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Institute of Mathematics and Informatics, Vilnius University, Department of Informatics
Akademijos 4, 2600 Vilnius, Lithuania
e-mail: valdas.diciunas@maf.vu.lt

Received: May 1998

Abstract. We study invertibility of big n× n matrices. There exists a number of algorithms, espe-
cially in mathematical statistics and numerical mathematics, requiring to invert step by step large
matrices which are closely related to each other. Standard inverting methods require O(n3) arith-
metical operations therefore using of these algorithms for big values of n becomes problematic. In
this paper we introduce some classes of matrices that can be inverted by O(n2) operations if we
use inverse matrices of other closely related matrices. The most important among them are matrices
having big common submatrix and modified sample covariance matrices. We apply our theoretical
results constructing a fast algorithm for prediction. This algorithm demonstrates the advantage of
our inverting methods and can be used, for example, for safety control in the plant.

Key words: inverse matrices, complexity of algorithms, linear regression, real-time prediction,
safety control.

1. Introduction

There exist a number of algorithms, especially in mathematical statistics (discriminant
analysis, regression analysis, prediction, etc.) and numerical mathematics requiring to
invert step by step many big matrices. It is well known (Aho et al., 1974) that the problem
of inverting of n × n matrix and the problem of multiplication of two n × n matrices
are asymptotically equivalent and both require Ω(n3) arithmetical operations if one uses
standard methods. By this reason, using of some statistical algorithms for big values of n
becomes problematic. Beginning from pioneering work of Strassen (1969) a number of
asymptotically faster methods for multiplication (inversion) of matrices were developed.
These methods use O(nα) arithmetical operations where α decreases from log2 7 ≈ 2.81

in (Strassen, 1969) to 2.38 in (Coppersmith and Winograd, 1986). Unfortunately, these
nonstandard methods are very complicated and the constants hidden in notation “O” are
astronomically large. Therefore, with the only possible exception maid for Strassen’s
method, the remaining methods have more theoretical than practical significance.

On the other hand, the matrices used in the statistical algorithms mentioned above are
very often closely related to each other. They usually have a big common submatrix or
are obtained from one another by small modifications. It appears that if we already have
one inverse matrix then modified matrices can be inverted in such cases more simply, that
is using additionally only O(n2) arithmetical operations. Well-known formula of Bartlett
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(1952) is a good illustration of such situation. There also exist a lot of matrices that are
simply invertible due to their special structures.

An objective of this paper is to investigate some classes of simply invertible matrices
and to propose useful analytic solutions. The paper is organised as follows. Section 2 is
allocated for definitions and examples. In Section 3 some new cases of simply invert-
ible matrices usefull in statistics and its applications are proposed. In particular, matrices
having big common submatrix and so-called modified sample covariance matrices are
considered. In Section 4 we apply these new theoretical results to construct an extremely
fast algorithm for real-time prediction. Finally, in Section 5 the summary of this paper is
given.

2. Definitions and Examples

We study matrices whose elements are real numbers. Let B be an m × n matrix and
A1, . . . ,Ak be matrices of arbitrary dimensions. We call matrix B simply computable
with respect to A1, . . . ,Ak if B may be computed using A1, . . . ,Ak by O(mn) arith-
metical operations (i.e., addition, subtraction, multiplication and division of real num-
bers). In particular case, whenm = n, A1 is a non-singular n× n matrix and B = A−1

1

is simply computable with respect to A1, . . . ,Ak, we call matrix A1 simply invertible
with respect to A2, . . . ,Ak. Finally, when k = 1 and A−1

1 is simply computable with
respect to A1 we call A1 simply invertible.

Let K be a class of matrices of similar structure (diagonal, for example). Then an
arbitrary matrix A ∈ K represents class K. Therefore, we shall denote Inv(A) the min-
imal number of arithmetical operations which is necessary to invert any matrix B ∈ K
assuming that B has the same dimensions as A. Using this notation we can give another
definition of simple invertibility considered above: n × n matrix A is simply invertible
iff Inv(A) = O(n2).

EXAMPLE 2.1. C = A+B is simply computable with respect to A and B but C = AB

in general is not simply computable with respect to n × n matrices A and B (since an
algorithm multiplying arbitrary n×n matrices by O(n2) operations is not known). From
the other hand, AB may be simply computable for some special matrices A and B. In
particular case, when A or B is a vector then AB is simply computable with respect to A

and B. Indeed, let c = aB = (c1, . . . , cn). Then each cj =
∑n
i=1 aibij requires 2n− 1

arithmetical operation (n multiplications and n− 1 addition).

