
INFORMATICA, 1997, Vol. 8, No.1, 3-22 

PLAN GENERATION 
WITH THE LINEAR CONNECTION METHOD 

Bertram FRONHOFER 

Institut fur Informatik 
TU Munchen, D - 80290 Munchen 
E-mail: fronhoef@informatik.tu-muenchen.de 

Abstract. The paper introduces to plan generation and the attempts and problems 
encountered with solutions by deductive methods. It presents the Linear Connection 
Method as a possibility to overcome the traditional shortcomings of logic for this appli­
cation, which are discussed in great detail. This is followed by a guide to the research 
work carried out on the Linear Connection Method and related frameworks. 

Key words: logics for plan generation, linear connection method, situation calculus, 
fluent calculus. 

1. Introduction. How to reason about change is a classical issue of AI 
research, and generating plans is one of its particular topics (see the keyword 

'planning' in Shapiro (1992)). Already in the late sixties/early seventies plan 
generation was conceived as an inference problem formulated in classical logic 

-- the Situation Calculus -- and attempts were made to automate plan generation 

by means of theorem proving. The nonsuccess of this endeavour turned the 

development of plan generation approaches and systems away from deductive 

systems. 

In 1986 a new, logic-based approach - the Linear Connection Method - was 

proposed by W. Bibel (1986), which promised to overcome the drawbacks of 

the Situation Calculus. 111is approach has stimulated a considerable amount of 

further research over the last 10 years and is still in full evolution. 

The plan of the paper is as follows. In Section 2 we define plan gener­

ation and related problems like plan verification, reactive systems, etc. We 

next discuss Situation Calculus and its drawbacks, and then introduce the Lin­

ear Connection Method together with a simple proof search algorithm (Linear 

Backward Chaining). Section 3 is devoted to a comparative analysis of Linear 



4 Plan generation with the linear connection method 

Backward Chaining and proof search in the Situation Calculus. In Section 4 

we finally review more advanced and related research work. We survey investi­

gations into the logics/semantics of the Linear Connection Method and related 

approaches, list extensions to overcome limitations of the original framework, 

and point to further implementations and more refined proof/plan search algo­

rithms. Finally, we also refer to applications of the Linear Connection Method 

to domains which are different from plan generation. 

2. Logic and plan generation. Problems dealing with reasoning about 

change are generally composed of some of the following four essential compo­

nents: 

• A set of actions, where an action is a description of a particular type 

of (destructive) change. In most general, terms an action must have 

preconditions which decide its applicability and effects which result from 

its application. The effects are subdivided into facts which are created 

(added) and facts which are destroyed (deleted) by the action. 

• A description of a state of the current world - the initial situation. 

• A (maybe partial) description of a desired future state - the goal. 

• A (partially or totally ordered) set of (instantiated) occurrences of actions 

- a plan. 

There are the following, basically different, types of problems which can be 

created from the four components just mentioned. 

• Reactive Systems. Here we are given a current (initial) situation and a 

set of actions. All actions which are applicable to the current situation 

compete for execution. The application of the winning action generates a 

new situation where the competition between the now applicable actions 

starts again. (Note that the actions are not put under any external control 

which composes purposeful plans). 

• Plan Evaluation, Temporal Projection and Plan Verification. Here we 

are given a plan, and we ask whether this plan is applicable to an initial 

situation and produces certain wanted effects (plan evaluation), or we ask 

how does the world look like after its successful application (temporal 

projection). More generally, we may be interested in verifying certain 

properties of the given plan, e.g., whether it satisfies certain purposes, 

obeys certain restrictions or constraints, etc., which requires to reason 

about actions. 



B. Fronhofer 5 

• (Goal-Oriented) Plan Generation. Here we are given a current (initial) 

situation, a set of actions and a goal, and we ask whether there is a plan 

which transforms the initial situation into a new situation in which the 

goal is satisfied. (Note that in contrast to reactive systems, the actions 

don't act 'on their own', but their composition is controlled by a plan 

search procedure). 

These types of problems can be understood as deductive ones and for plan 

generation -- the one we will focus on in the sequel - we would get the inference 

problem to prove a 'specification theorem' of the form: 

Initial Situation and Actions imply Goal 

from whose proof a plan will be extracted. This informal formulation gives rise 

to the question of a suitable logic which allows both a convenient specification 
of plan generation problems and, even more importantly, an efficient automated 

proof search. 

2.1. Situation calculus. The first proposal how to generate plans via theo­
rem proving was made on the choice of classical first-order logic and resulted 

in the so-called Situation Calculus (see McCarthy and Hayes (1969)), which 
immediately fell into disrepute due to bad practical performance in attempts 

to prove the respective specification theorems by use of automated. theorem 

provers (see Green (1957)). 

Since facts may change their truth value over time, with Situation Calculus 

a 'situation argument' was added to each predicate, e.g., on(a, b, s) says that 

the block a is on top of block b in situation s. For facts being true in the initial 

situation, the situation argument is a reference to this situation, and the goal is 

described by a formula with an existentially quantified variable as the situation 

argument. The actions are of the form: if certain facts are true in a situation x, 
then in the situation applied(a, x) - resulting from the application of action a 

to situation x - some other facts become true (see Nilsson (1982) for a good 

introductory presentation). 

Unfortunately, we need additional assertions - so-called Frame Axioms -

which state for every fact which is not affected by action a, that it will still be 
valid in situation applied(a, x), if it was valid in situation x. Since, in general, 

an action changes only very few facts, the number of Frame Axioms is close 

to Iset of factsl x Iset of actionsl. 'Ibis huge amount of Frame Axioms 



6 Plan generation with the linear connection method 

was considered the culprit - commonly referred to as the Frame Problem - for 

the inadequateness of Situation Calculus1 • Since this problem is also inherent 

in other logics (e.g., modal logics) known in those days, the nonsuccess of 

Situation Calculus discredited the use of logic for plan generation in general, and 

henceforth planning systems were conceived without reference to a particular 
kind of logic 2. 

