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Abstract. In the present paper, a method of global optimisation (structure adapted
search) is proposed. It uses the grid of trial points which are more uniformly distributed
for the projections on variables or their groups that make more influence.

The paper uses a set of test models to demonstrate the merit of the approaches. The
efficiency of structure adapted search as compared to the random search is investigated.
The results of using the new approach may be treated as a success.
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1. Introduction. Passive algorithms of global optimisation are of interest,
especially at the beginning of optimisation, as their trial points do not depend
on the known function values. One of the most important features of passive
algorithms of global optimisation is the uniformity of trial points according to
some criteria in the minimisation region — a multidimensional cube K™.

The uniformity of trial points in a grid must be good not only for the entire
optimisation region but also for the faces of smaller dimensionality. We can fix s
indices 1 € 41 < -+ < is € n (1 € s < n), and denote the s — dimensional
face of K™ as Kj, . .;,. Then the projections of points on every face K, . ;, and
for all s (1 < s < n) must also be uniformly distributed. In a multidimensional
. case there are principle difficulties in achieving the uniformity for all projections
simultaneously.

Random search is widely used in global optimisation as a passive algorithm.
The main reason, explaining the popularity of random search is that it is simple
to be realised on a computer. However, the realisation of uniform pseudo random
points results in a nonuniform distribution of points. Special grids with a better
uniformity were proposed (Halton, 1960; Niederreiter and Peart, 1982; 1986;
Sobol’, 1969; 1979).

In this paper we tackle the other end of the problem: we seek to adapt the uni-
formity of various projections to the degree of influence of the variables or their
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groups. In practical problems the degree of influence is very different (Courtois,
1985; Saltenis, 1989) so the way of adapting the uniformity may be efficient.

In Section 2 we consider the special grid used for LP; search. In Section 3
the structure characteristics of multidimensional problems are introduced. They
characterise the influence of variables or their groups and may be used in con-
structing our grid. The algorithm of structure adapted search and some two- di-
mensional examples are presented in Section 4. In Section 5 we can find test
problems which were used for experimental investigations. And the results of
the investigations are presented in Section 6. Finally, Section 7 contains a brief
discussion and conclusions of the paper.

2. LP; search and requirements for uniformity of a grid. The efficiency
of passive global search using special grids must depend on the problem struc-
ture, on the degree of influence of the variables or their groups on the objective
function. The LP, sequences (Sobol’, 1969; 1979) have a better uniformity than
pseudo random grids. Projections of the points on the coordinate axes (on one-
dimensional faces K;) are extremely uniform for all i, while the projections on
the faces of greater dimensionality are not so uniform. The uniformity of projec-
tions on faces K; ;41 and K ;11 ;42 depends on the number i (§a1tenis, 1984).
So the efficiency of LP, search mainly depends on the proper numbering order
of variables, according to the structure of the problem.

3. Structure characteristics of a multidimensional problem. A decom-
position of a multivariate function into the summands of different dimensionality
(Cukier et al., 1975; Saltenis, 1989; Saltenis, 1996; Sobol’, 1990) makes the base
for the structure analysis which we use in structure adapted search.,

Let a function

f(X)'—‘f(fl'l,...,fl'n),

be defined, for simplicity, on the unit cube K™ (0 < z1 € 1,...,0 < z,, < 1):

X e K"
Sometimes a short notation f will be used for f(z1,..., ).
Let us introduce some notation for the domain set of the function f, which
is a Cartesian product of basic domains Qy,...,Qy:

Q=0 x -+, xQ,
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and for special domains:

Q‘il...is:th"'XQia: 1€ <... <&, s=1,...,n,

Q(i)=Q1X---XQi-1XQ¢+1X~--XQn, 1,...,n,

Q(,-j)=Q1X---XQi_1XQi+1X'-‘XQj_1XQ]'.HX---XQ,,,
4hj=1,...,n, i<j.

In the general case, the domain Q;, .. ;,) is defined in a similar way.