EXAMPLE 2.2. (Duda and Hart, 1976). Let

S = S(x1, . . . ,xN ) =
1

N − 1

N∑
k=1

(xk − x̄)T (xk − x̄) (1)
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be sample covariance matrix of vectors x1, . . . ,xN , where

xk =
(
x1
k, . . . , x

n
k

)
and x̄ =

1

N

N∑
k=1

xk.

Usually one needs O(Nn2) operations to compute n× n matrix S, therefore, in gen-
eral S is not simply computable. Adding one new vector xN+1 we obtain new sample
covariance matrix of vectors x1, . . . ,xN+1,

S+ =
1

N

N+1∑
k=1

(xk − x̄+)T (xk − x̄+), where x̄+ =
1

N + 1

N+1∑
k=1

xk.

It is easy to verify (Duda and Hart, 1976) that matrix S+ can be expressed via matrix S

and vectors x̄ and xN+1 in the following way:

S+ =
N − 1

N
S +

1

N + 1
(xN+1 − x̄)T (xN+1 − x̄). (2)

Formula (2) yields that computing of S+ requires 3n2 + O(n) arithmetical operations:
(1) O(n) operations to obtain z = xN+1− x̄, y = z/(N+1) and λ = (N−1)/N ; (2) n2

multiplications for matrix U = yT z; (3) n2 multiplications for λS; and (4) n2 additions
for λS + U.

Therefore, S+ is simply computable with respect to S, x̄ and xN+1. In Section 3.4
we will prove that S+ is simply invertible with respect to S, x̄ and xN+1.

EXAMPLE 2.3. Let A be a non-singularn×nmatrix. Then B = λA is simply invertible
with respect to A−1 because B−1 = (1/λ)A−1. In particular, matrix A = λI, where
I is a unit matrix, is simply invertible.

EXAMPLE 2.4. Block-matrices (Horn and Johnson, 1989). Let

A =

(
A11 A12

A21 A22

)
be a non-singular n × n matrix and A11, A12, A21 and A22 be matrices of dimensions
(n − r) × (n − r), (n − r) × r, r × (n − r) and r × r, respectively. Let A11 and
A22 −A21A

−1
11 A12 be non-singular and C = A−1

11 A12, D = A21A−1
11 , F = (A22 −

DA12)−1. Then

A−1 =

(
A−1

11 + CFD −CF

−FD F

)
. (3)

It is easy to verify that for any r = const matrix A is simply invertible with respect to
A−1

11 .
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EXAMPLE 2.5. Bartlett’s formula (Bartlett, 1952). An algorithm inverting the sum
C = A + B of two arbitrary matrices A and B in general is not known. However,
Bartlett (1952) suggested how to invert the sum C when one of the matrices A and B

can be expressed as a product of two vectors (column and row) with some coefficients.
Let B = A + λuTv, where u and v are vectors (rows). Then

B−1 = A−1 − A−1uTvA−1

1/λ+ vA−1uT
. (4)

It is easy to verify that (4) requires O(n2) arithmetical operations.

3. Some Classes of Simply Invertible Matrices

In this section we introduce some new classes of simply invertible matrices. In particular,
we generalize formula (3) (see Section 3.1) and obtain its inverse formula (Section 3.2).
We also will prove some analogues of (2) for modified covariance matrices (Section 3.4).
In Section 4 these results will be applied to construct a fast prediction algorithm.

In Section 3.3 we propose the theorem concerning matrices having big common sub-
matrix. We do not give its applications in this paper, however, this result can be useful for
some statistical problems.

3.1. Matrix Inverting Using Submatrix

Let A be n × n matrix, I, J ⊆ {1, 2, . . . , n} be any nonempty sets of indices and Ī =
{1, 2, . . . , n} \ I. By AIJ we denote |I| × |J | submatrix of A including (in their natural
order) all A elements aij satisfying i ∈ I, j ∈ J. Now we are ready to prove the
generalization of (3).

Theorem 3.1. Let |I| = |J | = n − k, where k = const and matrices AIJ and AĪJ̄ −
AĪJA−1

IJ AIJ̄ be non-singular. Then A is simply invertible with respect to A−1
IJ .

