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1. Introduction. Software engineering is now almost 30 years old. Mean­

while thousands of articles and a lot of books have been published on its theory 

and practice and a wide spectrum of methods and techniques that can be suc­

cessfully applied in software projects has been developed. Despite those facts, 

software engineering has not yet developed an engineering science for its dis­

cipline (Tichy et al., 1993) and according to Jackson it is not a discipline at 

all; it is an aspiration, as yet unachieved (Jackson, 1994). 

The critical approval of the contemporary state-of-the-art in software en­

gineering is shared by Andriole and Freeman (1993), Fenton (1993), Jackson 

(1994) and many other researchers. The state-of-the-art has been discussed 

at the Dagstuhl Workshop on Future Directions in Software Engineering and 

estimated as unsatisfactory (Tichy et aI., 1993). According to (Davis, 1996) 

software engineering is "perhaps more like custom home construction than ei­

ther electrical engineering or oil on canvas". 
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On the other hand, Waserrnan argues that "despite the rapid changes in 

computing technology and software development, some fundamental concepts 

of software engineering have remained constant". These fundamental concepts 

form a kernel of the engineering science for software system engineering. Iden­

tification and systematisation of these concepts are the main challenge for the 

computer scientists today. 

2. Synopsis. The main objective of this paper is to analyse software sys­

tem engineering both as a discipline and as an engineering science. A special 

attention is paid to conceptual modelling formalisms used in software system 
engineering. The remainder of the paper is organised as follows. Section 3 

provides the notation and terminology. Section 4 discusses the scope of the 

software system engineering discipline. Section 5 considers the structure of 

software system engineering, discusses its processes and objects. Section 6 dis­

cusses the paradigms and fundamental principles used in software system engi­
neering. Section 7 deals with the models used in software system engineering 

and considers some differences between information modelling formalisms and 
object-oriented formalisms. Finally, Section 8 concludes the work. 

3. Tenninology and notation. The term software engineering has been 

introduced by the NATO Conference on Software Engineering in 1968 (Tichy 

et al., 1993). Already from the very beginning, the term has two different 

meanings. It was used in a narrow sense, as "the disciplined application of 
principles, methods and tools to the requirements analysis, design, implemen­

tation, operation and maintenance of software comprising computer programs, 

operating procedures and associated documentation" (McDermid, 1985), and in 

a wide sense, as the discipline that seeks to devise techniques for software de­

velopment (Ramamoorthy et al., 1984). Later definition uses the term software 

instead computer programs, operating procedures and associated documenta­

tion. These two meanings are quite distinct. The first concentrates on computer 

programs, whereas the second one is concerned with software systems, and a 

software system is thought of as an entity that includes computer programs only 

as one of its many components. This dichotomy remained up till now though 

the term software engineering currently is most often used in a wide sense. 

Some representative examples are the following: 

"The entire range of activities used to design and develop soft-
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ware, with some connotation of "good practice"." 

(Dictionary of Computing, 1990) 

"1. The application of a systematic, disciplined, quantifiable ap­

proach to the development, operation and maintenance of soft­

ware: that is the application of engineering to software. 

2. The study of approaches as in (1)." 

(IEEE Std 610.12-1990, 1994) 

"That form of engineering that applies the principles of computer 

science and mathematics to achieving cost-effective solutions to 

software problems." 

(Humphrey, 1993) 

"The application of tools, methods, and disciplines to produce 

and maintain an automated solution to real-world problem." 

(Blum. 1992) 
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In 1990 Tayer and Roice proposed the term software system engineering 
and defined it as follow: 

"1. A technical and management process. The technical pro­

cess is the analytical effort necessary to transform an operational 

need into a software design of the proper size and configuration, 

and its documentation in requirements specifications. The man­

agement process involves assessing the risk and cost, integrating, 

integrating the engineering specialities and design groups, main­

taining configuration control, and continuously auditing the effort 

to ensure that cost, schedule, and technical performance objec­

tives are satisfied to meet the original operational need [adapted 

from (Sailor, 1990)]. Software system engineering has the same 

relationship to software engineering as system engineering has to 

hardware engineering (all types). 

2. A special case of system engineering." 

(Thayer and Thayer, 1990) 

The term software system engineering has also been used by Andriole and 

Freeman and defined as a discipline that combines the essential elements of 

system engineering and software engineering and is addressed to the creation 

of complex software-intensive systems (Andriole and Freeman, 1993). 
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In this paper, we use the term software system engineering to address the 

discipline that is concerned with software system development and define it as 

follows: 

DEFINITION 1. 

1. Software system engineering is a special case of system en­

gineering that deals with the industrial development of special 

systems, software systems. 

2. Software system engineering is the study of what principles, 

methods, techniques, tools, languages, and procedures are expe­

dient to apply in order to develop a software system in an indus­

trial way and how those principles, methods, techniques, tools, 
languages, and procedures have to be applied to be effective. 