We use groups of indices %3,...,%5, wherel1 < 4; < ... < i, < n, s =
1,...,n, and denote the sum consisting of 2" — 1 terms as:
— n
ZTil...i, = ZTz + EZ Tij+--+Tia.n.
i=1 1I€i<jgn

The decomposition of the function f into the summands of different dimen-
sionality

f= fo+Zfil,n-in(zil"""xix) (1)

is unique and orthogonal for each function f integrable on K™ (Sobol’, 1990), if
fo is constant and the integrals of summands (1) are equal to zero:

1
/fi;...i,(miu---:xi,)dxik=07 1<k<s
0

The summands of decomposition (1) may be found just like some integrals.
Let us introduce the following notation for the function of s variables:

fi1...i, = / f,
Q(t1...35)

where the integral is over all basic domains except §2;,,...,$;,.
Then, after integrating (1) on €2, the constant summand will be equal to
fo= [ £ @
Q

after integrating (1) on £(;), one-dimensional summands will be equal to

fi(m‘i)=fi—f0’ i=17"'7n,
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Table 1. The structure characteristics of some simple functions

f(X) D1 D2 Di
z1 + X2 0.5 0.5 0
1,2 — ﬂ%ﬂ 0 0 1

after integrating (1) on Q(;;), two-dimensional summands will be equal to
fij(w’i7xj) = fij - f0 - fi(xi) - fj(xj)v 27.7 = la RN () 1< j’

and so on.
The system of structure characteristics:

D= /Z\:Dil...isa

D;,..q, =/(f¢1...¢,,)2,
Q

where

D= /Q ()2 - (fo)?

3

C))

was proposed, investigated by (Saltenis, 1989) and applied in analysing the struc-
ture of optimisation problems. The structure characteristics D;, . ;, indicate the
degree of influence of the respective variable groups in the approximation. Usu-
ally the characteristics are normalised (the sum of all characteristics is equal to

one).

The normalised structure characteristics of some simple functions (0 <

z1 € 1, 0 € 22 < 1) are presented in Table 1.

If we know the values of the function f(X) for some points X7 (j =
1,...,N), then the Monte-Carlo method is used for evaluations basing on (2),

(3) and (4):
1 X j
fO ~ ]_V'ngf(X )v

D+ () 7 2 (70X

where N is the number of samples,
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X7 = (2],...,x}) are random points of dimensionality 7, uniformly dis-
tributed in 2.
s coordinates Y7 = (z;,,...,7;,) must be identical for pairs of random

points used for the evaluation of D;, . ;, (Sobol’, 1990):
1 & o
mwu+mﬁzﬁgywmmﬁwawx

where Y7 are random points of dimensionality s, uniformly distributed in ©;, . ;,,
Z7 and U’ are random points of dimensionality n — s, uniformly distributed
in Q. 4,

4. Algorithm for generating a structure adapted grid. One of the
characteristics of uniformity of a set of points is the dispersion of points
XLX2%. . XN X = (],...2L):

d(X!,X%...,X")= sup min |X - X7]. 5)
0S XL 1SN
We find here the closest point to X (the distance to the closest point is equal
to . £n1<nN |X — X7]) and choose X in the worst way.

EVAS

In a one-dimensional case, the lower bound for d is equal to:

1

d(X', Xx%,...,xN) > 5N

The uniformity of projections of the points on faces is measured by the same
dispersion of points (5). The difference consists only in calculating the distance
|X — X73|. For example, in the case of projections on one-dimensional faces K;

the distance will be equal to:
X — X7| = |as ~ .

In the general case, the dispersions of projections on s-dimensional faces
K;,,... i, are equal to:

diy,...is = SUD min\/ > (m-a)>

0<X <1 1N

=11 ,000y1s
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If we want to get a grid with the best uniformity of projections on the s-
dimensional face K, . ;, we have to minimise the dispersion:
; 1 y2 N
Xli)gl’l.l:l_’xN dil,...,i, (X X vX )
The best uniformity for all projections simultaneously is a multicriterial op-

timisation problem. If we want to get the solution of the problem we have to
minimise some weighted sum:

. - 1 2 N
Xl,}?}},r,]:,XN Zwil,...,iudil,...,'i,. (X aX g ,X ), (6)

where /Z\ denotes the sum consisting /gf 2™ — 1 terms for all possible indices
i1,...,8g and w;,.. 4, are weights (Ewh,--.,ix = 1), used for multicriterial
minimisation.

