical proof doesn't tell us how many neurones 

the hidden layer should include. The construction of effective topology of ANN 

is still more art than science. 
The aim of this paper is to avoid these two imperfections. We apply the 

analysis of multivariate functions, select the main groups of variables and use 
them in the approximation by functions of fewer variables for classification 

problems. 
There is great difficulty in solving multidimensional problems (multiex­

tremal optimisation, evaluation of integrals) in the case of high dimensionality. 
However, the investigation of practical problems shows that the influence of 

variables or their groups is extremely different. Frequently we may suggest 

a separation of a relatively small part of the main variables or their groups. 
The efficiency of such simplification algorithms depends on the structure of the 
problem. 

2. Decomposition into components of different dimensionality. A decom­

position of a multivariate function into the summands of different dimension­

ality (Cukier et al., 1979; Saltenis, 1989; Sobolj, 1990) makes the base for the 
structure analysis. 

Let a function 

be defined, for simplicity, on the unit cube J(nO(O ~ Xl ~ 1, ° 0 0, 0 ~ 1): 

Sometimes a short notation f will be used for f (x 1, 0 0 0 , X n) 0 
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Let us introduce notation for the domain set of the function I, which is a 
Cartesian product of basic domains Q 1, ... , Qn : 

and for special domains: 

Qil ... i, = Q il X ••• X Qi" 1 ~ i 1 < ... < is ~ n, s = 1, ... , n, 

Q(i) = Q 1 X ... X Qi-l X Qi+l X ... x Qn, i = 1,···, n, 

Q(in = Q 1 x ... X Qi-l X Qi+l X ... X Qj-l X Qj+l X ... x Qn, 

i,j=I, ... ,n, i<j. 

In the general case, the domain Q(il ... i,) is defined in a similar way_ 

We shall use groups of indices il, ... , is, where 1 ~ il < ... < is ~ n, 
s = 1, ... , n and denote the sum with 2n - 1 terms as: 

A n 

L 1t ... i, = L1i + LL 1ij + ... + TI2 ... n . 

i=1 l:E;;i<j:E;;n 

The decomposition of the function I into summands of different dimension­
ality 

A 

1= 10 + L lil ... i, (Xii'· .. ' Xi,) (1) 

is unique and orthogonal for each function I integrable on J{n (Sobolj, 1990), 

if 10 is constant and the integrals of summands (1) are equal to zero: 

1 J f;l ... i,(Xil,···,Xi.)dxh, 1 ~ k ~ s. 
o 

(2) 

The summands of decomposition (1) may be found just like some integrals. 

Let us introduce the following notation for the function of s variables: 

il ... i, = J I, 
fl(il ... i,) 

where the superscripts i1, ... , is of I indicate, that the integral is over all basic 

domains except i1 , ... , is-
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Then, after integrating of (1) on n, the constant sumand will be equal to 

10 = J I, (3) 

n 

one-dimensional summands, after integrating on n(i), will be equal to 

li(Xi)=li-/o, i=l, ... ,n, 

two-dimensional summands, after integrating on n(ij)' will be equal to 

and so on. 

3. Approximation by functions of fewer variables. We approximate a 

multivariate function I by the approximating function le, which is the sum of 

unknown functions of fewer variables, and seek to minimise the approximation 

error 

( )
1/2 

III - le II = JU -le)(1 - le) 
n 

The unknowns, in the case, are not the coefficients but the functions and they 

are found from functional equations (Golomb, 1959; Saltenis, 1989). 

le may consist of functions of various· dimensionality. It is interesting that 

the functions in decomposition (1) may be used as the best approximations in 

the case. 

The approximating function of zero order I~O) is a constant 10. 
The approximating function of first order 1~1) is a sum of one-dimensional 

functions: 
n 

1~1) = L li + I~O) 
i=1 

In the general case 

s=l, ... ,n-1. 
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4. Structure characteristics and approximation errors. The system of 
structure characteristics: 

D· . - J (f· .)2 tl.··Z. - Zl .. ,2.$' (4) 
n 

D= JU)2-UO)2 (5) 
n 

was proposed, investigated (Saltenis, 1989) and applied in analysing the struc­
ture of optimisation problems. The structure characteristics Dj , ... i, indicate the 
degree of influence of the respective variable groups in approximation. 

Let us include into the approximation those summands of fewer variables, 

which groups of indices {il' ... , is} make up the set le. Then the approxima-
tion error is equal to 

(6) 

For example, if the function of two variables f(XI, X2) is approximated by the 
function of one variable fe(xI), the approximation error 8 will be equal to 

D2 + D12 • 

Relationship (6) is useful when choosing the variables and their groups for 
rational approximation by means of selecting some number N D of the greatest 
structure characteristics. This enables us to approximate multivariate functions 
by functions of fewer variables with the minimal error. 