Proof. Let B = A−1, C = A−1
IJ AIJ̄ , D = AĪJA−1

IJ and F = (AĪJ̄ −
AĪJA−1

IJ AIJ̄ )−1. Since matrix B is formed by four nonintersecting submatrices
BJI , BJĪ , BJ̄I and BJ̄ Ī , it is enough to prove the following formulae:

BJI = A−1
IJ + CFD,

BJĪ = −CF,

BJ̄I = −FD,

BJ̄ Ī = F.

(5)

Let I = {i1, i2, . . . , in−k}, J = {j1, j2, . . . , jn−k} be arbitrary subsets of {1, 2, . . . , n}
and Ī = {in−k+1, . . . , in}, J̄ = {jn−k+1, . . . , jn}. Let

puv =

{
1, if v = iu,

0, otherwise;
and ruv =

{
1, if u = jv,

0, otherwise;
(u, v = 1, 2, . . . , n).
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Then P = (puv) and R = (ruv) are permutation matrices satisfying P−1 = PT and
R−1 = RT . Let Ã = PAR. Then B̃ = (Ã)−1 = R−1A−1P−1 = RTBPT and

Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, B̃ =

(
B̃11 B̃12

B̃21 B̃22

)
,

where submatrices Ãij and B̃ij satisfy Ã11 = AIJ , Ã12 = AIJ̄ , Ã21 = AĪJ , Ã22 =

AĪ J̄ and B̃11 = BIJ , B̃12 = BIJ̄ , B̃21 = BĪJ , B̃22 = BĪJ̄ . Now applying Eq. (3) for
matrices Ã and B̃ we obtain (5).

3.2. Submatrix Inverting

Theorem 3.2. Let A be non-singularn×nmatrix, B = A−1, |I| = |J | = n−k, where
k = const and BJ̄ Ī be non-singular. Then AIJ is simply invertible with respect to A−1.

Proof. It is enough to prove the formula

A−1
IJ = BJI −BJĪB

−1
J̄ Ī

BJ̄I . (6)

From Eq. (5) we obtain BJI = A−1
IJ −BJĪD and BJ̄I = −BJ̄ ĪD. Eliminating D from

the last equation and substituting into the first we get the desired result.

We will apply Eq. (6) in our fast prediction algorithm (see Section 4).

3.3. Inverting of Modified Matrices

Theorems 3.1 and 3.2 yield more general result. The following theorem can be applied,
for example, for two “big” matrices A and B such that matrix B was obtained from
matrix A by substituting of “small” number of its rows by new rows.

Theorem 3.3. Let A and B be two non-singular n × n matrices having m × m sub-
matrices AIJ and BKL, respectively, which coincide or differ only in order of rows
and columns, i.e., BKL = PAIJR for some permutation matrices P and R. (Here
I, J,K,L ⊆ {1, 2, . . . , n} and |I| = |J | = |K| = |L| = m.)

If m = n− k, where k = const then B is simply invertible with respect to A−1.

Proof. By Theorem 3.1, B is simply invertible with respect to B−1
KL. By Theorem 3.2,

A−1
IJ is simply invertible with respect to A−1. Finally, B−1

KL = RTA−1
IJ PT is simply

computable with respect to A−1
IJ .

3.4. Modified Sample Covariance Matrices

Let us consider sample covariance matrix S = S(x1, . . . ,xN ) defined by Eq. (1). In
many learning processes the set of vectors changes a little at each iteration, and af-
ter any change a new sample covariance matrix is needed. We propose formulae to
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compute new matrix and its inverse with less arithmetic operations. Denote S+ =

S(x1, . . . ,xN+1), S− = S(x2, . . . ,xN ) and S∓ = S(x2, . . . ,xN+1).

Theorem 3.4. Matrices S+, S− and S∓ are simply computable with respect to S, x̄, x1

and xN+1.