It is natural to use the system of normalised structure characteristics instead

of weights:
Di]_,...,i,,

YD, ...

The main steps of the algorithm for minimising the weighted sum (6) are:

1. Generate N starting random points X1, X2,..., XV uniformly
distributed in the minimisation region. _

2. Find the closest point to the point X! in one of possible projections on
faces K, .. i,

3. Change the coordinates of the point X! to increase the distance to the
closest point. The amount of this change is proportional to the weight

Wiy,.ciy =

Wiy,...ia
4. Repeat Step 3 for all projections on faces Kj, ... ;,.
. Repeat Steps 2, 3 and 4 for all points X1, X2,..., XV,
6. Repeat Steps 2, 3, 4 and 5 until is possible to reduce the weighted
sum (6).

We use the term a “structure adapted” (SA) grid in this case. Thus, the points
of the SA grid will be more uniformly distributed for the main variables and their
groups.

Figs. 1-4 present simple illustrations of the SA grid in the case of n =
2, N=4.

In Fig. 1 the weights were equal to D12 = 1; Dy = 0; Dy = 0. We can see
four points uniformly distributed on the two-dimensional region, but their projec-
tions on axes are extremely nonuniform (some projections are even the same). In

9]
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X2 X2
1 1
o o | | Q o
O o | Q
Fig. 1. SA grid in the case Fig. 2. SA grid in the case
Dy = 1; D, = Dy; = 08 D =
0; Dy =0. 0.1; Dy =0.1.
X, X,
1 1
o o)
.............. Q O
@
¢ i
------- 9 |
| | 9 |
0 . * 1 Xl 0 L . 1 Xl
Fig. 3. SA grid in the case Fig. 4. SA grid in the case
Dz = 06; D; = D2 = 0, Di =
0.2; Dy =0.2. 0.5; Dy = 0.5.

Fig. 2 and Fig. 3 the uniformity of projections is introduced step by step. Fig. 4 il-
lustrates the case of maximal uniformity of projections, where no attention is paid
to the uniformity in the two-dimensional region (D12 = 0; Dy = 1; Dy = 1).

We can see that a cubic grid is the optimal grid in the case of maximal in-
teraction (D12 = 1) while the grid with uniformly distributed projections on the
coordinate axis is optimal, if the interaction is absent (D2 = 0).
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Table 2. The structure characteristics of Branin test problem

D, D, Ds2

0.14 0.25 0.61

5. Basic test problems and their structure characteristics. We use a set
of test models of various dimensionality (n = 2,6, 20) in our experiments to
demonstrate the merit of the approaches.

The first two-dimensional multiextremal Branin test problem

f(X = (:rz - 45—1:2- + ;2:1 —6)2 +10(1 - §17—r) cos 1 + 10,

-5 <21 €10, 0< 72 <15,

was proposed in (Dixon and Czego, 1978) and is widely used. The values of its
structure characteristics are investigated and presented in Table 2. One ought to
pay attention to the relatively high interaction of variables (D12 = 0.61).

The second test problem was proposed in Mathar and Zilinskas (1994). The
objective function of the problem:

n

2
F(X) =Y (65 — dis(X)) (7
i<j
where X = (211,...,%n1, 12, . ., Zn2) and d;;(X) denotes the Euclidean dis-

tance between the points x;1, Z;2 and 251, zjo. The matrix (6;;) represents given
pairwise dissimilarities among n objects. In multidimensional scaling the objec-
tive function (7) is called STRESS (Green et al., 1989). It formalises the problem
to find n points in a metric space so that the interpoint distances fit the given
dissimilarities. One of the proposed triangular matrixes of distances for n = 10
was used in our test problem. It is presented in Table 3. The matrix corresponds
to the experimental data on Cola testing in (Green et al. (1989).

