
INFORMATICA, 1997, Vol. 8, No.1, 57-82

SOFfWARE SYSTEM ENGINEERING:
ANALYSIS OF THE DISCIPLINE

Albertas CAPLINSKAS

Institute of Mathematics and Informatics
Akademijos 4, 2600 Vilnius, Lithuania
Email: a1capl@ktl.mii.lt

Abstract. Software system engineering has not yet developed an engineering science
for its discipline. On the other hand, a lot of fundamental concepts, shared methods,
techniques, patterns for structuring software systems, and languages for documenting
design decisions has been accumulated over the years. To analyse and systematise
the accumulated ideas is the main challenge for computer scientists today. The main
objective of this paper is to analyse software system engineering both as a discipline
and as an engineering science. A special attention is paid to conceptual modelling
formalisms used in software system engineering.

Key words: software system engineering, software system engineering paradigms,
software system engineering principles, conceptual modelling.

1. Introduction. Software engineering is now almost 30 years old. Mean­

while thousands of articles and a lot of books have been published on its theory

and practice and a wide spectrum of methods and techniques that can be suc­

cessfully applied in software projects has been developed. Despite those facts,

software engineering has not yet developed an engineering science for its dis­

cipline (Tichy et al., 1993) and according to Jackson it is not a discipline at

all; it is an aspiration, as yet unachieved (Jackson, 1994).

The critical approval of the contemporary state-of-the-art in software en­

gineering is shared by Andriole and Freeman (1993), Fenton (1993), Jackson

(1994) and many other researchers. The state-of-the-art has been discussed

at the Dagstuhl Workshop on Future Directions in Software Engineering and

estimated as unsatisfactory (Tichy et aI., 1993). According to (Davis, 1996)

software engineering is "perhaps more like custom home construction than ei­

ther electrical engineering or oil on canvas".

58 Software system engineering: analysis of the discipline

On the other hand, Waserrnan argues that "despite the rapid changes in

computing technology and software development, some fundamental concepts

of software engineering have remained constant". These fundamental concepts

form a kernel of the engineering science for software system engineering. Iden­

tification and systematisation of these concepts are the main challenge for the

computer scientists today.

2. Synopsis. The main objective of this paper is to analyse software sys­

tem engineering both as a discipline and as an engineering science. A special

attention is paid to conceptual modelling formalisms used in software system
engineering. The remainder of the paper is organised as follows. Section 3

provides the notation and terminology. Section 4 discusses the scope of the

software system engineering discipline. Section 5 considers the structure of

software system engineering, discusses its processes and objects. Section 6 dis­

cusses the paradigms and fundamental principles used in software system engi­
neering. Section 7 deals with the models used in software system engineering

and considers some differences between information modelling formalisms and
object-oriented formalisms. Finally, Section 8 concludes the work.

3. Tenninology and notation. The term software engineering has been

introduced by the NATO Conference on Software Engineering in 1968 (Tichy

et al., 1993). Already from the very beginning, the term has two different

meanings. It was used in a narrow sense, as "the disciplined application of
principles, methods and tools to the requirements analysis, design, implemen­

tation, operation and maintenance of software comprising computer programs,

operating procedures and associated documentation" (McDermid, 1985), and in

a wide sense, as the discipline that seeks to devise techniques for software de­

velopment (Ramamoorthy et al., 1984). Later definition uses the term software

instead computer programs, operating procedures and associated documenta­

tion. These two meanings are quite distinct. The first concentrates on computer

programs, whereas the second one is concerned with software systems, and a

software system is thought of as an entity that includes computer programs only

as one of its many components. This dichotomy remained up till now though

the term software engineering currently is most often used in a wide sense.

Some representative examples are the following:

"The entire range of activities used to design and develop soft-

A. Caplinskas

ware, with some connotation of "good practice"."

(Dictionary of Computing, 1990)

"1. The application of a systematic, disciplined, quantifiable ap­

proach to the development, operation and maintenance of soft­

ware: that is the application of engineering to software.

2. The study of approaches as in (1)."

(IEEE Std 610.12-1990, 1994)

"That form of engineering that applies the principles of computer

science and mathematics to achieving cost-effective solutions to

software problems."

(Humphrey, 1993)

"The application of tools, methods, and disciplines to produce

and maintain an automated solution to real-world problem."

(Blum. 1992)

59

In 1990 Tayer and Roice proposed the term software system engineering
and defined it as follow:

"1. A technical and management process. The technical pro­

cess is the analytical effort necessary to transform an operational

need into a software design of the proper size and configuration,

and its documentation in requirements specifications. The man­

agement process involves assessing the risk and cost, integrating,

integrating the engineering specialities and design groups, main­

taining configuration control, and continuously auditing the effort

to ensure that cost, schedule, and technical performance objec­

tives are satisfied to meet the original operational need [adapted

from (Sailor, 1990)]. Software system engineering has the same

relationship to software engineering as system engineering has to

hardware engineering (all types).

2. A special case of system engineering."

(Thayer and Thayer, 1990)

The term software system engineering has also been used by Andriole and

Freeman and defined as a discipline that combines the essential elements of

system engineering and software engineering and is addressed to the creation

of complex software-intensive systems (Andriole and Freeman, 1993).

60 Software system engineering: analysis of the discipline

In this paper, we use the term software system engineering to address the

discipline that is concerned with software system development and define it as

follows:

DEFINITION 1.

1. Software system engineering is a special case of system en­

gineering that deals with the industrial development of special

systems, software systems.

2. Software system engineering is the study of what principles,

methods, techniques, tools, languages, and procedures are expe­

dient to apply in order to develop a software system in an indus­

trial way and how those principles, methods, techniques, tools,
languages, and procedures have to be applied to be effective.