2.2. Linear connection proofs. In Bibel (1986), a new.logic-oriented ap­

proach - called the linear Connection Method - has been proposed whose 
great advantage was to work without Frame Axioms. These were not needed 
because in contrast to Situation Calculus, no 'situation information' is encoded 
in every fact which may vary over time. Thus, it promised to overcome the 
Frame Problem. 

Instead of on( a, b, s) we get just on( a, b), and the initial situation, as well 
as the goal, are conjunctions of such literals. An action is a formula (action 
implication) of the form 

A1 /\ ... /\ Ag --+ 0 1 /\ ... /\ Ch 

with facts A 1, ... Ag, C1, ... , Ch (without situation arguments). 
Of course, we cannot expect every (classical) proof of a specification theo­

rem given this way to yield a correct plan. Since, unlike to Situation Calculus, 
our literals are not explicitly time-dependent, they can be reused again and 
again, although they should no longer be 'valid' after the execution of certain 
actions. However, a notable feature of intuitively intended proofs of specifi­
cation theorems made with the Connection Method (Bibel, 1987) is that every 

1 Although identified in the context of Situation Calculus as a very special technical 

problem, it soon turned out that the Frame Problem in the sense of "how does the 'frame' 

change" when an action is executed, has a much larger scope of importance. However, 

in the following our attention will be focused on the purely technical or inferencial 

Frame Problem of Situation Calculus. 
2 Let us shortly mention that the rupture between logic and planning was mainly on 

deductive grounds, since, for many planning systems, efforts were made to define pre­

cise declarative semantics. A good example in this respect is the well-known STRIPS 

approach (Fikes and Nilsson, 1971) for which semantics were given in Lifshitz (1986), 

but STRIPS's connectives and a proof theory were never worked out. 



B. Fronhofer 7 

instance of a literal is used at most once, i.e., it is involved in at most one 
connection. Proofs of that kind are called Linear Connection Proofs and it is 
claimed in Bibel (1986) that this kind of 'linearity' is the necessary restriction 

to be imposed on proofs in order to generate correct plans. 

Apart from the mentioned linearity, the Linear Connection Method demands 

the following non1ormal/semantic requirements about the intended meaning of 

the action implications to be obeyed. The antecedent Al /\ ... /\ Ag must 

comprise all facts of the existing situation which are involved in the action -
either as being necessary conditions for the action's application or as being 

facts which shall no 101lger be valid after the action has been carried out. The 
consequent C l /\ ... /\ Ch must comprise all facts which are either newly created 
by the action or which were involved in the action as preconditions, but are not 
affected by it. This convention about the specification of actions entails that all 
those facts of a situation, which are not included in the antecedent shall survive 
the application of the action; a property which harmonizes perfectly with the 
working of Linear Connection Proofs. This harmony between specification 
philosophy and formal proof concept is the ultimate reason why no Frame 
Axioms need to be given with this approach. 

2.3. Linear backward chaining. That the Linear Connection Method out­
performs the Situation Calculus can be seen easily with the straightforward 
proof search algorithm called Linear Backward Chaining (LBC) - presented be­
low - which virtually constructs Linear Connection Proofs by backward search 
from the goal clause rather analogously to the ordinary top-down evaluation of 

PROLOG. 
The main difference to PROLOG is the treatment of unit clauses (facts) 

which may be used at most once. 
A further decisive point is the transformation of an action implication 

into the following h rules 

C l Al"'" Ag, NewFact(C2), •.. , NewFact(Ch) 

C2 Al, ... ,Ag, NewFact(Cl ), NewFact(Ca), ... ,NewFact(Ch) 



8 Plan generation with the linear connection method 

Ch AI"'" A g , NewFact(Cd, ... NewFact(Ch_I) 

which make use of a special built-in predicate NewFact which stores created 

facts. This set of stored facts is initialized by the facts of the initial situation, 

and a fact A is removed when it unifies with a subgoal A in one of the selected 

rules, and a fact C is added when a call of the subgoal NewFact( C) is evaluated. 

(Of course, both removing and adding of facts must be backtrackable). 

That the LBC algorithm is a correct and complete proof procedure for the 

Linear Connection Method has been shown in FronhOfer (1996a), (see also 

FronhOfer (1996e) for a comparison of the LBC algorithm with Situation Cal­

culus and with the planning system UCPOP (Penberthy and Weld, 1992) by 

means of evaluations on benchmarks). 

3. Comparative proof search behaviour. Before we analyse. the differences 

in proof search between the LBC procedure and Situation Calculus, we will 

first have a closer look at the Frame Problem of the Situation Calculus. This 

technical or inferencial Frame Problem seems to have three aspects which have 

stimulated different kinds of research work. 

• Size of specifications. It is certainly a nuisance of Situation Calculus that 

lots of axioms must be written down which serve no other purpose than 

to express that most facts of a situation are not at all affected by a certain 

action. (Apart from being boring work to do, it is also extremely prone to 

error and the specifications tend to be extremely large.) A first proposal 

to reduce the effort to be spent on writing Frame Axioms was made by 

Kowalski. He turned facts into terms - thus allowing to quantify over 

'fact variables' - which permitted to reduce the Frame Axioms to one per 

action by just listing up the literals which are 'exempted from survival' 

(see Kowalski (1979) or Nilsson (1982)). Similar ways to compress sets 

of Frame Axioms into smaller formulae are found in Schubert (1990). A 

further more convenient proposal has been made by Reiter (1991) where 

Frame Axioms can be generated from stated properties about predicates 

and actions. 

