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Abstract. In the present paper, a method of global optimisation (structure adapted 
search) is proposed. It uses the grid of trial points which are more uniformly distributed 
for the projections on variables or their groups that make more influence. 

The paper uses a set of test models to demonstrate the merit of the approaches. The 
efficiency of structure adapted search as compared to the random search is investigated. 
The results of using the new approach may be treated as a success. 
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1. Introduction. Passive algorithms of global optimisation are of interest, 

especially at the beginning of optimisation, as their trial points do not depend 

on the known function values. One of the most important features of passive 
algorithms of global optimisation is the unifonnity of trial points according to 

some criteria in the minimisation region - a multidimensional cube Kn. 
The unifonnity of trial points in a grid must be good not only for the entire 

optimisation region but also for the faces of smaller dimensionality. We can fix s 
indices 1 :::;; il < ... < is :::;; n (1 :::;; s :::;; n), and denote the s - dimensional 

face of Kn as Kil ... is . Then the projections of points on every face Kil ... is and 
for all s (1 :::;; s :::;; n) must also be unifonnly distributed. In a multidimensional 

case there are principle difficulties in achieving the unifonnity for all projections 

simultaneously. 
Random search is widely used in global optimisation as a passive algorithm. 

The main reason, explaining the popularity of random search is that it is simple 
to be realised on a computer. However, the realisation of unifonn pseudo random 

points results in a nonunifonn distribution of points. Special grids with a better 
unifonnity were proposed (Halton, 1960; Niederreiter and Peart, 1982; 1986; 
Sobol', 1969; 1979). 

In this paper we tackle the other end of the problem: we seek to adapt the uni­
fonnity of various projections to the degree of influence of the variables or their 
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groups. In practical problems the degree of influence is very different (Courtois, 
1985; Saltenis, 1989) so the way of adapting the uniformity may be efficient. 

In Section 2 we consider the special grid used for LPT search. In Section 3 
the structure characteristics of multidimensional problems are introduced. They 
characterise the influence of variables or their groups and may be used in con­
structing our grid. The algorithm of structure adapted search and some two- di­
mensional examples are presented in Section 4. In Section 5 we can find test 
problems which were used for experimental investigations. And the results of 
the investigations are presented in Section 6. Finally, Section 7 contains a brief 
discussion and conclusions of the paper. 

2. LP T search and requirements for uniformity of a grid. The efficiency 
of passive global search using special grids must depend on the problem struc­
ture, on the degree of influence of the variables or their groups on the objective 
function. The LP T sequences (Sobol', 1969; 1979) have a better uniformity than 
pseudo random grids. Projections of the points on the coordinate axes (on one­
dimensional faces K i ) are extremely uniform for all i, while the projections on 
the faces of greater dimensionality are not so uniform. The uniformity of projec­

tions on faces Ki,i+l and Ki,i+l,i+2 depends on the number i (Saltenis, 1984). 
So the efficiency of LP T search mainly depends on the proper numbering order 
of variables, according to the structure of the problem. 

3. Structure characteristics of a multidimensional problem. A decom­
position of a multivariate function into the summands of different dimensionality 
(Cukier et al., 1975; Saltenis, 1989; Saltenis, 1996; Sobol', 1990) makes the base 
for the structure analysis which we use in structure adapted search. 

Let a function 

f(X) = f(Xl, ... , xn ), 

be defined, for simplicity, on the unit cube Kn (0 ~ Xl ~ 1, ... , 0 ~ Xn ~ 1): 

Sometimes a short notation f will be used for f(Xb .. . , xn). 
Let us introduce some notation for the domain set of the function f, which 

is a Cartesian product of basic domains rh, ... , On: 
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and for special domains: 

Oi1 ... i. = Oil X ••. x Oi., 1 ~ il < ... < is ~ n, s = 1, ... , n, 
O(i) = 0 1 X ••• x Oi-1 x OH1 X ••. x On, 1, ... ,n, 
O(ij) = 0 1 X ••• X Oi-1 X OH1 X ••• X OJ-1 X OJ+1 X ••• X On, 

i,j = 1, ... ,n, i <j. 