By a software system we mean a collection of related computer programs,

protocols, interfaces, files, data and knowledge bases, and, maybe, other com­
ponents intended for solving a real world problem. By industrial we mean

the deVelopment of a software system that must satisfy the timing, market­

ing, engineering, customer service, and other requirements. Specific features

of industrial development which distinguish it from custom home construction
are planning, teamwork, automation, quality management, standardisation and
depersonalisation of the created artefacts, and mass production.

We use the term software engineering only in a narrow sense.

According to Wasserman "the cognitive leap from understanding a problem

to implementing a system is too great to proceed without including analysis and

design models as key deliverables in the development process" (Wasserman,

1996). In software system engineering we deal with many kinds of models.

Most important models are application domain models, models of a system

to be developed, and software process models. Application domain models
capture analysis and design information and are used for communicating this

information to others. Software process models capture technology information

on the development process itself.

To model the application domain, the system to be developed, and the

software process we use some modelling formalisms. There is an important

distinction between the modelling formalism and its notation (its representation).

We define the modelling formalism as follows:

A. Caplinskas

DEFINITION 2. A modelling formalism is a four-tuple

\II = (a,3,<I>,O),

where

a is a set of modelling primitives,

3 is a set of term constructors,

<I> is a set of formula constructors,

o is a rea<;oning method.

61

In the modelling formalism \II, modelling primitives and all what can be

produced from them by means of 3-constructors are regarded as terms. The

<I>-constructors are used to produce formulas. All what can be produced from

the modelling primitives by means of <I>-constructors are regarded as formulas.

The terms are used to model a structure of the original and the formulas are

used to model statements about the original.

The terms and formulas are to be expressed by some textual, graphical, or

mixed notation. Modelling primitives and compound constructions of the for­

malism \II can be represented in many different ways. Software system engi­

neering has no standards in this matter. A lot of different modelling formalisms

are used and each modelling formalism usually has several notation. This situ­

ation is probably reasonable because application domains (or software systems)

to be modelled are sometimes quite different and any "standard" notation cannot

be suitable in all cases. However, it is helpful to use some "standard" notation

to discuss and compare different modelling formalisms. To this end this paper

will keep to the following conventions, adapted from (Ail-Kaci and Nasr, 1986;

Kifer et aI., 1993).

An attribute signature Attr ~ rs defines a unary function Attr that maps

instances of a given class or given relation into a range set rd. In the case of a

class attribute, we use ~ instead of~. Which range sets are allowed depends

on the modelling formalism. The range sets which model weak entities are

marked by "*".
We distinguish built-in range sets, declared range sets, and derived range

sets. Built-in range sets are modelling primitives. In the attribute signature a

built-in range set we denote by name (e.g., Age ~ integer). Declared range

sets are constructed by means of <I>-constructors. In the attribute signature a

declared range set we denote by name, too. (e.g., Passenger ~ Person).

62 Software system engineering: analysis of the discipline

Derived range sets are constructed using :=>constructors. The construction may

be described in the attribute signature or in the previous text. Some examples

are as follows:

• Date ~ {month x day x year}

·
m: month f- m: {"January", "February", "March", "April", "May",

"June", "July", "August", "September", "October",

"November", "December"};

d: date f- d: {month x day x year};

·
Date ~ date

• x: Supplier f- x: {Person U Organisation};

Supplier ~ Supplier

• v: name f- (v: string)&(length(v) ~ 30);

FirsLname ~ name

An attribute signature Attr ~~ rs : (mincard, maxcard) defines a unary
multivalued function Attr that maps instances of a given class or given relation
into subsets of a range set rd with a minimal cardinality mincard and a maximal
cardinality maxcard (e.g., N arne ~~ name(I,3». In the case of a class
attribute, we use ~ ~ instead of ~~.

An attribute signature Attr ~ rs I default: d defines an attribute with de­
fault value d. In the case of a class attribute, we use ~ instead of~.

The notation Attr -+ v is used to denote that the function Attr maps the

given instance of given class to v (v E rs) and Attr -+-+ s is used to denote

that the multi valued function Attr maps the given instance of a given class to

the set s (s C rs). We use • -+ or • -+ • -+ to describe inheritable constants.

A method signature M@Xl"'" Xn ~ rs defines a function M arity n + 1
that maps instances of some given class and given parameters into range set

rs .. In the case of a class method, we use ~ instead of~. In the case of

multivalued methods, we use ~~ or ~ ~.

A signature Cis [... J defines a class or a relation. The structure of the
signature depends on the modelling formalism. Some examples are as follows:

Person[FirsLname ~ name: (1,3);

A. Caplinskas

Name::::} string;

Identity_number::::} {n I (n: integer) & (length(n) = 6)};

Native_language::::} (language I default: "Lithuanian");

{Identity_number }]

The notation {Identity_number} is used to denote key attributes.

• Ownership [Owner::::} Person; Property::::} Car]

• Employee[Average_sa/ary @::::} real;

63

public Employ @ f: string, n: string, a: string, s: real ::::}

this{ (this.FirsLname = f) & (this.N ame = n)

this.Appointment= a) & (this.Salary = s)};
FirsLname ::::} name: (1,3);

Name::::} string;

Nationality.-+ "Lithuanian";

Salary::::} integer;

public Dismiss @ ::::}

I(Salary -+ x) ::::} (x:::;; 1500)]

'The part-of relation is described by signature Relpart-od .. .].
We use ":" to represent a class membership (e.g., john: Person) and "::"

to denote a subclass relationship (e.g., Employee:: Person). The notation

(Cis}, ... , Clsn} (x,y):: Cis is used to describe partition of class Cis. The par­
tition can be total (x = t) or not (x = p). It can be strong (Clsj n Clsj for all

i, j = 1, ... , n) or not. A strong partition is denoted by y = s, and a weak

partition is denoted by y = w. Some examples are as follows:

• (Child, Teenager, Adult}(t,s):: Person

• (Russian...speaking, English...speaking}(p,w):: Person

4. The scope of the discipline. The scope of the software system engineering

discipline has been analysed by Andriole and Freeman (1993). They suggest

that two dimensions (time and activity) provide a framework for describing the

scope of the discipline and use this framework to analyse and compare systems

engineering and software engineering (in a wide sense) activities over the time

frame of a system's life.