We use the test function in the case n = 10 (dimensionality is equal to 20)
with an abbreviated title “Mathar Zilinskas — 20”. The optimisation region is the
cube [—1.2,1.2]%0.

The structure characteristics of the test function are symmetric. All first or-
der characteristics D; (i = 1,...,20) are approximately equal, all second order
characteristics D;; (1 = 1,...,19; j = 2,...,20; i < j) are approximately
equal and so on. Their values are presented in Table 4. '
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Table 3. The matrix of distances

*»* 127 169 204 309 320 286 3.17 321 238
* 143 235 318 322 256 . 3.18 3.18 231

** 243 326 327 258 318 3.18 242

k285 288 259 312 317 194

** 155 312 131 170 285

** 306 164 136 28I

¥ 3,00 295 256

*»* 132 291

¥ 297
*%

Table 4. The structure characteristics (in %) of the Mathar Zilinskas — 20
test function ,

First order Second order Third order Characteristics
characteristics  characteristics  characteristics of higher
D; D;; Dijix order
2.1 1.1 0.1 0

The third test function of lower dimensionality 6 is based on the same prob-
lem of multidimensional scaling in case n = 3 (abbreviated title — “Mathar Zilin-
skas - 6”). It uses three first rows and three first columns of the matrix of distances
in Table 3. The optimisation region is a cube [—1.2,1.2]°. ‘

The values of its structure characteristics are presented in Table 5.

The values of structure characteristics not included into the table (for exam-
ple D3, Dy) are approximately equal to zero.

6. Experiments and results. We investigate the efficiency of SA search as
compared to the random search by analysing the optimisation results of some test
function.

The experimental investigations of the efficiency are based on the averaged
results of multiple optimisation. It is an obvious way to average the results of
optimisation in the case of random search: we can repeat the optimisation by
using different random trial points for the same test function.

It is difficult, however, to obtain some averaged results for SA search because
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Table 5. The structure characteristics (in %) of the Mathar Zilinskas - 6

test problem
Structure The value of the Structure The value of the
characteristic characteristic characteristic characteristic
D, 0.2 Dz 0.4
D, 1.3 Dhas 0.7
Ds 0.8 Drss 0.6
Dy, 39 Di3s 0.3
D3 154 Dyys 1.5
Dia 04 Dhge 0.7
Dsg 0.5 Daas 1.7
Dg3 48 Da3s 1.9
Das 0.7 Da3s 2.1
D3e 0.5 D3ys 0.3
Dys 5.0 D346 1.6
Dyg 15.3 Dsse 0.3
Dsg 7.2 Diogs 6.2
D23 34 Diass 12.3
Dioy 1.5 Daase 6.9
Dhss 1.8

the trial points in this case may be treated as deterministic. The averaged results
may be obtained, if we use the test functions of some class f()(X) (i is the
current number of the function in the class, ¢ = 1,..., M) generated on the base
of some basic test function f(X). Let us formulate the requirements to £ (X):

a) the minimal values for all the test functions of the class are equal;

. (3 — mi - .
Juin_ f (X) Xneufgﬂf(X), (i=1,...,M);

b) the minimum points

argmin f)(X)
XeKn

are different for 2 = 1, ..., M and uniformly distributed at random
in K™;
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minf(N)

- ;\

24

\\ —=-SA

19 search
\ --8— Random

14 ~$ search

\ —e—Bad SA

0.9 \ search

04

-0.1 N
1 7 10 20 50

Fig. 5. Investigation by the Branin test function.

¢) the structure characteristics are equal to the characteristics of the basic
problem:
D(t) =D’i1...i,7 2=1avM

11...1’.;

The next procedure satisfies the requirements formulated above.
fOX) = f(X7),

where

1 J(i) is a random value, uniformly distributed in the interval [0, 1].

The results of experimental investigation are presented in Figs. 5—7 for three
classes of test functions.

The averaged relationships min f (V) are approximately linear, because the
logarithmic scale was used for N and the values of test functions were trans-
formed by a convenient monotonous transformation (usually by logarithmic).
The linearity of the dependencies is useful while extrapolating our experimen-
tal results for greater values of V.