By a software system we mean a collection of related computer programs, 

protocols, interfaces, files, data and knowledge bases, and, maybe, other com­
ponents intended for solving a real world problem. By industrial we mean 

the deVelopment of a software system that must satisfy the timing, market­

ing, engineering, customer service, and other requirements. Specific features 

of industrial development which distinguish it from custom home construction 
are planning, teamwork, automation, quality management, standardisation and 
depersonalisation of the created artefacts, and mass production. 

We use the term software engineering only in a narrow sense. 

According to Wasserman "the cognitive leap from understanding a problem 

to implementing a system is too great to proceed without including analysis and 

design models as key deliverables in the development process" (Wasserman, 

1996). In software system engineering we deal with many kinds of models. 

Most important models are application domain models, models of a system 

to be developed, and software process models. Application domain models 
capture analysis and design information and are used for communicating this 

information to others. Software process models capture technology information 

on the development process itself. 

To model the application domain, the system to be developed, and the 

software process we use some modelling formalisms. There is an important 

distinction between the modelling formalism and its notation (its representation). 

We define the modelling formalism as follows: 
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DEFINITION 2. A modelling formalism is a four-tuple 

\II = (a,3,<I>,O), 

where 

a is a set of modelling primitives, 

3 is a set of term constructors, 

<I> is a set of formula constructors, 

o is a rea<;oning method. 
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In the modelling formalism \II, modelling primitives and all what can be 

produced from them by means of 3-constructors are regarded as terms. The 

<I>-constructors are used to produce formulas. All what can be produced from 

the modelling primitives by means of <I>-constructors are regarded as formulas. 

The terms are used to model a structure of the original and the formulas are 

used to model statements about the original. 

The terms and formulas are to be expressed by some textual, graphical, or 

mixed notation. Modelling primitives and compound constructions of the for­

malism \II can be represented in many different ways. Software system engi­

neering has no standards in this matter. A lot of different modelling formalisms 

are used and each modelling formalism usually has several notation. This situ­

ation is probably reasonable because application domains (or software systems) 

to be modelled are sometimes quite different and any "standard" notation cannot 

be suitable in all cases. However, it is helpful to use some "standard" notation 

to discuss and compare different modelling formalisms. To this end this paper 

will keep to the following conventions, adapted from (Ail-Kaci and Nasr, 1986; 

Kifer et aI., 1993 ). 

An attribute signature Attr ~ rs defines a unary function Attr that maps 

instances of a given class or given relation into a range set rd. In the case of a 

class attribute, we use ~ instead of~. Which range sets are allowed depends 

on the modelling formalism. The range sets which model weak entities are 

marked by "*". 
We distinguish built-in range sets, declared range sets, and derived range 

sets. Built-in range sets are modelling primitives. In the attribute signature a 

built-in range set we denote by name (e.g., Age ~ integer). Declared range 

sets are constructed by means of <I>-constructors. In the attribute signature a 

declared range set we denote by name, too. (e.g., Passenger ~ Person). 
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Derived range sets are constructed using :=>constructors. The construction may 

be described in the attribute signature or in the previous text. Some examples 

are as follows: 

• Date ~ {month x day x year} 

· ........................ . 
m: month f- m: {"January", "February", "March", "April", "May", 

"June", "July", "August", "September", "October", 

"November", "December"}; 

d: date f- d: {month x day x year}; 

· ........................ . 
Date ~ date 

• x: Supplier f- x: {Person U Organisation}; 

Supplier ~ Supplier 

• v: name f- (v: string)&(length(v) ~ 30); 

FirsLname ~ name 

An attribute signature Attr ~~ rs : (mincard, maxcard) defines a unary 
multivalued function Attr that maps instances of a given class or given relation 
into subsets of a range set rd with a minimal cardinality mincard and a maximal 
cardinality maxcard (e.g., N arne ~~ name(I,3». In the case of a class 
attribute, we use ~ ~ instead of ~~. 

An attribute signature Attr ~ rs I default: d defines an attribute with de­
fault value d. In the case of a class attribute, we use ~ instead of~. 

The notation Attr -+ v is used to denote that the function Attr maps the 

given instance of given class to v (v E rs) and Attr -+-+ s is used to denote 

that the multi valued function Attr maps the given instance of a given class to 

the set s (s C rs). We use • -+ or • -+ • -+ to describe inheritable constants. 

A method signature M@Xl"'" Xn ~ rs defines a function M arity n + 1 
that maps instances of some given class and given parameters into range set 

rs .. In the case of a class method, we use ~ instead of~. In the case of 

multivalued methods, we use ~~ or ~ ~. 

A signature Cis [ ... J defines a class or a relation. The structure of the 
signature depends on the modelling formalism. Some examples are as follows: 

Person[FirsLname ~ name: (1,3); 
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Name::::} string; 

Identity_number::::} {n I (n: integer) & (length(n) = 6)}; 

Native_language::::} (language I default: "Lithuanian"); 

{Identity_number }] 

The notation {Identity_number} is used to denote key attributes. 