In the general case, the domain 0(i1 ... i .) is defined in a similar way. 
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We use groups of indices i1," ., is, where 1 ~ i1 < ... < is ~ n, s = 
1, ... , n, and denote the sum consisting of 2n - 1 terms as: 

n 

LTi1 ... i. = LTi + LLTij + ... +T12 ... n' 

i=l l~i<j~n 

The decomposition of the function f into the summands of different dimen­
sionality 

(1) 

is unique and orthogonal for each function f integrable on Kn (Sobol', 1990), if 
fo is constant and the integrals of summands (1) are equal to zero: 

The summands of decomposition (1) may be found just like some integrals. 
Let us introduce the following notation for the function of s variables: 

where the integral is over all basic domains except Oil' ... , Oi •. 
Then, after integrating (1) on 0, the constant summand will be equal to 

(2) 

after integrating (1) on O(i). one-dimensional summands will be equal to 
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Table 1. The structure characteristics of some simple functions 

f(X) 

Xl +X2 
Xl +X2 

XIX2 - --2-

0.5 

o 
0.5 

o 
o 

after integrating (1) on O(ij), two-dimensional summands will be equal to 

and so on. 
The system of structure characteristics: 

D - '\;'" D· . 
- ~ tl· .. t s ' 

D· . - r (f. .)2 
~1'''~8 - in ~1"'~8 , 

where 

D = In (/)2 - (/0)2 

(3) 

(4) 

was proposed, investigated by (Saltenis, 1989) and applied in analysing the struc­
ture of optimisation problems. The structure characteristics D i1 ... i ., indicate the 
degree of influence of the respective variable groups in the approximation. Usu­

ally the characteristics are normalised (the sum of all characteristics is equal to 
one). 

The normalised structure characteristics of some simple functions (0 ~ 
Xl ~ 1, 0 ~ X2 ~ 1) are presented in Table 1. 

If we know the values of the function f(X) for some points Xj (j = 
1, ... , N), then the Monte-Carlo method is used for evaluations basing on (2), 
(3) and (4): 

1 N 
fo ~ N j~l f(Xj), 

D + (/0)2 ~ ~ j~l (J(Xj))2, 

where N is the number of samples, 
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Xi = (x{, ... , x~) are random points of dimensionality n, uniformly dis­
tributed in n. 

s coordinates yi = (Xii,"" Xi.) must be identical for pairs of random 
points used for the evaluation of Dil ... i • (Sobol', 1990): 

N 

Dil ... i • + (/0)2 ~ ~ L f(yi, Zi)f(yi, Ui ), 
i=l 

where yi are random points of dimensionality s, uniformly distributed in n il ... i ., 

Zi and Ui are random points of dimensionality n - s, uniformly distributed 

in n(il ... i.)' 

4. Algorithm for generating a structure adapted grid. One of the 
characteristics of uniformity of a set of points is the dispersion of points 
X l X2 XN. Xi - (_1 xi). , , ... , , - XI,'" n' 

d(XI, X2, ... , xn) = sup min IX - Xii. (5) 
O,X,II'i,N 

We find here the closest point to X (the distance to the closest point is equal 
to min IX - Xii) and choose X in the worst way. 

l'i,N 
In a one-dimensional case, the lower bound for d is equal to: 

I 2 N) 1 d(X ,X , ... ,X ~ 2N' 

The uniformity of projections of the points on faces is measured by the same 
dispersion of points (5). The difference consists only in calculating the distance 
IX - Xii. For example, in the case of projections on one-dimensional faces Ki 
the distance will be equal to: 

In the general case, the dispersions of projections on s-dimensional faces 

Kil, ... ,i. are equal to: 
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If we want to get a grid with the best uniformity of projections on the s­

dimensional face K i1 •...• i• we have to minimise the dispersion: 

min di1 ... i (xl, X 2 , .•. , XN). 
Xl,X2, ... ,XN ,,11 

The best uniformity for all projections simultaneously is a multicriterial op­
timisation problem. If we want to get the solution of the problem we have to 
minimise some weighted sum: 

min "'w· . d· . (Xl X2 xN) 1 2 N L..J 1.1,···,ts 'l.t, •.• ,ts , , ••• , , x.x ..... x 
(6) 

where I: denotes the sum consisting of 2n - 1 terms for all possible indices 

ib"" is and Wil ..... i. are weights (I:Wil ..... i. = 1), used for multicriterial 
minimisation. 