Proof. Simple computability of S+ was proved above (Example 2.2 and Eq. (2)). Let us
prove a similar formula for S−:

S− =
N − 1

N − 2
S− N

(N − 1)(N − 2)
(x1 − x̄)T (x1 − x̄). (7)

Let x− = (x2 + · · ·+ xN )/(N − 1). Then

S =
1

N − 2

N−1∑
k=1

(xk − x̄−)T (xk − x̄−)

=
1

N − 2

(
N∑
k=1

xTk xk − xT1 x1 − (N − 1)x̄T−x̄−

)

=
1

N − 2

(
(N − 1)S +N x̄T x̄− xT1 x1 −

1

N − 1
(N x̄− x1)T (N x̄− x1)

)
and the last equation yields (7). From Eqs. (2) and (7) we obtain

S∓ = S− N

(N − 1)2
(x1 − x̄)T (x1 − x̄)

+
1

N

(
xN+1 +

1

N − 1
x1 −

N

N − 1
x̄

)T
×
(

xN+1 +
1

N − 1
x1 −

N

N − 1
x̄

)
, (8)

and this ends the proof.

COROLLARY 3.1. Matrices S+, S− and S∓ are simply invertible with respect to
S, x̄, x1 and xN+1.

Proof. This follows from Theorem 3.4 and Eqs. (2), (7) and (8). We propose only the
expression for S−1

∓ . Let u = x1 − x̄ and v = u/(N − 1) + xN+1 − x̄. Then

S−1
∓ = C +

(
N − 2 + 1/N − uCuT

)
CuTuC,

C = S−1 +
(
N + vS−1vT

)−1
S−1vTvS−1.

(9)

It is interesting that formula (9) cannot be improved:
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PROPOSITION 3.1. It is imposible to construct linear combinations u and v of vectors
x1, xN+1 and x̄ such that S∓ = S + uTv.

Proof. Let u = ax1 + bxN+1 + cx̄, v = dx1 + exN+1 + f x̄ and S∓ = S + uTv.
Substituting u and v into the last equation and comparing with (9) we obtain incompatible
equations: ce = bf = −1/(N − 1), cf = 0.

4. Fast Prediction Algorithm

In this section we propose one possible application of theoretical results presented above.
Namely, we present a fast algorithm for predicting future values of measurements in some
plant. This algorithm can be used for failure detection.

Let us consider the following model. We measure the values of n parameters
x1, . . . , xn at moments t1, t2, . . . . Using the lastN values at any moment tk (k > N) we
predict the values for the moment tk+1. Then we compare predicted and measured (at the
moment tk+1) values and raise an alarm if they are strongly different. If our prediction
procedure outputs predicted values for the next moment tk+1 before this moment (i.e., it
runs in time < ∆t = tk+1 − tk) then we call this model prediction in real-time. It can
be used, for example, for safety control in nuclear power station (compare with (Tylee,
1983)). We take ∆t = 1 s, since according to Tylee (1983, p. 412) “. . . sampling the plant
measurements every second . . . provides excellent failure detection results”.

We use multiple linear regression for prediction. Let y = xi, x = (x1, . . . , xi−1,

xi+1, . . . , xn), Y = {i} and X = {1, . . . , i − 1, i + 1, . . . , n}. Let also denote by
xk = (x1

k, . . . , x
n
k) the vector of measured values at the moment tk. Using our notation

from Section 3.1 a linear regression equation can be written in the following way:

y = xS−1
XXSXY +

(
ȳ − x̄S−1

XXSXY
)
,

where

ȳ =
1

N

k∑
j=k−N+1

xij , x̄ =
1

N

k∑
j=k−N+1

(
x1
j , . . . , x

i−1
j , xi+1

j , . . . , xnj
)

are means and S = S(xk−N+1, . . . ,xk) is the sample covariance matrix. Components
of the vector wi = S−1

XXSXY and w0
i = ȳ − x̄wi are called regression coefficients.

Notice that usually in linear regression a so called matrix of centred sums of squares and
products is used (Maindonald, 1988) instead of matrix S:

x̃T x̃ = (N − 1)S =
k∑

j=k−N+1

(xj − x̄)T (xj − x̄).

Obviously, in both cases we obtain the same regression coefficients.
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Now we propose an algorithm for the prediction in real-time problem. Suppose that
at moment tk we already have matrices S = S(xk−N+1, . . . ,xk), S−1 and means

ȳi =
1

N

k∑
j=k−N+1

xij and x̄i =
1

N

k∑
j=k−N+1

(
x1
j , . . . , x

i−1
j , xi+1

j , . . . , xnj
)
.