• Size of proofs. The Frame Axioms increase the size of proofs by O( m) 
where m is the size of the initial situation (see Holldobler and Thielscher 

(1996)). 

• Size of search spaces. Last, but certainly not least, Frame Axioms may 

tremendously blow up the search space in case of a backward plan/proof 



B. Fronhofer 9 

search. We consider forward chaining systems less suitable, because 

of the risk that large initial situations might slow down proof search 

tremendously, because lots of actions might be applicable to the initial 

situation without any orientation towards the goal to achieve.) The men­

tioned methods proposed by Kowalski and Reiter just reduce the size 

of the specification, but generate the same search spaces since they get 

all the original Frame Axioms back as instances or as consequences of 

their generative processes; thus they are of no help for proof search. 

Of course all these problems deserve attention, however, we consider the 

third one to be ultimately crucial. Convenient ways to specify plan genera­

tion problems don't help if the resulting specifications are not computationally 

tractable, and although it is nice to get small proofs, the lesson learnt from 

classical theorem proving is to be happy if any proof is found at all. But for 
finding a proof the size of the search space is decisive, for which reason we 

will have now a closer look at. 

Although the Frame Problem is the most widely known shortcoming of 

Situation Calculus - which might be particularly due to the effort of specification 

it entails, and which is already extremely shocking for the layman who has little 

background in logic and theorem proving - it is by far not the only drawback 

of Situation Calculus. 

All together we identified the following trouble spots of the search space 

of Situation Calculus (in case of backward proof search), which can all be 

overcome with the LBC procedure. 

• Frame problem. Given an action system consisting of n actions and let 

us consider a certain fact F. Then there will be some actions which 

create F, some others which destroy F and all the remaining actions -

let us assume that there are k ~ n of them - will leave F untouched. 

In particular, in large sets of actions k may be rather close to n.) If we 

now want to prove F we have - apart from the actions which create F 

- also k Frame Axioms which allow us to derive F, which yields an 

additional branching factor of k. In case of a proof which shall produce 

a plan consisting of I actions this results in an additional search space 

of L:;=1 ki, i.e., we get a practically intractable search space already for 

simple, but not completely trivial plan generation problems. 



10 Plan generation with the linear connection method 

The absence of Frame Axioms in the case of Linear Connection Proofs 

reduces k to 0 3 • 

• Shared situation variables. In general, a goal formula consists of more 

than one literal; the same holds for the preconditions of actions. For two 

literals A and B we obtain with Situation Calculus, the problem to prove: 

3Z : A(Z)AB(Z) where Z will refer to a plan (encoded as a term) which 

leads to a situation in which both A and B hold. The shared variable Z 

may cause a lot of backtracking if the value/plan obtained as the result 

of a proof of A(Z) is not suitable for B. This kind of backtracking 

will not occur when working with Linear Connection Proofs due to the 

absence of such variables. Note however, that we are still not able to 

work with completely independent proofs for A and B which can be 

combined into a proof of A A B as in classical logic, but our algorithm 

tries to achieve B with a plan PB which is a continuation of the plan 

P A which produced A. Only if B cannot be generated by a plan which 

is a continuation of PA, the algorithm backtracks. 

• Repeated subcomputations. Whenever an action a produces more than 

one single new fact - e.g., we have a formula of the form 'V S : A(S) --+ 

B(apply(a, S)) A C(apply(a, S)) - a lot of time may be spent on re­

peated computations of the same subgoals. Imagine we want to prove 

3Z : B(Z) A C(Z) then we first show B(Z) for which we have to 

solve A(S), and afterwards show C(Z) which requires to solve A(S) 
again. The LBC algorithm needs not to do a recomputation at all, be­

cause after the proof of B, the literal C will be memorized via the 

N ewFact-mechanism.4 

Considering these issues in view of the different kinds of problems stated in 

Section 2 we come to the conclusion that only plan generation (with backward 

search) is really affected by the search space explosion problem of Situation 

Calculus, and thus the only one of these problems for which the development of 

3 Recent experiments exploiting disequality constraints achieved just a reduction of k 

to 1 for Situation Calculus (see Fronhofer (1996e)). 
4 Attempts to avoid recomputations through the use of a lemma facility were rather 

discouraging due to the increase of the search space caused by the generated lemmata. 

The NewFact-mechanism instead seems to be more a fine-grained lemma handling and 

to be more tuned to the application. 



B. FronhOfer 11 

proof procedures based on the Linear Connection Method promises to be a big 

step forward. Optimal control of proof/plan search by forward chaining would 

apply Frame Axioms only after the application of an action in order to compute 

the resulting situation. This means an increase of inferences which is linear in 

the size of the situations. We get the same increase in case of a reactive system. 

If a plan is already given, the shared variables cause no backtracking, but just 

failure, and first experiments indicate that avoiding repeated subcomputations 

by lemma facilities in this case seems to speed up rather than to slow down the 

proof search. 

4. Survey of further research. After having introduced in the preceding 

sections the basic issues and ideas, we want to devote the rest of the paper to 

an overview of the research activities in this field. We will outline the principal 

research directions following a rather chronological order of presentation. 

As already mentioned, Linear Connection Proofs were first proposed in 

Bibel (1986). This paper presents and motivates the underlying idea and shows 

its intuitive usefulness by means of several examples. 

This article also raised many open questions and in Fronhofer (1987a) a 

first analysis of the concept of Linear Connection Proofs was carried out. Its 

scope was fairly restricted to questions of proof procedures and especially to 

the workings of the Connection Method under the assumption of linearity. 