For educational purpose we need to describe the scope of system software

engineering in terms of subdisciplines that can be taught independently taking

64 S oftwarc system engineering: analysis of the discipline

~

if ~ 1 -:I' i ~
~

~ I ~~~ == 1 i 1: 1:
rJ-~ ~ f/ - ~ '0

~ C =m c c
c,~ Zl i 1: ~ i =I

5 ~ ~ t I' ~ ~ ~ e - =m 2
~ e f/ 'B 8 =I e C .c
~ :; ~ ~

! ~ .a E-o

~
c

~ 1 = .a ~ Q
~ E! rIj

Theoretical Foundamentals + + + + + + +
Engineering Fundamentals + + + + + + +
Architecture + + + + + +
Project Management + + + + + +
Quality Management + + + + + + +"

Configuration Management + + + + + + +

Fig. 1. The scope of Software System Engineering.

into account the dependencies among them. In this case, the framework for de­

scribing the scope of the discipline is implied by the nature of knowledge used

by software system engineers. The knowledge can be structured in many differ­

ent ways. We distinguish specific knowledge that is used to do specific work in

a certain phase of a project only and general knowledge. As general knowledge

we regard knowledge that is used in all phases of the project. Fig. 1 presents

a description of the scope of the discipline according to this framework. The

description follows the turned out tradition. General and specific knowledge

may be split into subdisciplines in many other ways, too. The SUbdiscipline

'''Theoretical fundamentals" forms a scientific basis for software system engi-

A. Caplinskas 65

neering. It must teach about concepts, paradigms, principles, models, modelling

formalisms, and modelling languages used in software system engineering.

The subdiscipline "Engineering fundamentals" has been suggested at Dags­

tuhl Workshop on "Future Directions in Software Engineering" (Tichy et al.,
1993). It studies software parts and tools for the purpose of creating software

systems, and analyses when and where these parts and tools can be efficiently

applied (Tichy et a!., 1993). The subdiscipline "Architecture" studies a high­

level organisation of software system components and interaction between those

elements. As noted by Garlan (1995), the. architecture of a software system has

long been recognised as an important issue (Dijkstra, 1968; Pamas et al., 1985)

and recently has begun to emerge as an explicit field of study (Tichy et al.,
1993). Although there is currently no common accepted definition of the term

"software system architecture", a lot of shared methods, techniques, patterns

for structuring software systems and a lot of languages for documenting design

decisions have been developed over the years.

The subdiscipline "Tools theory" deals with programming environments,

CASE-systems, generators, and other analysis, design, programming and test­

ing tools. Although we have well-formed theory for some tools (compilers,

debuggers, etc.), a single tool construction theory is still the main challenge.

As in the case of the software system architecture, only a repertoire of shared

methods, techniques and patterns exists in this field at present.

Other subdisciplines mentioned in Fig. 1 are traditional and we will not

discuss them there.

5. Objects and processes. Andrio1e and Freeman (1993) argue that in

order to understand a discipline means to look at its structure (processes and

objects). They posited a set of basic software system engineering processes

and suggested a schema for describing the objects created by those processes.

The proposed set of basic processes includes analysis, specification, design,

programming, testing, verification, validation, and modification. The schema for

describing the objects provides development prologues, technical descriptions,

system aggregations, installed systems, and derived information ..

The ISOIIEC standard 12207-1 (1994) provides a framework for the soft­

ware life cycle. The framework consists of major processes for a software

development, maintenance and usage. This standard groups the processes into

primary, supporting, and organisational ones. The standard applies to the acqui-

66 Software system engineering" analysis of the discipline

sition, supply, development, operation, and maintenance of software systems,

software products and services.

We argue that the grouping of processes into primary, supporting and or­

ganisational provides a proper framework to define the structure of software

system engineering as an engineering discipline, too.

Primary (or basic) processes are those without using of which it is impossible

to develop or to use a software system. The set of basic processes proposed

by Andriole and Freeman is insufficient for this aim. On the other hand, it

includes some processes that are not basic in the sense of our definition. We

suggest that the set of primary processes includes analysis, specification, design,

implementation, integration, preparation to operation, operation, maintenance
(reengineering), and retirement. We define the primary processes as follows:

• analysis: modelling something done with the aim to understand it;

• specification: modelling something to be created in terms of its external
characteristics done with the aim to establish its design and implementation
objectives and constraints;

• design: modelling something to be created in terms of its internal char­
acteristics done with the aim to meet its specifications in the best way;

• implementation: building parts of something to be created done with the

aim to obtain its specified behaviour and in the way provided by its design;

• integration: assembling the parts of something to be created into the

whole;

• preparation to operation: accumulation of the resources necessary to
operate something, its delivery, installation and adaptation to the operation re­

quirements;

• operation: support the behaviour of something provided by its specifica­
tion;

• maintenance: changing internal or external characteristics of something
to be in operation;

• retirement: stepwise withdrawal from the operation something to be in
operation.

It should be noted that many of our definitions are suggested by Andriole

and Freeman (1993).