We must also keep in mind that in real situations evaluations of structure 
characteristics are usually with significant errors so only the greatest character­
istics may be more accurate. 

The abbreviation MUST AN (MUltivariate STructure ANalysis) will be used 

for this computational model. 

5. Evaluation of structural characteristics. If we know the values of the 
function f(X) for some points Xi (j = 1, ... , N), then the Monte-Carlo' 

method is used for the evaluations basing on (3), (4) and (5): 

1 N 
fo;:::j N Ef(Xi), 

i=l 
(7) 
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N 

D+ (10)2 >::j ~ L: (I(Xj))2, 
j=l 

(8) 

where N is the number of samples, 

X j = (x{, ... , x~) are random points of dimensionality n, uniformly dis­

tributed in O. 

s coordinates yj = (Xi" ... , XiJ must be equal for pairs ofrandom points 

used for the evaluation of Di, ... i,: 

N 

Di, ... i, + (10)2 >::j ~ L.f(yj,zj)f(yj,Uj ), 
j=l 

where yj are random points of dimensionality s, uniformly distributed in 

Oi, ... i., 
Zi and uj are random points of dimensionality n - s, uniformly distributed 

in O(i1 ... i.)' 

6. The case of two level values of variables. The values of variables Xi 

may be treated, for example, as values of brightness of some pattern points. 

Each X = (Xl"", Xn) must be classified as belonging to one of K patterns: 
Pl, ... ,pK. 

It is natural to introduce such a function for each pattern: 

gk(X) = {I if X ~ust be identified as pk., k = 1, ... , K, 
o otherwIse. 

If we have some approximations g: for functions l, then the classification 

of the given pattern values X may be carried out according to the condition: 

max g~(X). 
k=l, ... ,K 

(9) 

Let the values of variables Xi be equal to 0 or 1. Then each basic domain 

consists of two points Oi = {O, I}, all domain 0 consists of 2n points. So the 

integrals in our equations must be changed into the respective sums. 

Let us introduce a function for two level argument values: 

x(X) = {~1 if x = 0, 
if X = 1. 
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Then decomposition (1) may be changed into: 

11 

f = fa + 2: Ci 1 . . i,X(Xi , ) .. ·X(Xi'), (10) 

where Ci, ... i, are coefficients. 

The decomposition (10) is unique and orthogonal because the summands 

satisfy the condition (2). Really, the mean value of X( x) for each basic domain 

is equal to 7.ero so the sums respective to integrals of condition (2) are also 
equal to zero. 

Then the domain ni, ... i , may be divided in two parts: 

according to the sign of X(Xi,) ... X(Xi.): 

XEn~ ... i, if X(Xi,) .. ·X(Xi.) = 1, 

X E n~ ... i, if X(Xi,) ... X(Xi.) = -1. 

The mean values of f on domains n~ ... j, and n~ ... i. are equal respectively to: 

1 2: = fa + Ci , ... i" 2n - l 

xeot ... i, 
1 2: = fa - Ci , ... i" 2n - l 

xeo-:- . 
'1"'" 

because the mean values of summands, different from J; 1 .. i, are equal to zero. 

Then 

1 ( C· . - -- -
1, ... 1 , -. 2n-2 2: f 

XEO+ . 
'l""S 

(11) 

It is clear that: 

Dj, .. i, = (Ci 1 ... i.)2, 1 ~ i l < ... < is ~ n, s = 1, ... , n. (12) 
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Let us introduce notation for the Monte-Carlo evaluations of respective char­

acteristics: fo, D, <:i 1 ... ;" D;1 ... ;, of the function l for pattern k in the case of 

two-level variables. They may be evaluated after using (7), (8), (11) and (12) 

in such a way: 

where N, Xi are the same as for (7), (8) in chapter 5, 

N k is the number of points that must be classified as belonging to pattern k, 

N/; ... i" and Ni~ ... i, are the numbers of summands in the respective sums. 

7. Phases of calculation 

• Evaluations of characteristics 1o, D, <:i 1 ... i" Di1 ... i, for all patterns k = 
1, ... , f{, if we know the values of the function gk (X) for some points 

Xi (j = 1, ... , N). Our main assumption is that the points of the sam­
ples used in the "learning" phase are really uniformly and independently 

distributed in domain n. 
• A number N D of the greatest characteristics are selected and approxi­

mations g~ for functions gk are constructed: 

Usually, the structure characteristics D i1 ... i , of only limited order 8 (8 < 
4) are evaluated. 

• The "recall" phase consists in calculating the value:' of g~ for new point<; 

X and selecting the largest approximating function values according to 
condition (9). 