4.1. Logical investigations. Among the first questions raised by Linear 

Connection Proofs, the most important one concerned the logic underlying 

this approach, or as often stated, the question of its semantics. In Bibel et al. 

(1989) three semantics for Linear Connection Proofs were presented. A first one 

was inherited from classical logic through an embedding of Linear Connection 

Proofs into the Situation Calculus, a second one was a possible world semantics 

which was directly attached to the language of Linear Connection Proofs, while 

a third semantics exploited the idea of 'rewriting' sets of literals. 

Towards the end of the eighties, Linear Connection Proofs were reformu­

lated on the basis of equational logic programming (ELP) - see GroBe et al. 

(1992b) (also available as GroBe et al. (1992b)) or Schneeberger (1992). Holl­

dobler (1996) gives an introduction to this approach and an overview of further 

developments based on this framework. (Recently, the name Fluent Calculus 

became popular for this approach and we will use it in the following.) In this 



12 Plan generation with the linear connection method 

framework a state of the world is encoded as a term built up with a binary 

function symbol 0 which models a (mUltiplicative) conjunction. Facts become 

simple terms with constants as arguments. An action is represented as a pair 

of o-terms - which together with the action's name yields a ternary predi­

cate - and an action application is implemented via commutative-associative 

(non-idempotent) unification (see Thielscher (1992); a short English summary 

is found in GroBe et al. (1992b)). Thus, an embedding into classical logic has 

been achieved from where the semantics can be inherited. 

A further contribution to the discussion of the underlying logic was the 

embedding of Linear Connection Proofs into the modal logic J{ 4 in FronhOfer 

(1991a). Via this embedding a semantics for Linear Connection Proofs could 

simply be inherited from modal logic: states in planning were identified with 

possible worlds. 

The advent of Girard's Linear Logic (Girard, 1987) stimulated a further line 

of research. In Masseron et al. (1993) (see also Masseron et al. (1990)) a 
reconstruction of Linear Connection Proofs on the basis of Linear Logic was 

proposed. In this approach, plan generation was not conceived as proving a 

theorem (from logical axioms), but the initial state and the actions are stated as 

nonlogical axioms (sequents) to which the inference rules of sequent calculus 
for Linear Logic are applied in order to derive future states of the world. 

This work was studied and analyzed in Fronhofer (1992) and GroBe et al. 

(1996a) (the latter paper going back to the earlier research report GroBe et al. 

(1992a)). These investigations showed that apart from minor differences, the 

Linear Connection Method, the ELP-Framework and the approach of Masseron 

et al. (1993) are equivalent. 

An alternative way to Masseron et al. (1993) has been pursued in FronhOfer 

(1996a), where specification theorems (of plan generation problems) with a Lin­

ear Connection Proof are characterised as derivable in a (multiplicative) sequent 

system which differs from classical logic just in a restriction of contraction to 

implications. 

Recently, in Bartheye (1994) the Linear Logic based reconstruction of Linear 

Connection Proofs was transformed into a plan calculus based on algebraic 

notions. 

Further work which must be mentioned in this context are Thielscher (1994a) 

and Thielscher (1994b) where translations between the Fluent Calculus and the 



B. FronhOfer 13 

action description language A (Gelfond and Lifshitz, 1993), and between A 
and the Ego-World-Semantics (Sandewall, 1994) are worked out, which allows 

to inherit the semantics from these approaches. 

4.2. Extensions. As already mentioned, the original proposal of Linear 

Connection Proofs was limited to a strips-like action language. To overcome 

this limitation lots of investigations into various directions have been carried out. 

In FronhOfer (1991a) an extension of the action format of Linear Connection 

Proofs through subimplications (subactions) was proposed. These subimplica­

tions - whose execution is obligatory whenever possible - allow to specify 

'side-effects' of an action, e.g., in case of carrying around a briefcase - the 

main action - the subaction would specify the change of location of objects 

which are in the briefcase. 

A very similar proposal - called specificity - for tackling these and re­

lated problems is found in Holldobler and Thielscher (1993b), Holldobler and 

Thielscher (1993a) and Holldobler and Thielscher (1995) where actions are par­
ticularised in different degrees of specialisation, and the proof search process is 

obliged to always choose the most specific one which is applicable. For exam­

ple, in case of dealing with fragile objects, we would get two fonnulations of 

the action of dropping an object. A general one and a more special one which 

states that an object will break if it is fragile. The latter one has to be chosen 

whenever possible, i.e., whenever a fragile object is dropped. 

A further important contribution is the extension through (additive) disjunc­
tion (see Bruning et al. (1993); Briining et al. (1992) or Briining et at. (1994)) 

in order to model actions with alternative undetermined results. This allows, 

for instance, to express actions with disjunctive results like throwing a coin. 

In Thielscher (1995) and Thielscher (1997) the Ruent Calculus is extended 

to cope with ramifications, i.e., with indirect effects of actions. Apart from the 

specification of actions, additional domain constraints and causal relationships 

are stated. In this setting, the application of an action is followed by the 

application of causal relationships until the underlying domain constraints are 

satisfied. A further extension to cope with the qualification problem, i.e., to 

assume away abnormal disqualifications for actions, is developed in ThieIscher 

(1996). 

In Bornscheuer and Thielscher (1994) and Bornscheuer and Thielscher 

(1996) a sound and complete encoding of the language Ac (Baral and Gelfond 



14 Plan generation with the linear connection method 

(1993) - an extension of the action description language A, which supports the 

description of concurrent actions - into the Auent Calculus is presented. More­

over, a further extension called Ab is proposed, which allows to infer sound 

information from contradictory descriptions and to describe non-determinism 

and uncertainty. Finally, the encoding of Ac into the Auent Calculus is ex­

tended to Ab' Bornscheuer and Thielscher (1997) deals with nondeterministic 

actions and the view of uncertain and contradictory knowledge as explicit resp. 

implicit indeterminism. 