According to ISOIIEC 12207-1 (1994) a supporting process supports some

basic process as an integral part with a distinct purpose and contributes to

A. Caplinskas 67

its success and quality. Supporting processe..'l are testing, verification, valida­

tion, documenting, configuration management, reviewing, auditing, and prob­

lem solving. This list of processes is suggested by ISOIIEC 12207-1 (1994).

By problem solving the standard means "a process for analysing and remov­

ing the problems (including non-conformance), whatever their nature or source,

that are discovered during the development, operation, maintenance, or other

processes".

Organisational processes are employed to establish an underlying structure

made up of associated processes and personnel, and continuously to improve

it (ISOIIEC DIS 12207-1, 1994). We agree with the standard that organisa­

tional processes are management, infrastructure establishing, improving other

processes, and training.

In principle, we agree with the schema for describing the objects proposed
by Andriole and Freeman (1993), however, suggest that it should be filled up

with "system distributive".

6. Principles and paradigms. Andriole and Freeman (1993) argue that
in order to understand a discipline, its fundamental principles, paradigms and

constraints should be identified, too. They identified six fundamental principles

(modularity, information-hiding, abstraction, step-wise refinement, decomposi­

tion, systematic processes), four paradigms (structured development, formal de­

velopment, evolving development, and kernel development) and six constraints

(incompleteness and inaccuracy of software representations, absence of robust

models of standard systems, paucity of observed data concerning the results

of software engineering processes, inability to observe many things of interest,

and incomplete and changing map between reality and models of reality) of

software system engineering.

The list of principles presented by Andriole and Freeman is incomplete and

not all the principles listed in it are fundamental and independent. For example,

modularity is a concretisation of decomposition and step-wise refinement is a

concretisation of abstraction. We identified nine common accepted independent

fundamental principles:

decomposition principle: apply a process to a composite object, decompose

the object into independent parts (modules) and apply this process to each part

separately;

abstraction principle: apply a process to an object iterative by increasing

68 Software system engineering: analysis of the discipline

in each iteration the level of detailing of the object and ignoring those details

that are not relevant to the current purpose;

structurisation principle: build all objects from well-defined primitives using

the well-studied design patterns only;

open system principle: build all objects in such a way that internal behaviour

any of their parts can be changed without influence on other parts;

uniformity principle: apply the same standards to all objects of the same

class (modules, documents, etc.);

black-box principle: build all objects so that they could be used without

knowledge of their internal structure;

conceptualisation principle: build software system so that it reflect the apli­

cation (problem) domain structure;

metaphorisation principle: build user interface as an application domain

metaphor taking into account users' mentality and experience;

user comfortability principle: a user interface has to be user friendly, adap­

tive, require as little users' efforts as possible, and not cause a psychological

discomfort.

It should be noted that all fundamental principles can be concretised and

applied in many ways. A taxonomy of the principles used in software system

engineering can be built. For example, information hiding is a concretisation

of the black-box principle, structured programming is a concretisation of the

structurization principle, etc.

According to Andriole and Freeman (1993) the software system engineering

paradigms are overall patterns of actions. We argue that the list of paradigms

identified by Andriole and Freeman (1993) can be improved because the struc­

tured development paradigm as it is defined in this list (phases, defined work

products, set relationships between activities) is a project structuring but not

engineering paradigm. We propose the following list of paradigms:

top-down development: starting with a set of system requirements, decom­

pose its and map using several intermediate levels of abstraction into subsys­

tems, modules, and other parts of the desired system;

bottom-up development: starting with a set of low level primitives, compose

a desired system using several intermediate levels of abstraction;

evolving development: continuous development of the system using a num­

ber of intermediate prototypes;

A. Caplinskas 69

Kernel development: starting with a small, central core of functionality and

mechanisms, grow the desired system by accretion of additional mechanisms

(1993);

parameteric development: starting with a generic system procurement (usu­

ally called a shell), produce a desired system using a set of adaptation and

concretization tools;

formal development: starting with a formal specification of a desired system,

to generate it using automatic programming tools.

Of course, software system engineering paradigms are not necessarily mutu­

ally exclusive and several different paradigms may be used to develop a software

system.

7. Models. In software system engineering we deal with many different

models. The most important models are application domain models, models of

system to be developed and software process models.

Coad and Yordan (1990) argue that four major approaches to application

domain modelling used in software system engineering are functional decompo­

sition, data flow models, information modelling, and object-oriented modelling.

Entity life cycle models should be added to this list.

Coad and Yordan (1990) noted that the object-oriented approach (e.g., Ru­

bin and Goldberg (1992» and the information modelling approach (e.g., Chen

(1976); Flavin (1981); Shlaer and Mellor (1988» are quite distinct. Although

later uses concept of object, it is rather relation-oriented. In this section we

analyse differences between the two mentioned approaches in more precise

terms. The analysis concentrates on term representation. It should be noted,

that information modelling and object-oriented modelling essentially differs in

reasoning mechanisms too, however, in this work we don't try to consider the

reasoning issues at all.

DEFINITION 3. An information modelling formalism is an eight-tuple

where

FI = (Dom, Cns1{;, Cis, Atr, R, RI, SI, <PI),

Dom is a finite nonempty set of symbols called domain names,

Cns1{; is a nonempty set of symbols called general constants,

Cis is a finite nonempty set of symbols called class names,

70 Software system engineering: analysis of the discipline

Atr is a finite nonempty set of symbols called functional constants

or attribute names,

R is a finite nonempty set of symbols called predicate constants or rela-

tions names,
RI is a finite nonempty set of symbols called role names,

:=:: I is a set of term construction rules,

<PI is a set of formula construction rules.

In this definition a set of modelling primitives is defined as follow

0: = (Dom, Cns~, Cis, Attr, R, RI).