• Ownership [Owner::::} Person; Property::::} Car] 

• Employee[Average_sa/ary @::::} real; 
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public Employ @ f: string, n: string, a: string, s: real ::::} 

this{ (this.FirsLname = f) & (this.N ame = n) 

this.Appointment= a) & (this.Salary = s)}; 
FirsLname ::::} name: (1,3); 

Name::::} string; 

Nationality.-+ "Lithuanian"; 

Salary::::} integer; 

public Dismiss @ ::::} 

I(Salary -+ x) ::::} (x:::;; 1500)] 

'The part-of relation is described by signature Relpart-od .. .]. 
We use ":" to represent a class membership (e.g., john: Person) and "::" 

to denote a subclass relationship (e.g., Employee:: Person). The notation 

(Cis}, ... , Clsn} (x,y):: Cis is used to describe partition of class Cis. The par­
tition can be total (x = t) or not (x = p). It can be strong (Clsj n Clsj for all 

i, j = 1, ... , n) or not. A strong partition is denoted by y = s, and a weak 

partition is denoted by y = w. Some examples are as follows: 

• (Child, Teenager, Adult}(t,s):: Person 

• (Russian...speaking, English...speaking}(p,w):: Person 

4. The scope of the discipline. The scope of the software system engineering 

discipline has been analysed by Andriole and Freeman (1993). They suggest 

that two dimensions (time and activity) provide a framework for describing the 

scope of the discipline and use this framework to analyse and compare systems 

engineering and software engineering (in a wide sense) activities over the time 

frame of a system's life. 

For educational purpose we need to describe the scope of system software 

engineering in terms of subdisciplines that can be taught independently taking 
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Theoretical Foundamentals + + + + + + + 
Engineering Fundamentals + + + + + + + 
Architecture + + + + + + 
Project Management + + + + + + 
Quality Management + + + + + + +" 

Configuration Management + + + + + + + 

Fig. 1. The scope of Software System Engineering. 

into account the dependencies among them. In this case, the framework for de­

scribing the scope of the discipline is implied by the nature of knowledge used 

by software system engineers. The knowledge can be structured in many differ­

ent ways. We distinguish specific knowledge that is used to do specific work in 

a certain phase of a project only and general knowledge. As general knowledge 

we regard knowledge that is used in all phases of the project. Fig. 1 presents 

a description of the scope of the discipline according to this framework. The 

description follows the turned out tradition. General and specific knowledge 

may be split into subdisciplines in many other ways, too. The SUbdiscipline 

'''Theoretical fundamentals" forms a scientific basis for software system engi-
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neering. It must teach about concepts, paradigms, principles, models, modelling 

formalisms, and modelling languages used in software system engineering. 

The subdiscipline "Engineering fundamentals" has been suggested at Dags­

tuhl Workshop on "Future Directions in Software Engineering" (Tichy et al., 
1993). It studies software parts and tools for the purpose of creating software 

systems, and analyses when and where these parts and tools can be efficiently 

applied (Tichy et a!., 1993). The subdiscipline "Architecture" studies a high­

level organisation of software system components and interaction between those 

elements. As noted by Garlan (1995), the. architecture of a software system has 

long been recognised as an important issue (Dijkstra, 1968; Pamas et al., 1985) 

and recently has begun to emerge as an explicit field of study (Tichy et al., 
1993). Although there is currently no common accepted definition of the term 

"software system architecture", a lot of shared methods, techniques, patterns 

for structuring software systems and a lot of languages for documenting design 

decisions have been developed over the years. 

The subdiscipline "Tools theory" deals with programming environments, 

CASE-systems, generators, and other analysis, design, programming and test­

ing tools. Although we have well-formed theory for some tools (compilers, 

debuggers, etc.), a single tool construction theory is still the main challenge. 

As in the case of the software system architecture, only a repertoire of shared 

methods, techniques and patterns exists in this field at present. 

Other subdisciplines mentioned in Fig. 1 are traditional and we will not 

discuss them there. 

5. Objects and processes. Andrio1e and Freeman (1993) argue that in 

order to understand a discipline means to look at its structure (processes and 

objects). They posited a set of basic software system engineering processes 

and suggested a schema for describing the objects created by those processes. 

The proposed set of basic processes includes analysis, specification, design, 

programming, testing, verification, validation, and modification. The schema for 

describing the objects provides development prologues, technical descriptions, 

system aggregations, installed systems, and derived information .. 

The ISOIIEC standard 12207-1 (1994) provides a framework for the soft­

ware life cycle. The framework consists of major processes for a software 

development, maintenance and usage. This standard groups the processes into 

primary, supporting, and organisational ones. The standard applies to the acqui-
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sition, supply, development, operation, and maintenance of software systems, 

software products and services. 