In Herrmann and Thielscher (1996b) a new proposal is made for handling 

time in case of continuous actions. Instead of discretizing into time slices of 
equal length, a separation of time into slices of varying length was worked out. 

The resulting framework - a combination of deduction and numerical calculus 

- was embedded into the Auent Calculus, which is described in Herrmann and 
Thielscher, (1996a). 

Quite a general problem is the detection of unsolvable planning problems, 

for which a solution is proposed in de Waal and Thielscher (1995) through the 
exploitation of techniques from program analysis and transformation. 

4.3. Algorithms and implementations. Up to now several attempts have 

been made to implement Linear Connection Proofs or one of the related systems. 

• The first prototypical implementation in PROLOG was made at the TH 
Darmstadt (see Holldobler and Schneeberger (1990) or GroBe et al. 

(1992b) for a detailed description). It is based on the ELP formal­
ism. The system can do both forward and backward search, although 

forward searching is preferred due to certain extensions as specificity 

whose application is cumbersome when searching backward. 

• A further PROLOG based implementation was made by Eric Jacopin at 
LAFORIA, Paris. Inspired by the work of Masseron et al. (1993), a 

proof search algorithm which constructs sequent calculus derivations, 

was worked out and implemented (see Jacopin (1993a) and Jacopin 

(1993b)). To reduce the search space, various efforts were made to re­

strict the applicability of some of the sequent rules - without sacrificing 

completeness, of course. 

• A third experimental prototype has been implemented on the basis of 
the LBC algorithm presented before (see Fronhofer (1996e) and shorter 
in Fronhofer (1996a)). 



B. FronhOfer 15 

All these systems are just first straightforward prototypes, which need to be 

further developed. 

Proposals for increasing the efficiency of a planner, like the ones just men­

tioned by means of lemmata or through loop prevention, are found in Bruning 

(1993). 

Further improvements of the LBC algorithm are described in FronbOfer 

(1996b) (excerpts of this report are published in FronMfer (1996d) and Fron­

Mfer (1996c)). The starting point is that action implications like AAB __ AAD 

yield a cyclic rule A:- A, B, NewFact(D) with the transformation given in Sub­

section 2.3. Although such cyclic rules look tautological, they are indispensable 

as can be seen with the plan search for the so-called Sussman Anomaly (see 

Nilsson (1982)). On the other hand, they look a bit like Frame Axioms, and 

pros and cons of this view are discussed in FronhMer (1996d). In any case, they 

are troublesome from the point of view of plan search, because they may cause 

looping, and fortunately, we can get rid of them by allowing to insert actions 

into an already constructed partial plan: the resulting so-called LIP-algorithm 

and an experimental evaluation of the speed up which can be achieved this 

way are found in Fronhofer (1996c). This LIP-algorithm can also be seen as a 

partial order planning method for Linear Connection Proofs. 

A further partial order algorithm - on the basis of the Fluent Calculus - is 

presented in Holldobler and Schneeberger (1996). Here the stimulus was not the 

analysis of inefficiencies of an existing proof procedure, but direct orientation 

at the work on partial order planning. The idea is to allow arbitrary subgoal 

selection (in the subgoal stack) and to record constraints about the necessary 

temporal ordering of introduced actions. 

A completely different investigation is Eder et at. (1996), where based on 

the Chemical Machine (Berry and Boudol, 1990) - a general model for parallel 

computation - a computational model for the Fluent Calculus is developed. 

4.4. Further applications. Apart from planning - its primary application -

also other possibilities to make use of Linear Connection Proofs were pursued. 

Early attempts were investigations into the applicability of Linear Connec­

tion Proofs for a combination of logical and procedural programming (see Fron­

bOfer (1987b); Fronhofer (1992) and FronbOfer (1988)) exploiting on the one 

hand the proximity to logic and on the other hand the possibility to change the 

contents of memory due to the availability of actions. 



16 Plan generation with the linear connection method 

In Fronhofer (1991c) Linear Connection Proofs were applied to the modeling 

of inheritance with exceptions based on the view of concepts as sets of attributes 

and roles. Passing from a concept to a subconcept would be modeled as an 

action which in case of an exception deletes the respective attribute(s). 

A completely different, but somehow related approach - using Linear Logic 

- to exception handling is proposed in Vauzeilles and Fouquere (1993) which 

is based on reformulation of is-a-nets. 

In this context also the following work should be mentioned: Linear Logic 

based approaches to updating in Girard (1990), and to object oriented pro­

gramming, e.g., the system Linear Objects by R. Pareschi and J.M. Andreoli 

(Andreoli and Pareschi, 1991). In Sigmund (1992) object-oriented program­

ming a la Linear Objects was remodeled in the setting of Fluent Calculus. 

A further, quite different application of Linear Connection Proofs, was their 

use in FronhOfer (1991b) for modeling a system for generating cooperative 

answers. Understanding a query as a a partial goal state, the plan constructed 

while answering it, produces further facts of the goal state, which constitute 

additional information to be given to the user. 

In Thielscher and Schaub (1995) planning techniques are applied to non­

monotonic reasoning. The task of credulous reasoning in default logic is refor­

mulated as a deductive planning problem in the setting of Fluent Calculus. Thus 

a proof procedure for credulous reasoning is inherited from planning and also 

theoretical (complexity) results from planning could be transferred to default 

reasoning. 