The reasoning mechanism remained undefined because we did not consider it
here. In addition, the following assumption has been made:

1. A many-to-one mapping type that maps general constants to domain
names is defined. We say that the general constant c is a constant of type d, if
and only if type (c) = d. The set of all constants of type d is called a intension
of domain d or a set of possible values of domain d.

2. An expression Uk is associated with each class name k in Cis. This
expression is called a signature of class k and has a special form defined
bellow. The signature Uk is a term construction rule that d~nes the class k as
an intensional set of terms. We denote this set as Intk'

3. An expression Uattr is associated with each attribute name attr in Attr.
This expression is called a signature of the attribute attr and has a special form
defined in Section 3. A signature defines one of the following functions:

• a function attr: Extk x T=>d that at each time moment tET maps the
term names of class k into the values of domain d,

• a function attr: {k}xT=> d that at each time moment tET maps the
name of cla'ls k into the values of domain d (in this case, we say that

attribute attr is a class attribute),

• a function attr: ExtrxT=>d that at each time moment tET maps the
relationship names of relation r into the values of domain d,

• a function attr: {r} x T => d that at each time moment tET maps the
name of relation r into the values of domain d (in this case, we say that
attribute attr is a relation attribute).

We also say in all the mentioned cases that the attribute attr is of type d. We
define the set Ext later on (see Definition 4).

A. Caplinskas 71

4. An expression (jr is associated with each relation name r in R. This

expression is called a signature of relation r and is of a special form defined

bellow. The signature (jr is a formula construction rule and defines the relation

r as an intensional set of relationships. We denote this set as Intr .

5. The expression

v:::} k(v, J.l), k E Cis

is associated with each role name v in Yd. This expression is called a signature

of the role v. The signature of role v defines the class k which plays this role

and cardinality of the role.

DEFINITION 4. In formalism FJ, an information model of application

domain ~ at the time moment t is a four-tuple

M~,t,FI = (Cnst~,A,t, Trmt, Cnst~,R,t, RISt),

where

Cnst~,A,t is a finite set of symbols called application constants or objects

names,

Trmt is a finite set of objects called terms,

Cnst~,R,t is a finite set of symbols called relationship names,

Rlst is a finite set of objects called relationships.

In this definition we postulate the existence of one-to-one mapping

1}F,~: Concepts~ -¢::::> (Dom U Cis),

that maps application domain concepts to domains and classes of the formalism

Fl. In addition, the following assumptions have been made.

1. A many-to-one mapping instance_of that maps application constants to

class names is defined. We say that the application constant t is an instance of

class k, if and only if instance_of(t)=k. The set of all application constants

of class k at the moment t is denoted by Extk,t and a set of all the possible

application constants of class k is denoted by Extk'

2. A many-to-one mapping class: Trmt :::} Cis that maps terms to class

names is defined. We say that the term t is a term of class k if and only if

class(t)=k. The set of all the terms of class k at the moment t we denote

{Trm} k,t and a set of all terms of class k is denoted as {Trm} k. We expect

72 Software system engineering: analysis of the discipline

that the terms of class k meet the signature uk. Additionally, a one-to-one

mapping

objectJlame: {Tnnh,t {:=> Extk,t,

that maps the terms of the class k to the application constants of class k and

vice versa, is defined.
3. A many-to-one mapping relationship_of that maps relationship names to

relation names is defined. We say that the relationship name p is an instance

of relation r if and only if relationship_of(p) = r. The set of all relationship
names of relation r at the moment t is denoted by Extr,t and the set of all the
possible relationship names of relation r is denoted by Extr.

4. A many-to-one mapping relation: RlSt ::} R that maps relationships
to relation names is defined. We say that the relationship p is a relationship

of relation r, if and only if relation(p) = r. We denote the set of all the
relationships of relation r at the moment t by {Rls} r,t and a set of all the
relationships of relation r by {Rls} r. We expect that relationships of relation
r meet the signature Ur. In addition, a one-to-one mapping

relationshipJlame: {Rls} r,t {:=> Extr,t,

that maps the relationships of relation r to the relationship names and vice

versa, is defined.

DEFINITION 5. In formalism FI, a class is a three-tuple

where

k is the name of the class,

Int k is the intension of the class,

Ext k is the extension of the class,

Extk = Extk U {Tnnh.

DEFINITION 6. A signature Uk of the class k is the expression

.I.h -+ h' . • I.i r h' 'l"k 1, ... , 'l"k -+ r,

where

A. Caplinskas

f~ ~ (dlldefault: el); ... ; f~ ~ (dnldefault: en);

f, I/> are term attribute names,

d, 8 are domain names,

e, g, h are values,

{ } denotes a key attribute list,

I denotes the integrity constraint.

73

If an attribute is a multivalued attribute, we use ~ ~, __ , ~ ~ or

• - • - instead of ~, -, ~, • - respectively.

DEFINITION 7. A signature (J'r of the relation r is the expression

where

r [f~ ~ k1 : (Ill, Jll); ... ; f~ ~ k n : (lin, Jl n);

(I/>~ ~ dl ;···; I/>':~ d m)

I/~;···; I~]'

k is a class name,

f is a role name,

I/> is a relationship attribute name,

d is a domain name,

I denotes the integrity constraint,

(II, Jl) denotes the cardinality of a role.

If an attribute is a multivalued attribute we Use the notation ~ ~ instead

of~. If the relation r is an aggregation relation we use the notation rparCoC

instead of r.

DEFINITION 8.
i) In information modelling formalism FI, a class signature is an object

molecule.
ii) There exist no other object molecules except that defined in i).

74 Software system engineering: analysis of the discipline

DEFINITION 9.
i) In information modelling formalism FI, a relation signature is a predicate

molecule.
ii) There exist no other predicate molecules except that defined in i).