It is natural to use the system of normalised structure characteristics instead 
of weights: 

D· . w. . _ tl, .•. ,1.,!! 
tllo •• ,ts - ---

""D· . LJ 'll,,··,t s 

The main steps of the algorithm for minimising the weighted sum (6) are: 
1. Generate N starting random points Xl, X2, ... , X N, uniformly 

distributed in the minimisation region. 
2. Find the closest point to the point Xl in one Of possible projections on 

faces K i1 .... ,is • 

3. Change the coordinates of the point Xl to increase the distance to the 
closest point. The amount of this change is proportional to the weight 

wit, ... ,is • 

4. Repeat Step 3 for all projections on faces Ki1, ... ,i •. 

5. Repeat Steps 2, 3 and 4 for all points Xl, X2, ... , X N. 
6. Repeat Steps 2, 3, 4 and 5 until is possible to reduce the weighted 

sum (6). 
We use the term a "structure adapted" (SA) grid in this case. Thus, the points 

of the SA grid will be more uniformly distributed for the main variables and their 
groups. 

Figs. 1-4 present simple illustrations of the SA grid in the case of n = 
2, N=4. 

In Fig. 1 the weights were equal to Dl2 = 1; Dl = 0; D2 = O. We can see 
four points uniformly distributed on the two-dimensional region, but their projec­
tions on axes are extremely nonuniform (some projections are even the same). In 
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X2 
1.------------, 
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O~-~----~-~1 Xl 

X 2 

Fig. 1. SA grid in the case 

Dl2 = 1; Dl = 
0; D2 = O. 

lr--------~ 

······························9 

·············0 

I 
-::::::1---l----------r 
O~-~~--~~~l Xl 

Fig. 3. SA grid in the case 
D12 = 0.6; Dl = 

0.2; D2 = 0.2. 
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Fig. 2. SA grid in the case 

Dl2 = 0.8; Dl = 
0.1; D2 = 0.1. 

lr----------. 
............... ·········-········0 

············T 
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I ' 

'·'9 ! ! 
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Fig. 4. SA grid in the case 

Dl2 = 0; Dl = 
0.5; D2 = 0.5. 

Fig. 2 and Fig. 3 the uniformity of projections is introduced step by step. Fig. 4 il­

lustrates the case of maximal uniformity of projections, where no attention is paid 
to the uniformity in the two-dimensional region (Dl2 = 0; Dl = 1; D2 = 1). 

We can see that a cubic grid is the optimal grid in the case of maximal in­
teraction (Dl2 = 1) while the grid with uniformly distributed projections on the 
coordinate axis is optimal, if the interaction is absent (D12 = 0). 
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Table 2. The structure characteristics of Branin test problem 

0.14 0.25 0.61 

5. Basic test problems and their structure characteristics. We use a set 
of test models of various dimensionality (n = 2,6,20) in our experiments to 
demonstrate the merit of the approaches. 

The first two-dimensional multiextremal Branin test problem 

( 5.1 5 )2 ( 1 ) 
f{X = X2 - 471'2 + :;;:Xl - 6 + 10 1 - 871' COS Xl + 10, 

-5 ::;:;; Xl ::;:;; 10, 0 ::;:;; X2 ::;:;; 15, 

was proposed in (Dixon and Czego, 1978) and is widely used. The values of its 
structure characteristics are investigated and presented in Table 2. One ought to 
pay attention to the relatively high interaction of variables (Dl2 = 0.61). 

The second test problem was proposed in Mathar and Zilinskas (1994). The 
objective function of the problem: 

n 

f{X) = L (8ij - dij{X»2 (7) 
i<j 

where X = (xu, ... , Xnb Xl2,··., Xn2) and dij{X) denotes the Euclidean dis­
tance between the points Xil, Xi2 and Xj1, Xj2. The matrix (8ij ) represents given 
pairwise dissimilarities among n objects. In multidimensional scaling the objec­
tive function (7) is called STRESS (Green et al., 1989). It formalises the problem 
to find n points in a metric space so that the interpoint distances fit the given 
dissimilarities. One of the proposed triangular matrixes of distances for n = 10 
was used in our test problem. It is presented in Table 3. The matrix corresponds 
to the experimental data on Cola testing in (Green et al. (1989). 

We use the test function in the case n = 10 (dimensionality is equal to 20) 
with an abbreviated title "Mathar Zilinskas - 20". The optimisation region is the 
cube [-1.2,1.212°. 