We argue that the grouping of processes into primary, supporting and or­

ganisational provides a proper framework to define the structure of software 

system engineering as an engineering discipline, too. 

Primary (or basic) processes are those without using of which it is impossible 

to develop or to use a software system. The set of basic processes proposed 

by Andriole and Freeman is insufficient for this aim. On the other hand, it 

includes some processes that are not basic in the sense of our definition. We 

suggest that the set of primary processes includes analysis, specification, design, 

implementation, integration, preparation to operation, operation, maintenance 
(reengineering), and retirement. We define the primary processes as follows: 

• analysis: modelling something done with the aim to understand it; 

• specification: modelling something to be created in terms of its external 
characteristics done with the aim to establish its design and implementation 
objectives and constraints; 

• design: modelling something to be created in terms of its internal char­
acteristics done with the aim to meet its specifications in the best way; 

• implementation: building parts of something to be created done with the 

aim to obtain its specified behaviour and in the way provided by its design; 

• integration: assembling the parts of something to be created into the 

whole; 

• preparation to operation: accumulation of the resources necessary to 
operate something, its delivery, installation and adaptation to the operation re­

quirements; 

• operation: support the behaviour of something provided by its specifica­
tion; 

• maintenance: changing internal or external characteristics of something 
to be in operation; 

• retirement: stepwise withdrawal from the operation something to be in 
operation. 

It should be noted that many of our definitions are suggested by Andriole 

and Freeman (1993). 

According to ISOIIEC 12207-1 (1994) a supporting process supports some 

basic process as an integral part with a distinct purpose and contributes to 
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its success and quality. Supporting processe..'l are testing, verification, valida­

tion, documenting, configuration management, reviewing, auditing, and prob­

lem solving. This list of processes is suggested by ISOIIEC 12207-1 (1994). 

By problem solving the standard means "a process for analysing and remov­

ing the problems (including non-conformance), whatever their nature or source, 

that are discovered during the development, operation, maintenance, or other 

processes". 

Organisational processes are employed to establish an underlying structure 

made up of associated processes and personnel, and continuously to improve 

it (ISOIIEC DIS 12207-1, 1994). We agree with the standard that organisa­

tional processes are management, infrastructure establishing, improving other 

processes, and training. 

In principle, we agree with the schema for describing the objects proposed 
by Andriole and Freeman (1993), however, suggest that it should be filled up 

with "system distributive". 

6. Principles and paradigms. Andriole and Freeman (1993) argue that 
in order to understand a discipline, its fundamental principles, paradigms and 

constraints should be identified, too. They identified six fundamental principles 

(modularity, information-hiding, abstraction, step-wise refinement, decomposi­

tion, systematic processes), four paradigms (structured development, formal de­

velopment, evolving development, and kernel development) and six constraints 

(incompleteness and inaccuracy of software representations, absence of robust 

models of standard systems, paucity of observed data concerning the results 

of software engineering processes, inability to observe many things of interest, 

and incomplete and changing map between reality and models of reality) of 

software system engineering. 

The list of principles presented by Andriole and Freeman is incomplete and 

not all the principles listed in it are fundamental and independent. For example, 

modularity is a concretisation of decomposition and step-wise refinement is a 

concretisation of abstraction. We identified nine common accepted independent 

fundamental principles: 

decomposition principle: apply a process to a composite object, decompose 

the object into independent parts (modules) and apply this process to each part 

separately; 

abstraction principle: apply a process to an object iterative by increasing 
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in each iteration the level of detailing of the object and ignoring those details 

that are not relevant to the current purpose; 

structurisation principle: build all objects from well-defined primitives using 

the well-studied design patterns only; 

open system principle: build all objects in such a way that internal behaviour 

any of their parts can be changed without influence on other parts; 

uniformity principle: apply the same standards to all objects of the same 

class (modules, documents, etc.); 

black-box principle: build all objects so that they could be used without 

knowledge of their internal structure; 

conceptualisation principle: build software system so that it reflect the apli­

cation (problem) domain structure; 

metaphorisation principle: build user interface as an application domain 

metaphor taking into account users' mentality and experience; 

user comfortability principle: a user interface has to be user friendly, adap­

tive, require as little users' efforts as possible, and not cause a psychological 

discomfort. 

It should be noted that all fundamental principles can be concretised and 

applied in many ways. A taxonomy of the principles used in software system 

engineering can be built. For example, information hiding is a concretisation 

of the black-box principle, structured programming is a concretisation of the 

structurization principle, etc. 