Acknowledgements. This paper has its origin in a tutorial given by the 

author at the TEMPUS Summer School, Vilnius, organized by Vytautas Cyras, 

whom we owe thanks for the invitation. Further thanks to Michael Thielscher 

who commented on a draft of this paper, and also thanks to Joachim Steinbach 

for a critical reading in the end. 

REFERENCES 

Andreoli, J.-M, and R. Pareschi (1991). Linear objects: Logical processes with built-in 
inheritance. New Generation Computing, 9(3+4), 445-474. 

Baral, C, and M. Gelfond (1993). Representing concurrent cctions in extended logic 



B. Fronhofer 17 

programming. /JCAl-93, 866-871. 

Bartheye, O. (1994). Calcul de plans d'action: des methodes deductives vers les meth­
odes algebriques. PhD thesis, Universite d'Aix-Marseilles II, Faculte des Sciences 
de Luminy. 

Berry, G., and G. Boudol (1990). The chemical abstract machine. In ACM Symposium 
on Principles of Programming Languages. pp. 81-94. 

Bibel, W. (1986). A Deductive solution for plan generation. New Generation Computing, 
6, 115-132. 

Bibel, W. (1987). Automated Theorem Proving. Vieweg (Second Edition). 

Bibel, w., L. Farinas del Cerro, B. FronhOfer and A. Herzig (1989). Plan generation by 
linear proofs: on semantics. In D. Metzing (Ed.), GWAI'89, 13th German Workshop 
on Artificial Intelligence. Informatik-Fachberichte 216, Springer, SchloB Eringer­
feld, Geseke. pp. 49-62. 

Bomscheuer, S.-E, and M. Thielscher (1994). Representing concurrent actions and 
solving conflicts. In B. Nebel and L. Dreschler-Fischer (Eds.), Proceedings of the 
German Annual Conference on Artificial Intelligence (KI). LNAI 861. Springer, 
Saarbrucken. pp. 16-27. 

Bomscheuer, S.-E, and M. Thielscher (1996). Representing concurrent actions and 
solving conflicts. Journal of the IGPL, 4(3), 355-368. 

Bomscheuer, S.E., and M. Thielscher (1997). Explicit and implicit indeterminism: Rea­
soning about uncertain and contradictory specifications of dynamic systems. Journal 
of Logic Programming, Special Issue 'Action and Change' (to appear). 

Bruning, S., G. GroBe, S. Htilldobler, J. Schneeberger, U. Sigmund and M. Thielscher 
(1993). Disjunction in plan generation by equational logic programming. In A. 

Horz (Ed.), Beitriige zum 7. Workshop Planen und Konfigurieren. Arbeitspapiere 
der GMD 723. 

Bruning, S. (1993). Towards efficient calculi for resource oriented linear deductive plan­
ning. Technical Report AlDA-93-17, FG Intellektik, FB Informatik, TH Darmstadt. 

Bruning, S., G. GroBe, S. Htilldobler, J. Schneeberger, U. Sigmund and M. Thielscher 
(1992). On disjunction in linear logic programming (extended abstract). In D. 
Miller (Ed.), Proceedings of the Workshop on Linear Logic and Logic Programming. 
Report MS-·CIS-92-80. Univ. of Pennsylvania, School of Engineering and Applied 
Science, Computer and Information Science Department. pp. 53-59. 

Bruning, S., S. Holldobler, J. Schneeberger, U. Sigmund and M. Thielscher (1993). 
Disjunction in resource-oriented deductive planning. In D. Miller (Ed.), Proceedings 
of the Int. Logic Programming Symposium. 

Bruning, S., S. Hoildobler, J. Schneeberger, U. Sigmund and M. Thielscher (1994). 
Disjunction in resource-oriented deductive planning. Technical Repon AIDA-94-
03, FG Intellektik, FB Informatik, TH Darmstadt. 

de Waal, A., and M. Thielscher (1995). Solving deductive planning problems using 
program analysis and transformation. In M. Proietti (Ed.), Proceedings of the Int. 



18 Plan generation with the linear connection method 

Workshop on Logic Program Synthesis and Transformation (LOPSTR), Vol. LNCS 

1048. Springer, pp. 189-203. 

Eder, K., S. Holldobler and M. Thielscher (1996). An abstract machine for reasoning 

about situations, actions, and causality. In R. Dyckhoff, H. Herre and P. Schroeder­
Heister (Eds.), Proceedings of the Int. Workshop on Extensions of Logic Program­
ming, Vol. LNAI 1050. Springer pp. 137-151. 

Fikes, R., and N. Nilsson (1971). STRIPS: a new approach to the application of theorem 

proving to problem solving. Artificial Intelligence, 2, 189-208. 

FronhMer, B. (1992). Planlog. In S.c. Shapiro (Ed.), Encyclopedia of Artificial Intel­
ligence. J. Wiley & Sons. 

Fronhofer, B. (1987a). Linearity and plan generation. New Generation Computing, 5, 

213-225. 

Fronhtifer, B. (1987b). Planlog: A language framework for the integration of logical and 
procedural programming. In J. McDermott (Ed.), IJCAI -87. Kaufmann Inc., Los 

Altos. pp. 15-17. 
FronhOfer, B. (1988b). Plan schemes in planlog. In T.O'Shea and V. Sgurev (Eds.), 

AIMSA-88, Artificial Intelligence - Methodology Systems Applications. North­
Holland, Amsterdam pp. 169-176. 

FronhMer, B. (1991a). Default connections a modal planning framework. In J. Hertzberg 
(Ed.), European Workshop on Planning (EWSP-91). LNAI522. Springer, Bonn. 
pp. 39-52. 