We can see two lines in each figure (except for Fig. 5): one for random
search, the other for SA search. Let us denote the minimal function value
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~3
\\ —&— Random
-14 \ search
——SA

-1.6
\4\ search

24 N
7 10 20 50

Fig. 6. Investigation by the Mathar Zilinskas - 6 test function.

min f(X)
425 p

\ —&— Random

4.15 < search
\ ——SA

41 search

\0\

4 N
3 5 7 10

Fig. 7. Investigation by the Mathar Zilinskas - 20 test function.

4.05

achieved after IV trial points of SA search as minf (IN) and the minimal func-
tion value achieved after N’ trial points of random search as minf’(N’). Then
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the efficiency of SA search can be evaluated by the ratio:

‘ N’
E=2 ®)
where the condition
' minf (N) = minf'(N') B ()]

must be satisfied.

The ratio E' shows how many times the number of trial points IV is reduced
if we use the SA search and the minimal function values are the same in both
cases.

In the linear case and for logarithmic scale

minf (N) = klog(N), - (10)

and
minf'(N') = k' log(N'). 11)

Then after substituting (10) and (11) into (8) and (9) we can get:
E=N&-D, (12)

Coefficients k and k' may be calculated directly from linear dependencies
illustrated by the graphs in Figs. 5-7, so we can simply evaluate the forecast of
the efficiency E of SA search as compared to random search by (12).

Fig. 8 illustrates the efficiency for various test functions and various V.

The forecast of the efficiency is higher for the Branin test function because its
structure is less complicated in comparison to the Mathar Zilinskas test functions.
The SA search may be 2-6 times more efficient for the Branin function while
for other test functions the efficiency amounts 1.8-2.2 only for extremely large
numbers of V.

The third graph “Bad SA search” is presented for the Branin function in
Fig. 5. It illustrates the efficiency of SA search with especially changed weights of
uniformity. In this case, the uniformity was maximised only for two-dimensional
projections while the uniformity of one-dimensional projections remained bad.
In other words, the “bad SA search” assumed that structure characteristics of the
test function are equal to D; = 0; D2 = 0; Dj2 = 1, while the true values were
equal to: D; = 0.14; Dy = 0.25; D13 = 0.61. We can sce that this bad SA
search is considerably worse than the pure random search.
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E
7
6 /
5 / —e—Branin
4 / —~—#— Mathar Zilinskas - 20
/ —a&— Mathar Zilinskas - 6
3
2 =i
1 } N
1 100 10000 1000000

Fig. 8. Efficiency of SA search.

7. Conclusions. The main point of this paper was to show that the SA
search can be more efficient than other passive global search algorithms, espe-
cially in the cases where the first order structure characteristics are relatively
small.

At the same time we must bear in mind that the SA search uses structure
characteristics of the problem. The statistical evaluation of the characteristics is
relatively expensive, so the general efficiency in some cases may be reduced. In
the cases, where the structure is approximately known a priori (for example, the
structure is common for all problems from some class), the SA search may be
used especially in a proper way.
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TASKAI, KURIU ISDESTYMO TOLYDUMAS ATITINKA
DAUGIAMACIO UZDAVINIO STRUKTURA

Vydiinas SALTENIS

Globalinei optimumo paieskai naudojami taSkai, tolygiai pasiskirste daugiamatéje
leistinoje srityje. TacCiau taSky pasiskirstymo tolygumo reikia siekti ir visose galimose
tasky projekcijose i koordinaciy asis ir jy grupes. Sitiloma generuoti taSkus, tolygiau pa-
siskirsCiusius projekcijose i kintamuosius ir jy grupes, turinCias didesne itaka uZdavinio
sprendimui. Tam naudojamasi daugelio kintamuju optimizavimo uZdavinio struktiiros
analize. Sukurtas generavimo algoritmas.

Atlikti eksperimentai, kurie jvertina tokio metodo efektyvuma, lyginant ji su atsitik-
tine paieSka.