According to Andriole and Freeman (1993) the software system engineering 

paradigms are overall patterns of actions. We argue that the list of paradigms 

identified by Andriole and Freeman (1993) can be improved because the struc­

tured development paradigm as it is defined in this list (phases, defined work 

products, set relationships between activities) is a project structuring but not 

engineering paradigm. We propose the following list of paradigms: 

top-down development: starting with a set of system requirements, decom­

pose its and map using several intermediate levels of abstraction into subsys­

tems, modules, and other parts of the desired system; 

bottom-up development: starting with a set of low level primitives, compose 

a desired system using several intermediate levels of abstraction; 

evolving development: continuous development of the system using a num­

ber of intermediate prototypes; 
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Kernel development: starting with a small, central core of functionality and 

mechanisms, grow the desired system by accretion of additional mechanisms 

(1993); 

parameteric development: starting with a generic system procurement (usu­

ally called a shell), produce a desired system using a set of adaptation and 

concretization tools; 

formal development: starting with a formal specification of a desired system, 

to generate it using automatic programming tools. 

Of course, software system engineering paradigms are not necessarily mutu­

ally exclusive and several different paradigms may be used to develop a software 

system. 

7. Models. In software system engineering we deal with many different 

models. The most important models are application domain models, models of 

system to be developed and software process models. 

Coad and Yordan (1990) argue that four major approaches to application 

domain modelling used in software system engineering are functional decompo­

sition, data flow models, information modelling, and object-oriented modelling. 

Entity life cycle models should be added to this list. 

Coad and Yordan (1990) noted that the object-oriented approach (e.g., Ru­

bin and Goldberg (1992» and the information modelling approach (e.g., Chen 

(1976); Flavin (1981); Shlaer and Mellor (1988» are quite distinct. Although 

later uses concept of object, it is rather relation-oriented. In this section we 

analyse differences between the two mentioned approaches in more precise 

terms. The analysis concentrates on term representation. It should be noted, 

that information modelling and object-oriented modelling essentially differs in 

reasoning mechanisms too, however, in this work we don't try to consider the 

reasoning issues at all. 

DEFINITION 3. An information modelling formalism is an eight-tuple 

where 

FI = (Dom, Cns1{;, Cis, Atr, R, RI, SI, <PI), 

Dom is a finite nonempty set of symbols called domain names, 

Cns1{; is a nonempty set of symbols called general constants, 

Cis is a finite nonempty set of symbols called class names, 



70 Software system engineering: analysis of the discipline 

Atr is a finite nonempty set of symbols called functional constants 

or attribute names, 

R is a finite nonempty set of symbols called predicate constants or rela-

tions names, 
RI is a finite nonempty set of symbols called role names, 

:=:: I is a set of term construction rules, 

<PI is a set of formula construction rules. 

In this definition a set of modelling primitives is defined as follow 

0: = (Dom, Cns~, Cis, Attr, R, RI). 

The reasoning mechanism remained undefined because we did not consider it 
here. In addition, the following assumption has been made: 

1. A many-to-one mapping type that maps general constants to domain 
names is defined. We say that the general constant c is a constant of type d, if 
and only if type ( c) = d. The set of all constants of type d is called a intension 
of domain d or a set of possible values of domain d. 

2. An expression Uk is associated with each class name k in Cis. This 
expression is called a signature of class k and has a special form defined 
bellow. The signature Uk is a term construction rule that d~nes the class k as 
an intensional set of terms. We denote this set as Intk' 

3. An expression Uattr is associated with each attribute name attr in Attr. 
This expression is called a signature of the attribute attr and has a special form 
defined in Section 3. A signature defines one of the following functions: 

• a function attr: Extk x T=>d that at each time moment tET maps the 
term names of class k into the values of domain d, 

• a function attr: {k}xT=> d that at each time moment tET maps the 
name of cla'ls k into the values of domain d (in this case, we say that 

attribute attr is a class attribute), 

• a function attr: ExtrxT=>d that at each time moment tET maps the 
relationship names of relation r into the values of domain d, 

• a function attr: {r} x T => d that at each time moment tET maps the 
name of relation r into the values of domain d (in this case, we say that 
attribute attr is a relation attribute). 

We also say in all the mentioned cases that the attribute attr is of type d. We 
define the set Ext later on (see Definition 4). 
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4. An expression (jr is associated with each relation name r in R. This 

expression is called a signature of relation r and is of a special form defined 

bellow. The signature (jr is a formula construction rule and defines the relation 

r as an intensional set of relationships. We denote this set as Intr . 

5. The expression 

v:::} k(v, J.l), k E Cis 

is associated with each role name v in Yd. This expression is called a signature 

of the role v. The signature of role v defines the class k which plays this role 

and cardinality of the role. 

DEFINITION 4. In formalism FJ, an information model of application 

domain ~ at the time moment t is a four-tuple 

M~,t,FI = (Cnst~,A,t, Trmt, Cnst~,R,t, RISt), 

where 

Cnst~,A,t is a finite set of symbols called application constants or objects 

names, 

Trmt is a finite set of objects called terms, 

Cnst~,R,t is a finite set of symbols called relationship names, 

Rlst is a finite set of objects called relationships. 

In this definition we postulate the existence of one-to-one mapping 

1}F,~: Concepts~ -¢::::> (Dom U Cis), 

that maps application domain concepts to domains and classes of the formalism 

Fl. In addition, the following assumptions have been made. 