8. A pattern recognition example. Experiments and result... In order 

to estimate the abilities of MUSTAN, an experiment was carried out on the 
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rlXQgnition of numerals because most successful ANN applications have been 

reported in recognition problems (for example, Fukushima, 1988; Widrow.and 
Wmter, 1988). 

Digitised character data was a 10 x 8 pixel bi-level image. The i-th pixel 
corresponds to the variable :l:i. 

Usually the experiments may be classified into two broad categories (Hertz 

et aI., 1991): recognition and generalisation problems. In the recognition 

problem, pairs of input and output (11, 0 1), (h 02)"", (I~, Om) were used 
for training the network and the trained network was tested by the input 

h, 12"", I m , corrupted by noise. The network is expected to reproduce the 

output 0 j corresponding to Ij in spite of the presence of noise. 

In generalisation problems, the network was tested by input Im+l , which 

was distinct from the inputs 11 , h ... , Im used for training. The network is 
expected to correctly predict the output Om+! for the previously unseen input 

I m+1 • 

Some samples (without noise and corrupted by noise), used in recognition 

experiments are shown in Fig. 1. Noise level is a probability of changing the 

original noncorrupted value for each point of a pattern. 

Noise level = 0% 

Noise level = 5% 

Noise level = 20% 

Fig. 1. Samples of numerals used for recognition experiments. 
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Some samples of numeral "2" used in generalisation experiments are shown 

in F~g. 2. 

Fig. 2. Samples of numerals used for generalisation experiments. 

Using MUSTAN in recognition experiments, the author examined the recog­

nition rate in cases where the number of main structural characteristics N D was 

equal to 2, 5, 10, 30, 80, 150, 3240, and for noise levels equal to 0, 5, 20, and 

40%. The results of recognition experiments are shown in Fig. 3. 
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FIg. 3. Recognition rate by number of structural characteristics N D for 
different noise levels. 

The results of generalisation experiments are shown in Fig.' 4. 

The number of experiments for evaluating of recognition rate was equal to 
60-450 depending on situation. 
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Fig. 4. ,Recognition rate by number of structural characteristics N D tes­

ted on the same samples (recognition case) and on different sam- . 
pIes (generalisation case). 
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Fig. 5. Recognition rate by noise level when structure analysis was lim­

ited by first order and· second order characteristics. 
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The influence of limitation of structure analysis by some maximal order s 

is investigated by special experiments. Their results are shown in Fig. 5. 

The following remarks can be made from the experiments: 

• The recognition ra~ achieved using a small part of structural character­

istics is relatively high. 

• Only a high noise level (over 20%) can considerably influence the recog­

nition reliability. 

• Fig. 4 shows the generalisation ability of MUST AN. 

'9. Some interpretations of the results. It is of interest to have some visu­

alised results of structure analysis of approximation functions g!. Some coef­

ficients Ci of the greatest single structure characteristics for the approximation 

function of numeral "2" are visualised in Fig. 6. 

0.6 

+-~-r-r~~~~~+0 

+-"--r-r~--r-.--,--+-0.5 
1 2 3 4 5 6 7 8 

Fig. 6. Graphical representation of the greatest single structure charac­

teristics for the approximation function of numeral "2". 

We may see that the greatest positive coefficients are located in the most 

typical to the numeral "2" points (bottom-left side of "2"). The negative co­

efficients are on the right-middle height places, where the points of "2" occur 

rarely. 

The greatest double structure characteristics may be interpreted as some 

links between two variables. Therefore they were visualised in Fig. 7 in the 

form. of lines, connecting the respective points. Solid lines are used for positive 
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coefficients Cij , dash lines - for negative ones. Links from the upper right to 

the bottom left corner are really typical of numeral "2". 
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Fig. 7. Graphical representation of the greatest double structure cl:tarac­

. teristics for the approximation function of numeral "2". 

Fig. 8 is an attempt to interpret the greatest structural characteristics of first, 

second and third order as some nodes, similar to ANN. 

10. Experimental comparison with the Hopfield Net. Cross-bar Associa­

tive Network (Hopfield, 1982), which is usually referred to as a Hopfield Net, 

was used to solve the same numeral recognition problems. The number of 

processing elements in the Hopfield Net was equal to 80 (the number of pixels 

in the image). The Net was able to successfully learn only four numeral im­

ages, therefore ex~nts with MUSTAN were conducted with the same four 

numerals. 

Fig. 9 ill~trates the recognition rates for various noise levels. . 

Generalisation experiments, similar to that of Chapter 7, were carried out 

in order to compare the Hopfield Net and MUSTAN abilities. The results are 

presented in Table 1. . 
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Numeral "2" 

Fig. 8. The nodes, equivalent to the structural characteristics of: first 

order 0 ,second order .@ ,third order,. ' 
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Fig. 9. Comparison of the recognition rate with the Hopfield Net. 
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Table 1. Comparison of recognition rates for Hopfield Net and MUSTAN 

in the generalisation experiments 

Recognition algorithms Recognition rate % 

Hopfield 16.3 
MUSTAN 76.7 

MUSTAN outperforms the Hopfield Net both in recognition and generali­

sation. 