DEFINITION 10.
i) Let k, kl' ... , kn be class names from Cis. Then the statements

ki :: k, i = 1, ... , n,
(kl' ... ,kn)(t,s) :: k,
(kl' ... ,kn)(t,W) :: k,
(kI' ... , kn)(P,S) :: k,
(kI' ... , kn)(P,w) :: k

are intensional molecular formulas.
ii) In information modelling formalism FI, object molecules are intensional

molecular formulas. .
iii) In information modelling formalism FI, predicate molecules are inten-

sional molecular formulas. '
iv) There exist no other intensional molecular formulas except those de­

fined in i), ii) and iii).

DEFINITION 11.
i) In information modelling formalism FI, intensional molecular formulas

are intensional formulas.
ii) If F and G are intensional formulas, then F& G is an intensional

formula.
iii) There exist no other intensional formulas except those defined in i)

and ii).

DEFINITION 12.
i) Let Uk be a signature of the class k. Then the object

where ek E Extk and b l , ... , b n, aI, ... , ar are term attribute values
satisfying the integrity constraints 'Y ~; •.• ; 'Y ~ is a term of the class k.

ii) Let Uk be a signature of the class k. Then the object

k[tP ~ ~ cl;"'; tP~-+ Cm;

tP~ -+ hI;"'; tP~ -+ hr],

A. Caplinskas 75

where k is a class name and cI, ... , Cm, hI, ... ,hr are class attribute
values satisfying the integrity constraints ,~; ... ; , ~ is a term that
presents the class k.

iii) In information modelling formalism FI exist no other terms except
those defined in i) and ii).

If an attribute is a multivalued attribute, we use the notation -r-r instead

of -r.

Relationships are defined in a similar way.

Let us consider now the object-oriented formalisms.

DEFINITION 13. An object-oriented modelling formalism is a six-tuple

where

Cis is a finite nonempty set of symbols called class names,

CnstG is a nonempty set of symbols called general constants,

Atr is a finite nonempty set of symbols called functional constants

or attribute names,
Op is a finite nonempty set of symbols called method names or operation

names,

31 is a set of term construction rules,

4>1 is a set of formula construction rules.

In this definition, a set of modelling primitives is defined as follows

a = (Cis, CnstG, Attr, Op).

The reasoning mechanism remained undefined because we did not consider

it here. In addition, the following assumptions have been made:

1. The set Cis is defined as Cis = Cis l U Cls 2 where Cis l is a nonempty

set of symbols called names of lexical classes and Cis I is a set of symbols

called names of nonlexical classes.

2. An expression U k is associated with each class name k in Cis. This

expression is called a signature of class k and has a special form defined

bellow. The signature Uk is a term construction rule that defines the class k as

an intensional set of terms. We denote this set as Intk'

3. A many-to-one mapping type that maps general constants to names of

lexical classes is defined. We say that the general constant C is a constant of

76 Software system engineering: analysis of the discipline

type k, if and only if type(c)=k. The set of all constants of type d is called

intension of nonlexical class k and denoted as Intk'

4. An expression /Tattr is associated with each attribute name attr in Attr.

This expression is called a signature of the attribute attr and has a special fonn

defined in Section 3. A signature defines one of the following functions:

• a function attr: Extk x T =} kl' k E Cls 2 , kl E Cis that at each time
moment tET maps the tenn names of nonlexical class k into the terms

of class kl'
• a function attr: {k} x T=} kl' kl E CIs that at each time moment

tET maps the name of class k into the tenns of class k I (in this case,
we say that the attribute attr is a class attribute).

In both cases, we also say that the attribute attr is of type k I'

S. An expression /Top is associated with each operation name op in Op.
This expression is called a signature of the operation op and has a special fonn
defined in Section 3. The signature defines one of the following functions:

• a function

op : Extk X Extkl X •.• X Extkn =} K,

k E Cls 2 , K, kl' ... , k n E Cis, n> 0,

that maps the tenn names of nonlexical class k and parameters into the

tenns of class K,

• a function

op: {k} x Extkl x ... X Extkn =} K,

k E Cls 2 , K, kl' ... , k n E Cis, n> 0,

that maps the name of class k and parameters into the tenns of class kl

(in this case, we say that operation op is a class operation).

DEFINITION 14. In the formalism FObj , an object-oriented model of ap­
plication domain .6. at the moment t is a four-touple

M~,t,FObJ = (Cnst~,t, Objt, Fnnt),

where

A. CapUnskas 77

Cnsta,t is a finite set of symbols called application constants or objects
names,

Obj t is a finite set of objects (terms),

Fnn t is a finite set of formulas that are true at the moment t.
In this definition we postulate the existence of one-to-one mapping

TJF,a: Concepts a ¢:::::::> CIs

that maps application domain concepts to classes of the formalism F Obj' In
addition, the following assumptions have been made:

1. A many-to-one mapping instance_of that maps object names to class
names is defined. We say that the application constant t is an instance of class k,

if and only if insatance_of(t)=k. 'The set of all the application constants of
class k at the moment t is denoted by Extk,t and a set of all possible application

constants of class k is denoted by Extk'
2. A many-to-one mapping class: Obj t ~ CIs2 that maps objects to names

of nonlexical classes is defined. We say that the term t is a term of class k,

if and only if class(t)=k. The set of all the objects of class k is denoted as
{ Obj} k. We expect that the terms of class k meet the signature Uk' Besides,
a one-to-one mapping

objecCname:{Obj} k,t ¢} Extk,t

that maps the objects of t class k to the object names and vice versa, is defined.
In the formalism FObj , a class is defined analogously as in the formalism

FI (see Definition 5).