1. A many-to-one mapping instance_of that maps application constants to 

class names is defined. We say that the application constant t is an instance of 

class k, if and only if instance_of(t)=k. The set of all application constants 

of class k at the moment t is denoted by Extk,t and a set of all the possible 

application constants of class k is denoted by Extk' 

2. A many-to-one mapping class: Trmt :::} Cis that maps terms to class 

names is defined. We say that the term t is a term of class k if and only if 

class(t)=k. The set of all the terms of class k at the moment t we denote 

{Trm} k,t and a set of all terms of class k is denoted as {Trm} k. We expect 
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that the terms of class k meet the signature uk. Additionally, a one-to-one 

mapping 

objectJlame: {Tnnh,t {:=> Extk,t, 

that maps the terms of the class k to the application constants of class k and 

vice versa, is defined. 
3. A many-to-one mapping relationship_of that maps relationship names to 

relation names is defined. We say that the relationship name p is an instance 

of relation r if and only if relationship_of(p) = r. The set of all relationship 
names of relation r at the moment t is denoted by Extr,t and the set of all the 
possible relationship names of relation r is denoted by Extr. 

4. A many-to-one mapping relation: RlSt ::} R that maps relationships 
to relation names is defined. We say that the relationship p is a relationship 

of relation r, if and only if relation(p) = r. We denote the set of all the 
relationships of relation r at the moment t by {Rls} r,t and a set of all the 
relationships of relation r by {Rls} r. We expect that relationships of relation 
r meet the signature Ur. In addition, a one-to-one mapping 

relationshipJlame: {Rls} r,t {:=> Extr,t, 

that maps the relationships of relation r to the relationship names and vice 

versa, is defined. 

DEFINITION 5. In formalism FI, a class is a three-tuple 

where 

k is the name of the class, 

Int k is the intension of the class, 

Ext k is the extension of the class, 

Extk = Extk U {Tnnh. 

DEFINITION 6. A signature Uk of the class k is the expression 

.I.h -+ h' . • I.i r h' 'l"k 1, ... , 'l"k -+ r, 
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f~ ~ (dlldefault: el); ... ; f~ ~ (dnldefault: en); 

f, I/> are term attribute names, 

d, 8 are domain names, 

e, g, h are values, 

{ } denotes a key attribute list, 

I denotes the integrity constraint. 
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If an attribute is a multivalued attribute, we use ~ ~, __ , ~ ~ or 

• - • - instead of ~, -, ~, • - respectively. 

DEFINITION 7. A signature (J'r of the relation r is the expression 

where 

r [f~ ~ k1 : (Ill, Jll); ... ; f~ ~ k n : (lin, Jl n); 

(I/>~ ~ dl ;···; I/>':~ d m ) 

I/~;···; I~]' 

k is a class name, 

f is a role name, 

I/> is a relationship attribute name, 

d is a domain name, 

I denotes the integrity constraint, 

( II, Jl) denotes the cardinality of a role. 

If an attribute is a multivalued attribute we Use the notation ~ ~ instead 

of~. If the relation r is an aggregation relation we use the notation rparCoC 

instead of r. 

DEFINITION 8. 
i) In information modelling formalism FI, a class signature is an object 

molecule. 
ii) There exist no other object molecules except that defined in i). 
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DEFINITION 9. 
i) In information modelling formalism FI, a relation signature is a predicate 

molecule. 
ii) There exist no other predicate molecules except that defined in i). 

DEFINITION 10. 
i) Let k, kl' ... , kn be class names from Cis. Then the statements 

ki :: k, i = 1, ... , n, 
(kl' ... ,kn)(t,s) :: k, 
(kl' ... ,kn)(t,W) :: k, 
(kI' ... , kn)(P,S) :: k, 
(kI' ... , kn)(P,w) :: k 

are intensional molecular formulas. 
ii) In information modelling formalism FI, object molecules are intensional 

molecular formulas. . 
iii) In information modelling formalism FI, predicate molecules are inten-

sional molecular formulas. ' 
iv) There exist no other intensional molecular formulas except those de­

fined in i), ii) and iii). 

DEFINITION 11. 
i) In information modelling formalism FI, intensional molecular formulas 

are intensional formulas. 
ii) If F and G are intensional formulas, then F& G is an intensional 

formula. 
iii) There exist no other intensional formulas except those defined in i) 

and ii). 

DEFINITION 12. 
i) Let Uk be a signature of the class k. Then the object 

where ek E Extk and b l , ... , b n, aI, ... , ar are term attribute values 
satisfying the integrity constraints 'Y ~; •.• ; 'Y ~ is a term of the class k. 

ii) Let Uk be a signature of the class k. Then the object 

k[tP ~ ~ cl;"'; tP~-+ Cm; 

tP~ -+ hI;"'; tP~ -+ hr], 
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where k is a class name and cI, ... , Cm, hI, ... ,hr are class attribute 
values satisfying the integrity constraints ,~; ... ; , ~ is a term that 
presents the class k. 

iii) In information modelling formalism FI exist no other terms except 
those defined in i) and ii). 