Fronhtifer, B. (1991b). Generating cooperative answers with a transition framework. In 
R. Demolombe, L.F. del Cerro and T. lmielinski (Eds.), Nonstandard Queries and 
Answers, Vol. 2. ONERA_CERT, Toulouse pp. 127-144. 

FronhMer, B. (1991c). Implementing exceptions in inheritance by concept transforming 
actions. In E. Ardizzone, S. Gaglio and F. Sorbello (Eds.), Trends in Artificial 
Inteligence, LNAI549. Springer, Palermo. pp. 58-67. 

FronhMer, B. (1992). Linear proofs and linear logic. In D. Pearce and G. Wagner (Eds.), 

Logics in AI. JELIA'92 LNCS 633. Springer, Berlin. pp. 106-125. 

FronhMer, B. (1996a). The Action-as-Implication Paradigm: Formal Systems and Ap­
plication, Vol. 1 of Computer Science Monographs. CSpress, MUnchen. (revised 

version of Habilitationsschrift, TU MUnchen 1994.) 

Fronhofer, B. (1996b). Cutting connections in linear connection proofs. Technical Re­
port AR-96-01, Technische Universitat MUnchen, available from ftp://ftp.informatik. 
tu-muenchen.dellocalllehrstuhVjessenlAutomated_ReasoninglReportsl AR-96-0 1. 
ps.gz. 

FronhMer, B. (1996c). Cutting connections in linear connection proofs. In Int. Computer 
Symposium'96, Kaohsiung, Taiwan. Sun Yat-Sen University. pp. 109-116. 

Fronhofer, B. (1996d). Cyclic rules in linear connection proofs. In G. Gorz and S. Holl­
dobler (Eds.), KI-96: Advances in Artificial Intelligence, LNAI 1137. Springer, 
Dresden. pp. 67-70. 



B. FronhOfer 19 

FronhMer, B. (1996e). Situational calculus, linear connection proofs and STRIPS-like 
planning: an experimental comparison. In P. Miglioli, U. Moscato, D. Mundici 
and M. Omaghi (Eds.), 5-th Workshop on Theorem Proving with Analytic Tableaux 
and Related Methods, LNAI 1071. Springer, Terrasini, Palermo pp. 193-209. 

Gelfond, M., and V. Lifshitz (1993). Representing action and change by logic programs. 
Journal of Logic Programming, 17,301-321. 

Girard, J.-Y. (1987). Linear Logic. Theoretical Computer Science, 50, 1-102. 

Girard, J.-Y. (1990). Logic and Exception: A Few Remarks.Technical report, Universite 
Paris VII. 

Green, e. (1967). Application of theorem proving to problem solving. In IJCAI-l. pp. 
219-239. 

GroBe, G., S. HolIdobler and J. Schneeberger (1992a). Linear Deductive Planning. Tech­
nical report AIDA-92-08, FG Intellektik, FB Informatik, TH Darmstadt. 

GroBe, G., S. Holldobler and J. Schneeberger (1996). Linear deductive planning. Journal 
of Logic and Computation, 6(2), 233-262. 

GroBe, G., S. HolIdobler, J. Schneeberger, U. Sigmund and M. Thielscher (1992b). 
Equational logic programming, actions, and change. In K. Apt (Ed.), Proc. Joint 
Int. Conference and Symposium on Logic Programming JICSL'92. MIT Press. pp. 
177-191. 

Herrmann, e.S, and M. Thielscher (1996a). On Reasoning about Continuous Pro­
cesses.Technical Report AIDA-96-04, FG Intellektik, FB Informatik, TH Darm­
stadt. 

Herrmann, e.s. and M. Thielscher (1996b). Reasoning about continuous processes. In 
B. Clancey and D. Weld (Eds.), Proceedings of the Thirteenth National Conference 
on Artificial Intelligence (AAAI). MIT Press, Portland. pp. 639-644. 

Holldobler, S. and M. Thielscher (1995). Computing change and specificity with 
equational logic programs. Annals of Mathematics and Artificial Intelligence, 14, 
99-133. 

HolIdobler, S. (1996). Equational logic and theories of action. In P. Lucio, M. Martelli 
and M. Navarro (Eds.), Proceedings of the APPIA-GULP-PRODE Joint Conference 
on Declarative Programming. pp. 111-123. 

HolIdobler, S, and J. Schneeberger (1990). A new deductive approach to plaiming. New 
Generation Computing, 8, 225-244. A short version appeared in the Proceedings 
of the German Workshop on Artificial Intelligence, Informatik Fachberichte 216 pp. 
63-73, 1989. 

HolIdobler, S., and J. Schneeberger (1996). Constraint Equational Logic Program­
ming and Resource-based Partial Order Planning. Technical Report WV-96-08, FG 
Wissensverarbeitung, Institut fUr KI, Fakultat Informatik, TU Dresden. 

HolIdobler, S., and M. Thielscher (1993a). Actions and specificity. In D. Miller (Ed.), 
Proceedings of the Int. Logic Programming Symposium (ILPS). MIT Press, Van­
couver. pp. 164-180. 



20 Plan generation with the linear connection method 

Holldobler, S. and M. Thielscher (1993b). On logic, change, and specficity. In B. 
FronhOfer (Ed.), Proceedings of the Workshop on Reasoning about Action & Change 

at the Int. Joint Conference on Artificial Intelligence. pp. 3-7. 

Holldobler, S, and M. Thielscher (1996). Properties vs. Resources: Solving Simple 
Frame Problems. Technical Report AIDA-96-03, FG Intellektik, FB Infonnatik, TH 

Dannstadt. 

Jacopin, E. (1993a). Classical AI planning as theorem proving: the case of a fragment 

of linear logic. In AAAI Fall Syposium on ''Automated Deduction in Non Classical 
Logics". AAAI Press, Palo Alto pp. 62-66. 