DEFINITION 15. In the object-oriented formalism FObj , a signature Uk of
the class k is the expression

k[1/J~ ~ (151 I default: gl);"'; 1/Jr ~ (15m I default: gm);

.I.i l h· . • I.i r h' 'f'k -+ 1>"" 'f'k -+ r,

[TiJ : {pi }~JB~@II:L···, lI:~l {ZJ} ~ 11:1;"';

[T:J: {pn~;B~@lI:t,···, 1I:{/{Zn ~ II:t;

f~ ~ (d1 I default: el); ... ; tk ~ (dn I default: en);

¢~ • al; ... ; ¢~. -+ a1;

[T2J : {p2}~~W~@lI:i, ... , lI:~l {Z~} ~ leI;"';

[T:J: {P:}~~wr'@lI:tv,···, Ie~ {Z~} ~ II:W; I 'Y~; ... ;'Y~],

78 Software system engineering: analysis of the discipline

where

r, ¢ are object attribute names,

w is an object operation name,

e, g, h are values,

() is a class operation name,

/\', (J' are class names,

P denotes operation preconditions,

Z denotes operation postconditions,

T denotes triggers,

e denotes specifiers public and private,

I denotes the integrity constraint.

If an attribute is a multivalued attribute we use => =>, --, =>=> or
• _ • _ instead of =>, _, =>, • - respectively.

DEFINITION 16.
i) In the object-oriented formalism FObj , a class signature is an object molecule.
ii) There exist no other object molecules except that defined in i).

DEFINITION 17.
i) Let k, kl' ... , kn be class names from CIs. Then the statements

k j ::k,i= 1, ... ,0,
< kl ... , k n >(t,s):: k,

< kl ... , kn >(t,w)=: k,

< kl ... , kn >(p,s)=: k,

< kl ... , kn >(p,w)=: k

are intensional molecular formulas.
ii) In the object-oriented formalism FObj ' object molecules are intensional

molecular formulas.
iii) There exist no other intensional molecular formulas except those defined in

i) and ii).

DEFINITION 18.
i) In the object-oriented formalism FObj , intensional molecular formulas are

intensional.
ii) If F and G are intensional formulas, then F&G is an intensional formula.
iii) There exist no other intensional formulas except those defined in i) and ii).

A. Caplinskas

DEFINITION 19.
i) Let Uk be a signature of the class k. Then the object

ek[f~ --+ bl ; ... ; r: --+ bo;

¢~ --+ al;···; ¢~ --+ ar;
1 w·] wk --+ PI; ... ; Wk -+ Pw ,

79

where ~ E Extk, bj E bj, ~ E bj, bj,bj E Cis, i = 1,2, ... ,r, j =
1, 2, ... , n, PI"'" Pw are values of the object operations, and all the values
satisfy integrity constraints I~; ... ; Ik is an object of the class k.

ii) Let Uk be a signature of the class k. Then the object

k[?jIi -+ CI; .. . ;?jI~ -+ Cm;

Bi -+ ql;"'; B~ -+qt],

where k is class name Cj E ''1, Kj E Cis, i = 1,2, ... , m, ql"'" ~ are
values of the class operations, and all the values satisfy integrity constraints
I~; ... ; Ik is an object that represents the class k.

iii) In the object-oriented formalism FObj , exist no other objects except those
defined in i) and ii).
If an attribute is a multivalued attribute, we use the notation -+--+ instead

of -+.
Now we can compare information modelling and object-oriented modelling

formalisms.
1. Application domain entities have descriptive, organisational and opera­

tional characteristics. Object-oriented modelling formalisms can model charac­
teristics of all kinds. Information modelling formalisms can model descriptive
and organisational characteristics only.

2. Object-oriented modelling formalisms model descriptive and organisa­
tional characteristics in a uniform way (by attributes). Information modelling
formalisms model descriptive characteristics by attributes and organisational
characteristics by relations.

Of course, a strict boundary between information modelling formalisms and
object-oriented modelling formalisms does not exist because various hybrid
formalisms can be defined.

8. Concluding remarks. This paper analyses the software system engineer­
ing discipline and its science. It aims to identify and systematise software engi­
neering paradigms, principles, processes, and objects. An attempt to adapt the
notation developed in object-oriented logics (Ail-Kaci and Nasr, 1986; Kifer et
al., 1993) to the description of conceptual modelling formalisms has been made.

80 Software system engineering: analysis of the discipline

Using this notation information modelling formalisms and object-oriented for­
malism have been described and compared.

REFERENCES

Andriole, SJ., and P.A. Freeman (1993). Software systems engineering: the case for a

new discipline. Software Engineering Journal, 8(3), 165-179.

Azuma, M., and D. Mole (1994). Software management practice and metrics in the
European Community and Japan: some results of a survey. J. Systems and Software,
26,5-18.

Al t-Kaci, H., and R. Nasr (1986). LOGIN: a logic programming language with built-in

inheritance. 1. Logic Programming, 3, 185-215.

Blum, B.I. (1992). Software Engineering, A Holistic View. Oxford University Press, New
York.

Chen, P. (1976). The entity-relationship model. Toward a unified view of data. ACM
Transactions on Database Systems, 1, 9-36.

Coad, P., and E. Yordan (1990). Object-oriented analysis. In R.H. Thayer and M. Dorf­
man (Eds.), Tutorial: System and Software Requirements Engineering. IEEE Com­

puter Society Press, California. pp. 272-289.

Davis, A.M. (1996). Art or engineering, one more time. IEEE Software, 13(6), 4-5.

Denning, P.J., D.E. Comer, D. Gries, M.C. Mulder, A. Thcker, A.J. Throer, and P.R.

Young (1989). Computing as a discipline. Communications of the ACM, 34(1),
9-23.