If an attribute is a multivalued attribute, we use the notation -r-r instead 

of -r. 

Relationships are defined in a similar way. 

Let us consider now the object-oriented formalisms. 

DEFINITION 13. An object-oriented modelling formalism is a six-tuple 

where 

Cis is a finite nonempty set of symbols called class names, 

CnstG is a nonempty set of symbols called general constants, 

Atr is a finite nonempty set of symbols called functional constants 

or attribute names, 
Op is a finite nonempty set of symbols called method names or operation 

names, 

31 is a set of term construction rules, 

4>1 is a set of formula construction rules. 

In this definition, a set of modelling primitives is defined as follows 

a = (Cis, CnstG, Attr, Op). 

The reasoning mechanism remained undefined because we did not consider 

it here. In addition, the following assumptions have been made: 

1. The set Cis is defined as Cis = Cis l U Cls 2 where Cis l is a nonempty 

set of symbols called names of lexical classes and Cis I is a set of symbols 

called names of nonlexical classes. 

2. An expression U k is associated with each class name k in Cis. This 

expression is called a signature of class k and has a special form defined 

bellow. The signature Uk is a term construction rule that defines the class k as 

an intensional set of terms. We denote this set as Intk' 

3. A many-to-one mapping type that maps general constants to names of 

lexical classes is defined. We say that the general constant C is a constant of 
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type k, if and only if type(c)=k. The set of all constants of type d is called 

intension of nonlexical class k and denoted as Intk' 

4. An expression /Tattr is associated with each attribute name attr in Attr. 

This expression is called a signature of the attribute attr and has a special fonn 

defined in Section 3. A signature defines one of the following functions: 

• a function attr: Extk x T =} kl' k E Cls 2 , kl E Cis that at each time 
moment tET maps the tenn names of nonlexical class k into the terms 

of class kl' 
• a function attr: {k} x T=} kl' kl E CIs that at each time moment 

tET maps the name of class k into the tenns of class k I (in this case, 
we say that the attribute attr is a class attribute). 

In both cases, we also say that the attribute attr is of type k I' 

S. An expression /Top is associated with each operation name op in Op. 
This expression is called a signature of the operation op and has a special fonn 
defined in Section 3. The signature defines one of the following functions: 

• a function 

op : Extk X Extkl X •.• X Extkn =} K, 

k E Cls 2 , K, kl' ... , k n E Cis, n> 0, 

that maps the tenn names of nonlexical class k and parameters into the 

tenns of class K, 

• a function 

op: {k} x Extkl x ... X Extkn =} K, 

k E Cls 2 , K, kl' ... , k n E Cis, n> 0, 

that maps the name of class k and parameters into the tenns of class kl 

(in this case, we say that operation op is a class operation). 

DEFINITION 14. In the formalism FObj , an object-oriented model of ap­
plication domain .6. at the moment t is a four-touple 

M~,t,FObJ = (Cnst~,t, Objt, Fnnt), 

where 
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Cnsta,t is a finite set of symbols called application constants or objects 
names, 

Obj t is a finite set of objects (terms), 

Fnn t is a finite set of formulas that are true at the moment t. 
In this definition we postulate the existence of one-to-one mapping 

TJF,a: Concepts a ¢:::::::> CIs 

that maps application domain concepts to classes of the formalism F Obj' In 
addition, the following assumptions have been made: 

1. A many-to-one mapping instance_of that maps object names to class 
names is defined. We say that the application constant t is an instance of class k, 

if and only if insatance_of(t)=k. 'The set of all the application constants of 
class k at the moment t is denoted by Extk,t and a set of all possible application 

constants of class k is denoted by Extk' 
2. A many-to-one mapping class: Obj t ~ CIs2 that maps objects to names 

of nonlexical classes is defined. We say that the term t is a term of class k, 

if and only if class(t)=k. The set of all the objects of class k is denoted as 
{ Obj} k. We expect that the terms of class k meet the signature Uk' Besides, 
a one-to-one mapping 

objecCname:{Obj} k,t ¢} Extk,t 

that maps the objects of t class k to the object names and vice versa, is defined. 
In the formalism FObj , a class is defined analogously as in the formalism 

FI (see Definition 5). 