The structure characteristics of the test function are symmetric. All first or-
der characteristics Di (i = 1, ... ,20) are approximately equal, all second order 
characteristics Dij (i = 1, ... ,19; j = 2, ... ,20; i < j) are approximately 
equal and so on. Their values are presented in Table 4. 
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Table 3. The matrix of distances 

** 1.27 1.69 2.04 3.09 3.20 2.86 3.17 3.21 2.38 
** 1.43 2.35 3.18 3.22 2.56 3.18 3.18, 2.31 

** 2.43 3.26 3.27 2.58 3.18 3.18, 2.42 
** 2.85 2.88 2.59 3.12 3.17 1.94 

** 1.55 3.12 1.31 1.70 2.85 

** 3.06 1.64 1.36 2.81 
** 3.00 2.95 2.56 ' 

** 1.32 2.91 
** 2.97 

** 

Table 4. The structure characteristics (in %) of the Mathar Zilinskas - 20 
test function 

First order Second order Third order Characteristics 
characteri stics characteristics characteristics of higher 

Di' Dij Dijk order 

2.1 1.1 0.1 0 

The third test function of lower dimensionality 6 is based on the same prob­
lem of multidimensional scaling in case n = 3 (abbreviated title - "Mathar Zilin­
skas - 6"). It uses three first rows and three first columns of the matrix of distances 
in Table 3. The optimisation region is a cube [-1.2,1.2]6. 

The values of its structure characteristics are presented in Table 5. 
The values of structure characteristics not included into the table (for exam­

ple D3 , D4) are approximately equal to zero. 

6. Experiments and results. We investigate the efficiency of SA search as 
compared to the random search by analysing the optimisation results of some test 
function. 

The experimental investigations of the efficiency are based on the averaged 
results of multiple optimisation. It is an obvious way to average the results of 
optimisation in the case of random search: we can repeat the optimisation by 
using different random trial points for the same test function. 

It is difficult, however, to obtain some averaged results for SA search because 
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Table S. The structure characteristics (in %) of the Mathar Zilinskas - 6 
test problem 

Structure The value of the Structure The value of the 
characteristic characteristic characteristic characteristic 

Dl 0.2 D l 26 0.4 

D2 1.3 DI34 0.7 

D5 0.8 DI35 0.6 

DI2 3.9 DI36 0.3 

DI3 15.4 DI45 1.5 

DI4 0.4 D146 0.7 

DI6 0.5 D234 1.7 

D23 4.8 D235 1.9 

D25 0.7 D236 2.1 

D36 0.5 D345 0.3 

D45 5.0 D346 1.6 

D46 15.3 D356 0.3 

D56 7.2 DI245 6.2 

DI23 3.4 DI346 12.3 

DI24 1.5 D 2356 6.9 

D I 25 1.8 

the trial points in this case may be treated as deterministic. The averaged results 
may be obtained. if we use the test functions of some class j(i)(X) (i is the 
current number of the function in the class. i = 1 •... , M) generated on the base 
of some basic test function j(X). Let us formulate the requirements to j(i)(X): 

a) the minimal values for all the test functions of the class are equal: 

min j(i)(X) = min j(X), (i = 1, ... , M)j 
xeKn XeKn 

b) the minimum points 

are different for i = 1, ... , M and uniformly distributed at random 
inK1L; 
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2.4 +---~~~---_+--+---_+-----I 

-.-SA 
1.9 +-------~~~~:__+--_II_---__11 search 
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-+-Random 
1.4 +----------.... ...,-~...,..."""';::O.....,..l_---_II search 

-+-BadSA 
0.9+---------_+-~~~_+~--~1 search 

0.4 +----------+--+----+----=~-~ 

41 N 
1 7 10 20 50 

Fig. S. Investigation by the Branin test function. 

c} the structure characteristics are equal to the characteristics of the basic 
problem: 

D;:~ .. i. = Di1 ... i ., i = 1, ... , M. 
The next procedure satisfies the requirements formulated above. 

l(i)(X) = I(X*), 

where 

x = (Xl, ... ,Xn ,) X* = (xi, ... ,x~), 
xj=(Xj_{ji») (modI), i=I, ... ,M,j=I, ... ,n, 

{Y) is a random value, uniformly distributed in the interval [0, 1]. 
The results of experimental investigation are presented in Figs. 5-7 for three 

classes of test functions. 
The averaged relationships minI (N) are approximately linear, because the 

logarithmic scale was used for N and the values of test functions were trans­
formed by a convenient monotonous transformation (usually by logarithmic). 
The linearity of the dependencies is useful while extrapolating our experimen­
tal results for greater values of N. 