11. Discussion. We may see some correspondence between the MUSTAN 

approach and ANN. The main structural groups of variables in MUST AN, in 

a sense, look like ANN basic nodes after training. The difference is that we 
do not involve the laborious optimisation of weights but use a relatively simple 
evaluation of numerical parameters in MUST AN. We also have no problems 

with the construction of an effective topology of ANN. 

Obviously, the evaluation of all structural characteristics of high order is 

practically impossible for relatively high dimensionality n. For example, if 

n = 100, the number of structural characteristics of third order is equal to 

161700 and the number of structural characteristics of fourth order is equal 

to 3921225. This drawback may be surmounted by using some properties of 

structural characteristics. 

First of all, it is known that structure characteristics of relatively high order 

are negligibly small in real problems. 

Another property is also promising. Some statistical links exist between the 

values of high and low order. After the analysis of first order characteristics we 

may efficiently decrease the search for the greatest double characteristics and 

so on. 

12. Conclusions. The main point of this paper was to show that the ap­

proach of structure analysis offers a promise in some cases traditional to ANN. 

The overall results of new MUSTAN procedure may be treated as successful. 

Future studies will determine the extent to which the promise of the approach 

is actually fulfilled. 



540 Analysis of multivariate function structure in classification problems 

13. Acknowledgements. The author wishes to thank his colleagues V. Vys­

niauskas and V. TieSis for helpful discussions. 

REFERENCES 

Cukier, RL, H.B. Levine and K.E. Shuler (1979). Nonlinear sensitivity analysis of 

multiparameter model systems. Journal of Computational Physics, 26(1), 1-42. 
Fukushima, K. (1988). A neural network for visual pattern recognition. IEEE 

Computer, March, 65-75. 

Golomb, M. (1959). Approximation by functions of fewer variables. In R.E. Langer 

(Ed.), On Numerical Approximation. The University of Wisconsin Press, Madison. 

pp. 275-327 . 
Hertz, J., A. Krogh and RG. Palmer (1991). Introduction in the Theory of Neural 

Computing. Addison Wesley. 

Hopfield, J. (1982). Neural Networks and physical systems with emergent collective 

computational abilities. Proceedings of the National Academy of Sciences" 79, 
2554-2558. 

Hornik, K. (1991). Approximation capabilities of multilayer feed forward networks. 
Neural Networks, 4, 251-257. 

Saltenis, V. (1989). Structure Analysis of Optimisatipn Problems. Mokslas publishers, 
Vilnius (in Russian). 

Sobolj, lB. (1990). On sensitivity estimation for nonlinear mathematical models. 

Matematitcheskoye Modielirovanye, 2(1), 112-118 (in Russian). 
Vy~niauskas, V. (1994). Searching for minimum in neural networks. Informatica, 

5(1-2), 241-255. 

Widrow, E., and R. Winter (1988). Neural nets for adaptive filtering and adaptive 

pattern recognition. IEEE Computer, March, 25-39. 

Received November 1996 

V. Saltenis graduated from the Kaunas Technological Institute, Lithuania, 

in 1959. He received Ph.D. degree from the Moscow Energy Institute of the 

USSR Academy of Sciences in 1966. He is a senior researcher of the Opti­

mization Department at the Institute of Mathematics and Informatics, Lithuania. 
Present research interests include both theory and applications of the structure 

of optimisation problems, multicriteria decision support systems. 



V. Saltenis 

DAUGELIO KINTAMQJQ FUNKCUQ STRUKTUROS ANALIZE 

KLASIFIKAVIM:O UZDAVINIUOSE 

Vydiinas SALTENIS 
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Klasifikavime, taikant dirbtinius neuroninius tinkIus, i~kyla komplikuoti optimizavi­
mo uMaviniai, parenkant didelio kintamlijq skail!iaus funkcijq parametrus - vadinamuo­
sius svorius. Darbe siiiloma analizuoti §iq funkcijq struktiirll, ibkiriant labiausiai jtako­
janl!ias nedidelio kintamlijq skail!iaus gropes, kuriq vertinimas biitq palyginti paprastas. , 
Atlikti eksperimentiniai tyrimai, taikant struktiiros analiz~ atpa~jstant skaitmenq vaiz-
dus. Tirta atsitiktiniais triuk~mais i~kraipytq skaitmenq, 0 taip pat skaitmenq, nenaudotq 
mokymo pavyzd~uose, atpa~inimo galimybes. Atliktas eksperimentinis palyginimas su 
Hopfield'o dirbtiniu neuroniniu tinklu. 