Fast Prediction Algorithm

Step 1. For any y = xi (i = 1, . . . , n) compute regression coefficients

wi = S−1
XXSXY , w0

i = ȳi − x̄iS−1
XXSXY ,

computing S−1
XX according to (6).

Step 2. For any y = xi (i = 1, . . . , n) compute predicted values ŷk+1 = xk+1wi+w
0
i

and compare them with measured values xik+1.
Step 3. Using (8) and (9) compute new matrices S∓ = S(xk−N+2, . . . ,xk+1), S−1

∓
and new means ȳi := ȳi + (xik+1 − xik−N+1)/N and

x̄i := x̄i +
1

N

[ (
x1
k+1, . . . , x

i−1
k+1, x

i+1
k+1, . . . , x

n
k+1

)
−
(
x1
k−N+1, . . . , x

i−1
k−N+1, x

i+1
k−N+1, . . . , x

n
k−N+1

)]
,

and return to Step 1.

It is easy to verify that this algorithm requires O(n3) operations to make one iteration
from tk to tk+1 meanwhile the standard methods (Maindonald, 1988) require Ω(Nn2) +

Ω(n4) operations.

EXAMPLE 4.1. Fast prediction algorithm was realised in Matlab on PC with 200 MHz
Pentium processor for N = 100, 200, 800 and n = 8, 16, 32, 64, 128. Table 1 shows
CPU time (in seconds) used to make 1 iteration (from tk to tk+1). In this table “fast”

Table 1

Computing time (in seconds) used for 1 iteration

N = 100 N = 200 N = 800

n fast stand. fast stand. fast stand.

8 0.009 0.055 0.010 0.110 0.011 0.407

16 0.027 0.224 0.028 0.428 0.028 1.647

32 0.146 1.055 0.148 2.087 0.149 8.124

64 0.977 5.872 0.978 9.535 0.983 43.001

128 — — 7.402 60.122 7.460 4 min 19 s
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means fast prediction algorithm and “stand.” means standard linear regression realised
using Matlab tools. From Table 1 we conclude that fast prediction algorithm is much
faster than standard one and it can work in real-time even on PC (at least for n 6 64

parameters).

5. Conclusions

Some classes of simply invertible matrices are studied and formulae for inverse matrices
are given. The usefulness of these formulae in statistical computations is demonstrated.
As one could easily notice in most of cases considered above there was not any reason
to confine ourselves only on complexity O(n2). A lot of n × n matrices can be inverted
using L operations for L lying somewhere between O(n2) and O(n3). The aim of this
paper, however, was to consider only the extreme case L = O(n2).

We also draw reader’s attention that this paper did not touch upon the problems of
existence and computation accuracy of inverse matrices. These questions require separate
investigation, see, e.g., (Horn and Johnson, 1989).
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Paprastai apgr ↪ežiamos matricos ir greitas prognozavimas

Valdas DIČIŪNAS

Straipsnyje nagrinėjama dideli ↪u n × n matric ↪u apgr ↪aža. Žinoma nemažai algoritm ↪u,
ypač matematinėje statistikoje ir skaitinėje matematikoje, kuriuose žingsnis po žingsnio
reikia apgr ↪ežti daug dideli ↪u matric ↪u. Dažnai tos matricos būna glaudžiai susijusios
tarpusavyje. Standartiniai apgr ↪ažos metodai atlieka O(n3) aritmetini ↪u operacij ↪u, todėl
didelėms n reikšmėms šie algoritmai gali dirbti labai ilgai. Straipsnyje aprašomos kelios
matric ↪u klasės, kuriose naudojant kit ↪u (susijusi ↪u) matric ↪u atvirkštines, nurodytas matri-
cas galima apgr ↪ežti panaudojus tik O(n2) operacij ↪u. Svarbiausios iš ši ↪u matric ↪u klasi ↪u
yra matricos, turinčios didel ↪e bendr ↪a pomatric ↪e, ir modifikuotos kovariacinės matricos.
Teoriniai rezultatai pritaikyti kuriant labai greit ↪a prognozavimo algoritm ↪a, kuris galėt ↪u
dirbti realiuoju laiku. Šis algoritmas parodo pasiūlyt ↪u apgr ↪ažos metod ↪u privalumus ir
galėt ↪u būti naudojamas, pavyzdžiui, gamyklos technologinio proceso saugumui kontro-
liuoti.