DEFINITION 15. In the object-oriented formalism FObj , a signature Uk of 
the class k is the expression 

k[1/J~ ~ (151 I default: gl);"'; 1/Jr ~ (15m I default: gm); 

.I.i l h· . • I.i r h' 'f'k -+ 1>"" 'f'k -+ r, 

[TiJ : {pi }~JB~@II:L···, lI:~l {ZJ} ~ 11:1;"'; 

[T:J: {pn~;B~@lI:t,···, 1I:{/{Zn ~ II:t; 

f~ ~ (d1 I default: el); ... ; tk ~ (dn I default: en); 

¢~ • al; ... ; ¢~. -+ a1; 

[T2J : {p2}~~W~@lI:i, ... , lI:~l {Z~} ~ leI;"'; 

[T:J: {P:}~~wr'@lI:tv,···, Ie~ {Z~} ~ II:W; I 'Y~; ... ;'Y~], 
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where 

r, ¢ are object attribute names, 

w is an object operation name, 

e, g, h are values, 

() is a class operation name, 

/\', (J' are class names, 

P denotes operation preconditions, 

Z denotes operation postconditions, 

T denotes triggers, 

e denotes specifiers public and private, 

I denotes the integrity constraint. 

If an attribute is a multivalued attribute we use => =>, --, =>=> or 
• _ • _ instead of =>, _, =>, • - respectively. 

DEFINITION 16. 
i) In the object-oriented formalism FObj , a class signature is an object molecule. 
ii) There exist no other object molecules except that defined in i). 

DEFINITION 17. 
i) Let k, kl' ... , kn be class names from CIs. Then the statements 

k j ::k,i= 1, ... ,0, 
< kl ... , k n >(t,s):: k, 

< kl ... , kn >(t,w)=: k, 

< kl ... , kn >(p,s)=: k, 

< kl ... , kn >(p,w)=: k 

are intensional molecular formulas. 
ii) In the object-oriented formalism FObj ' object molecules are intensional 

molecular formulas. 
iii) There exist no other intensional molecular formulas except those defined in 

i) and ii). 

DEFINITION 18. 
i) In the object-oriented formalism FObj , intensional molecular formulas are 

intensional. 
ii) If F and G are intensional formulas, then F&G is an intensional formula. 
iii) There exist no other intensional formulas except those defined in i) and ii). 
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DEFINITION 19. 
i) Let Uk be a signature of the class k. Then the object 

ek[f~ --+ bl ; ... ; r: --+ bo; 

¢~ --+ al;···; ¢~ --+ ar; 
1 w· ] wk --+ PI; ... ; Wk -+ Pw , 
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where ~ E Extk, bj E bj, ~ E bj, bj,bj E Cis, i = 1,2, ... ,r, j = 
1, 2, ... , n, PI"'" Pw are values of the object operations, and all the values 
satisfy integrity constraints I~; ... ; Ik is an object of the class k. 

ii) Let Uk be a signature of the class k. Then the object 

k[?jIi -+ CI; .. . ;?jI~ -+ Cm; 

Bi -+ ql;"'; B~ -+qt], 

where k is class name Cj E ''1, Kj E Cis, i = 1,2, ... , m, ql"'" ~ are 
values of the class operations, and all the values satisfy integrity constraints 
I~; ... ; Ik is an object that represents the class k. 

iii) In the object-oriented formalism FObj , exist no other objects except those 
defined in i) and ii). 
If an attribute is a multivalued attribute, we use the notation -+--+ instead 

of -+. 
Now we can compare information modelling and object-oriented modelling 

formalisms. 
1. Application domain entities have descriptive, organisational and opera­

tional characteristics. Object-oriented modelling formalisms can model charac­
teristics of all kinds. Information modelling formalisms can model descriptive 
and organisational characteristics only. 

2. Object-oriented modelling formalisms model descriptive and organisa­
tional characteristics in a uniform way (by attributes). Information modelling 
formalisms model descriptive characteristics by attributes and organisational 
characteristics by relations. 

Of course, a strict boundary between information modelling formalisms and 
object-oriented modelling formalisms does not exist because various hybrid 
formalisms can be defined. 

8. Concluding remarks. This paper analyses the software system engineer­
ing discipline and its science. It aims to identify and systematise software engi­
neering paradigms, principles, processes, and objects. An attempt to adapt the 
notation developed in object-oriented logics (Ail-Kaci and Nasr, 1986; Kifer et 
al., 1993) to the description of conceptual modelling formalisms has been made. 
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Using this notation information modelling formalisms and object-oriented for­
malism have been described and compared. 
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PROGRAMQ SISTEMQ INZINERIJOS ANALIZE 

Albertas CAPLINSKAS 

Straipsnyje analizuojama program\! sistem\! in~inerija kaip savarankiska in~inerijos 

mokslo saka. Bandoma isryskinti ir sistematizuoti tos mokslo sakos paradigmas ir prin­
cipus bei jos nagrinejamus procesus ir objektus. Siilloma programl.l sisteml.l in~inerijoje 

naudojamiems koncepcinio modeliavimo formalizmams aprasyti pritaikyti moderniojoje 

logikoje sukUl'U} objektinil.l logik\.l aprasymo notacijll. Naudojant tokill notacijll, forma­
lizuojami ir lyginami informacinio ir objektinio modeliavimo formalizmai. 