We can see two lines in each figure (except for Fig. 5): one for random 
search, the other for SA search. Let us denote the minimal function value 
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minf(N) 
-0.8 

-1 

-1.2 ~ 
-1.4 

-1.6 

-1.8 

-2 

-2.2 

-2.4 

V.Saltenis 

~ --.-Random 

~ 
search 

-+-SA 
~ ~ search 

'" '" '" '" ~ N 
7 10 20 50 

Fig. 6. Investigation by the Mathar Zilinskas - 6 test function. 

min f(X) 
4.25 ~-------r-----~----" 

4.2 i--~~~--+-----t-----I 

4.15 +_-------.;~~=__--+_---_II 
--'-Random 

search 

-+-SA 
search 

.4.1 1----I----:~:i",--1L~=::.:.-1 

4.05 i-------t-----+----~ 

4 N 
3 5 7 10 

Fig. 7. Investigation by the Mathar Zilinskas - 20 test function. 

achieved after N trial points of SA search as mini (N) and the minimal func­
tion value achieved after N' trial points of random search as minJ'(N'). Then 
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the efficiency of SA search can be evaluated by the ratio: 

where the condition 

must be satisfied. 

N' 
E=­

N' 

mini (N) = minl'(N') 

595 

(8) 

(9) 

The ratio E shows how many times the number of trial points N is reduced 
if we use the SA search and the minimal function values are the same in both 
cases. 

In the linear case and for logarithmic scale 

mini (N) = klog(N), (10) 

and 

minl'(N') = k'log(N'). (11) 

Then after substituting (10) and (11) into (8) and (9) we can get: 

(12) 

Coefficients k and k' may be calculated directly from linear dependencies 
illustrated by the graphs in Figs. 5-7, so we can simply evaluate the forecast of 
the efficiency E of SA search as compared to random search by (12). 

Fig. 8 illustrates the efficiency for various test functions and various N. 
The forecast of the efficiency is higher for the Branin test function because its 

structure is less complicated in comparison to the Mathar Zilinskas test functions. 
The SA search may be 2-6 times more efficient for the Branin function while 
for other test functions the efficiency amounts 1.8-2.2 only for extremely large 

numbers of N. 
The third graph "Bad SA search" is presented for the Branin function in 

Fig. 5. It illustrates the efficiency of SA search with especially changed weights of 
uniformity. In this case, the uniformity was maximised only for two-dimensional 

projections while the uniformity of one-dimensional projections remained bad. 
In other words, the "bad SA search" assumed that structure characteristics of the 
test function are equal to Dl = 0; D2 = 0; D12 = 1, while the true values were 
equal to: Dl = 0.14; D2 = 0.25; D12 = 0.61. We can see that this bad SA 
search is considerably worse than the pure random search. 
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Fig. 8. Efficiency of SA search_ 

7. Conclusions. The main point of this paper was to show that the SA 
search can be more efficient than other passive global search algorithms, espe­
cially in the cases where the first order structure characteristics are relatively 

small. 
At the same time we must bear in mind that the SA search uses structure 

characteristics of the problem. 1be statistical evaluation of the characteristics is 
relatively expensive, so the general efficiency in some cases may be reduced. In 
the cases, where the structure is approximately known a priori (for example, the 
structure is common for all problems from some class), the SA search may be 
used especially in a proper way. 
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TASKAI, KURIl) ISDESTYMO TOLYDUMAS ATITINKA 
DAUGIAMACIO UZDAVINIO STRUKTlrR;\ 

Vydiinas SALTENIS 

Globalinei optirnurno paieskai naudojarni taskai, toiygiai pasiskirst(: daugiarnateje 
ieistinoje srityje. Taciau taskll pasiskirstyrno tolygllrno reikia siekti ir visose galirnose 
taskll projekcijose ~ koordinacill asis ir jll grupes. Siiilorna generuoti tasklls, tolygiau pa­
siskirsciusius projekcijose ~ kintarnllosills ir jll grupes, tllrincias didesn(: ~takq uzdavinio 
sprendirnui. Tarn naudojarnasi daugelio kintarn\.l.ill optirnizavirno uzdavinio struktiiros 
analize. Sukurtas generavirno algoritrnas. 

Atlikti eksperirnentai, kurie \vertina tokio rnetodo efektyvurnq, lyginant j\ su atsitik­
tine paieska. 