Dictionary of Computing. (1990) Third edition. Oxford, New York: Oxford University
Press.

Dijkstra, E.W. (1968). The structure of "THE"-multiprogramming system. Communi­
cation of the ACM, 11(5),341-346.

Fenton, N. (1993). How effective are software engineering methods? J. Systems and
Software, 22(2), 141-146.

Fenton, N.E., B. Littlewood and S. Page (1992). Evaluating software engineering

standards and methods. In R.H. Thayer and A.D. McGettrick (Eds.), Software En­
gineering: An European Perspective. IEEE Computer Society Press. pp. 463-470.

Flavin, M. (1981). Fundamental concepts of information modelling. Englewood
Cliffs, N.J: Yourdan PresslPrentice-Hall.

Garlan, D. (1995). Research directions in software architecture. ACM Computing
Surveys, 27(2), 257-261.

Glass, R.L. (1995). A structure-based critique of contemporary computing research.
J. Systems and Software, 28(1), 3-7.

Hetzel, B. (1993). Making Software Measurement Work. QED.

A. Caplinskas 81

Humphrey, W.S. (1993). Software engineering. In A. Ralston, and E.D.Reilly (Eds.),
Encyclopaedia of Computer Science. Van Nostrand Reinhold.

Humphrey, W.S. (1994). The personal process in software engineering. Software
Process Newsletter, 13(1), 1-3.

IEEE Std 610 (1994). Standard glossary of software engineering terminology. In
IEEE Software Engineering Standards Collection, 1994 edition, New York.

ISOIIEC DIS 12207-1 (1994). Information Technology. Software. Part I: Software
Life-Cycle Process. International Organization for Standardization, International
Electrotechnical Commission.

Jackson, M. (1994). Problems, methods and specialisation. Software Engineering
Journal, 9(6), 249-255.

Kifer, M., G. Lausen and J. Wu (1993). Logical Foundations of Object-Oriented
and Frame-Based Languages. Technical Report 93/06, Department of Computer
Science SUNY at Stony Brook, Stony Brook, NY 11794.

McDermid (1985). The IEEE and software engineers. Software&Microsystems,
4(2), 45-48.

Morrison, J., and J.E George (1995). Exploring the software engineering component
in MIS research. Communications of the ACM, 38(7), 80-91.

Parnas, 0.1., P.e. Clements and D.M. Weiss (1985). The modular structure of complex
systems. IEEE Transactions on Software Engineering, SE-ll, 259-266.

Ramamoorthy, e.v., A. Prakash, W.T. Tsai, and Y. Usuda (1984). Software engineering:
problems and perspectives. Computer, October 191-209.

Reddy, S (1994). Interview with Stephen R Schach. Crossroads, 1(2),
http://info.acm.org/crossroads/xrdsl-2/schach.html.

Rubin, K.S., and A. Goldberg (1992). Object behaviour analysis. Communication of
the ACM, 35(9), 48-62.

Sailor, J.D. (1990). System engineering overview. In RH. Thayer and M. Dorfman
(Eds.), Tutorial: System and Software Requirements Engineering. IEEE Computer
Society Press, Washington.

Schlaer, S., and S. Mellor (1988). Object-oriented System Analysis: Modelling the
World in Data. Prentice-Hall, Englewood Cliffs, N.J.

Tichy, W.E, N. Habermann, and L. Prechelt (1993). Summary of the Dagstuhl work­
shop on future directions in software engineering. ACM SIGSOFT Software Engi­
neering Notes, 18(1), 35-48.

Thayer, R.H., W.W. Royce (1990). Software system engineering. In RH. Thayer
and M. Dorfman (Eds.), Tutorial: System and Software Requirements Engineering.
IEEE Computer Society Press, Los Alamitos, California. pp. 77-116.

Thayer, RH., and M.C. Thayer (1990). Glossary. In RH. Thayer and M. Dorfman
(Eds.), Tutorial: System and Software Requirements Engineering IEEE Computer
Society Press, Loss Alamitos, California. pp. 605-676.

82 Software system engineering: analysis of the discipline

Wasserman, A.I (1996). Toward a discipline of software engineering. IEEE Software,
13(6), 23-31.

Received November 1996

A. Caplinskas is head of the Software Engineering Department at the Insti­

tute of Mathematics and Informatics in Vilnius, teaches at the Vilnius University

and Vilnius Gediminas Technical University. He graduated from the Moscow
Lomonosov State University (Faculty of Mathematics) in 1966. Prior to joining

the Institute he spent four years on the research staff at the Vilnius University.

In 1970 he joined the Institute and has been concerned with information sys­

tem development ever since. From 1976 to 1990, he was the leader of the
project VILNIUS which was aimed at the deVelopment of the CASE- system

for knowledge-based software systems. Caplinskas was the author or a co­
author four books and over sixty papers in information system engineering,
software engineering, knowledge-based systems and related areas. His current

interests include legislative engineering, national information infrastructures,
software system engineering and knowledge representation.

PROGRAMQ SISTEMQ INZINERIJOS ANALIZE

Albertas CAPLINSKAS

Straipsnyje analizuojama program\! sistem\! in~inerija kaip savarankiska in~inerijos

mokslo saka. Bandoma isryskinti ir sistematizuoti tos mokslo sakos paradigmas ir prin­
cipus bei jos nagrinejamus procesus ir objektus. Siilloma programl.l sisteml.l in~inerijoje

naudojamiems koncepcinio modeliavimo formalizmams aprasyti pritaikyti moderniojoje

logikoje sukUl'U} objektinil.l logik\.l aprasymo notacijll. Naudojant tokill notacijll, forma­
lizuojami ir lyginami informacinio ir objektinio modeliavimo formalizmai.