Jacopin, E. (1993b). Construire des plans en utilisant Ie calcul des Sequents pour un 
fragment de la logique lineaire.Technical Report, Laforia-IEP, Univ. P. et M. Curie, 
Paris. 

Kowalski, R. (1979). Logic For Problem Solving. North Holland, New York. 

Lifshitz, V. (1986). On the Semantics of STRIPS. In M. George and A. Lansky (Eds.), 
Workshop on Reasoning About Actions and Plans. Morgan Kaufmann. pp. 1-8. 

Masseron, M. C. Tollu and J. Vauzeilles (1990). Generating plans in linear logic. In 
Foundations of Software Technology and Theoretical Computer Science, LNCS 472. 
Springer pp. 63-75. 

Masseron, M, C. Tollu and J. Vauzeilles (1993). Generating plans in linear logic I: 
actions as proofs. Theoretical Computer Science, 113, 249-370. 

McCarthy, J., and P. Hayes (1969). Some philosophical problems from the standpoint of 
artificial intelligence. In B. Meltzer, D. Michie (Eds.), Machine Intelligence, Vol. 
4. Edinburgh University Press. pp. 463-502. 

Nilsson, N.J. (1982). Principles of Artificial Intelligence. Springer. 

Penberthy, J., and D. Weld (1992). UCPOP: a sound, complete, partial order planner for 

ADL. In KR-92. pp. 103-114. 

Reiter, R. (1991). The frame problem in the situation calculus. In V. Lifschitz (Ed.), 
Artificial Intelligence and Mathematical Theory of Computation. Academic Press. 
pp. 359-380. 

Sandewall, E. (1994). Features and Fluents. The Representation of Knowledge about 

Dynamical Systems, Volume 30 of Oxford Logic Guides. Oxford University Press. 

Schneeberger, J. (1992). Plan Generation by Linear Deduction. PhD thesis, Technische 
Hochschule Dannstadt, Fachbereich Informatik. 

Schubert, L. (1990). Monotonic solution of the frame problem in the situation calculus: 
an efficient method for worlds with fully specified actions. In H. Kyberg, R. 

Loui and G. Carlson (Eds.), Knowledge Representation and Defeasable Knowledge. 
Kluwer Academic Press, Bosten. 

Shapiro, S. (1992). Encyclopedia of Artificial Intelligence. J. Wiley & Sons. 

Sigmund, U.C. (1992). LLP - Lineare Logische Programmierung. Technical Report 
AIDA-92-18, FG Intellektik, FB Infonnatik, TH Dannstadt. 



B. FronhOfer 21 

Thielscher, M. (1992). ACI-Unifikation in der Linearen Logischen Programmierung. 
TASSO-Report 42, FG lntellektik, FB Infonnatik, TH Dannstadt (in Gennan). 

Thielscher, M. (1994a). An analysis of systematic approaches to-reasoning about actions 
and change. In P. Jorrand, and V. Sgurev (Eds.), Int. Conference on Artificial Intel­
ligence: Methodology, Systems, Applications (AIMSA). World Scientific, Singapore 
pp. 195-204. 

Thielscher, M. (1994b). Representing actions in equational logic programming. In P.v. 
Hentenryck (Ed.), Proceedings of the Int. Conference on Logic Programming (ICLP). 
MIT Press, Santa Margherita Ligture. pp. 207-224. 

Thielscher, M. (1995). Computing ramifications by postprocessing. In C.S. Mellish 
(Eds.), Proceedings of the Int. loint Conference on Artificial Intelligence (IlCAI) 
Morgan Kaufmann, Montreal. pp. 1994-2000. 

Thielscher, M. (1996). Causality and the qualification problem. In L.C. Aiello and S.C. 
Shapiro (Eds.), Proceedings of the Int. Conference on Principles of Knowledge 
Representation and Reasoning(KR) Morgan Kaufmann, Cambridge. 

Thielscher, M. (1997). Ramification and causality. Artificial Intelligence lournal. (To 
appear. A preliminary version is available as Technical Report TR-96-003, ICSI, 
Berkeley, CA). 

Thielscher, M., and T. Schaub (1995). Default reasoning by deductive planning. lournal 
of Automated Reasoning. Special Issue on the Automation of Commonsense and 
Nonmonotonic Reasoning, 15(1), 1-409. 

Vauzeilles, J., and C. Fouquere 1993. Linear logic and taxonomic networks. Technical 
report, Department de mathematiques et inforrnatique, Avenue J.B. Clement, F-
93430 Villetaneuse. 

Received December 1996 



22 Plan generation with the linear connection method 

B. Fronhofer studied mathematics at the LMU Munchen 1973- 1982 and 

received his Diploma in 1982. From January 1979 to October 1982 he was a 

part-time employee of SIEMENS AG, Munchen, where he worked on natural 

language processing. In November 1982 B. FronhOfer joined the Automated 

Reasoning Research Group at Institute of Informatics at TU-Munchen. He 

obtained a Ph.D. from the Institut National Poly technique de Grenoble in 1989 

and his habilitation from the Technical University Munich in February 1995. 

His current research interests include automatic deduction, plan generation and 

logic programming. 

PLANO GENERAVlMAS, NAUDOJANT 

TIESINIQ SI\SAJQ METODI\ 

Bertranas FRONHIOFERIS 

Straipsnyje nagrinejamos plano generavimo, naudojant dedukcijos metodus, prob­
lemos. Detaliai aptariami 10gikos metodll taikymo lHam uMaviniui spr~sti tliikumai ir 
siilloma, kaip tuos trilkumus galima apeiti, panaudojus tiesinill sllsajll metodll. 


