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Abstract. Self-tuning control with recursive identification of 
extremal dynamic systems is considered. The systems can be rep­
resented by combinations of linear dynamic and extremal static 
parts, their output being disturbed by a coloured noise. Minimum­
variance controllers for Hammerstein, Wiener, and Wiener-Ham­
merstein-type systems are designed taking into consideration re­
strictions for control signal magnitude and/or change rate. The 
estimates of unknown parameters in the controller equations are 
obtained in the identification process in the closed loop. The effi­
ciency of self-tuning control algorithms is illustrated by statistical 
simulation. On the basis of worked out methods, adaptive sys­
tems for optimization of fuel.combustion and steam condensation 
processes in thermal power units are developed. 

Key words: stochastic extremal systems, minimum-variance 
control, self-tuning control, recursive identification. 

Introduction. Industrial processes often involve sto­
chastic dynamic systems with extremal characteristics. 

The control law synthesis for linear stochastic systems 
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is often based on the minimization of the variance of output 
signal deviations from the desired value (Astrom, 1970; Iser­
mann, 1981). Such an approach deals with the design of an op­
timal predictor of the controlled object's output and with the 
control strategy determination according to the equality con­
dition between a corresponding number step-prediction value 
and a desired one. . 

In self-tuning control systems the unknown parameters 
are replaced by their current estimates obtained in the iden­
tification process in the closed loop (Isermann, 1981, Ast­
rom, 1983). 

There are some works in which minimum-variance con­
trollaws for extremal dynamic systems are synthesized. Ke­
viczky, Vajk, and Hetthessy (1979) proposed self-tuning mini­
mum-variance control algorithms for single input-single out­
put (SISO) Hammerstein-type systems, Kaminskas and Tal­
lat-Kelpsa (1983) developed analogous algorithms for multiple 
input-single output Hammerstein-type systems taking into ac­
count restrictions for the control signal magnitude. Works by 
Kaminskas and Sidlauskas (1984, 1985) deal with the applica­
tion of minimum-variance control strategies to SISO Wiener­
and Wiener-Hammerstein-type systems. Kaminskas, Tallat­
Kelpsa, and Sidlauskas (1986, 1987) proposed self-tuning con­
trol algorithms for systems of the latter type. 

In this paper self-tuning minimum-variance control of 
SISO stochastic extremal systems with time delay is consid­
ered. The systems consist of various interconnections of linear 
dynamic and extremal static parts. System's outputs are cor­
rupted by disturbances with a general fractional-rational spec­
tral density. Restrictions for control signal magnitude and/or 
change rate are taken into account. 

Problem statement. Discrete-time extremal dynamic 
systems are considered with an observed output signal Yt, de-
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Yt = W2(z-1; ,8)f(Vt; 8) + H(z-l; h)~t, 

Vt - W1(z-1;a)z-T Ut , 
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(1) 

(2) 

where Ut is an observed input (control) signal; ~t - an un­
observed white noise sequence with a zero mean and a finite 
variance O'i ; . 

(3) 

is an extremal characteristic of the static element with param­
eters 8T = (BI,B2)' B2 =I 0; 

(4) 

(5) 

np 

-1 1 + L: Pi Z - i 
H(Z-l. h) = P(z ) = i=l 

, R( -1) nr 
Z 1 + 2: ri z - i 

(6) 

i=1 

are fractional-rational transfer functions of linear dynamic 
parts of the control channel (WI and W2 ) and of the distur­
bance channel (H) with parameters 

aT =(a1,a2, ... ,ana,bo,bl, ... ,bnb) } 

,8T=(gl,92, ... ,gng ,do,d1 , ••. ,dnJ; (7) 

h T = (rI, r2, ... , r nr , PI, P2, ... , Pn p ) 
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Fig. 1. Stochastic extremal systems of 'Wiener-Ham­
merstein (a), Hammerstein (b), and \Viener (c) 
types. 
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z-Z is an i-step backward time-shift operator; T represents 
pure delay of the system; t is a time inde=$; T denotes trans­
position. 

The equations (1 )-( 3) specify the most general class of 
stochastic extremal systems with the extrernal static element 
standing between two linear dynamic parts and the system's 
output being disturbed by a coloured noise with a general 
fractional-rational spect'ral density (see Fig. 1, a). Such sys­
tems are usually called stochastic extremal vViener-Hammer­
stein-type systems. In particular cases, by removing the first 
linear dynamic part, stochastic extremal Hammerstein-type 
systems are obtained (Fig. 1, b) and, by removing the second 
linear dynamic part, we obtain stochastic extremal vViener­
type systems (Fig. 1, c). 

vVe assume that the control and disturbance channels are 
stable and minimum-phase, the polynomials in the numerator 
and the denominator of each of the transfer functions (4)--(6) 
have no common roots, the linear dynamic parts in the control 
channel have a unit gain: 

(8) 

T T T T T and the parameters c = (a ,j3 ,h ,9 ) of the system 
(1)-(3) are unknown (though the orders n a , nb, n g, nd, nr, np 
and the time delay T are known). 

Let it be required to drive the system (1 )-(3) from an 
initial state (llo, Yo) to the steady state of the extremal opera­
tion 

y* = f( 1l*' 9) = - 8? 1l* = arg extr f( 1l: 9) = -~ (9) , 482 ' x - 282 ' 

and to ensure the minimum variance of the errors arising due 
to uncontrolled disturbances. Th'erefore, the optimal current 
control signalllt+l at the discrete time t must be determined 
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from the condition 

where 

is the domain of admissible control values characterized by re­
strictions for the control signal magnitude (Umin, Umax ) and/or 
change rate (l5t > 0) often arising in practice; M is the sign of 
mathematical expectation. 

The system parameters being unknown, it is impossible 
to obtain the optimal current control value (10). If the genuine 
parameters C are replaced by their current estimates ci 

T '" T '" ",T 
= (a t ,(3 t ,hi, 8 t ) determined from the condition 

(12) 

~ 1 ~ 2 
Qt(C) = t L.)Yk - Yklk-l(C)] , 

k=l 
(13) 

the self-tuning system, including control and identification al­
gorithms, ca!"l provide only the minimum value of the asymp­
totic variance 

where 

Ytlt-l(C) = z[l - H-1(z-1; h)]Yt-l 

+H-1(z-1; h)W2(z-1; (3)f[lV1(z-1; a)z-T Uti 8] , 
(15) 

is the optimal (in the sense of a minimum error variance) one­
step ahead prediction of the output signal Yt at the discrete 
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time t -1 (Kaminskas, 1985); nc is the admissible domain for 
the parameters c, defined by stability, minimum-phase and 
unit gain conditions, Y; is the current estimate of y* obtained 
by inserting lit into (9). 

Thus, a self-tuning controller design requires two prob­
lems to be solved: minimum-variance controller synthesis on 
the assumption that system parameters are known and iden­
tification of the controlled system in a closed loop. 

Minimum-variance controllers. The transfer func­
tion (6) of the disturbance channel can be expressed as a sum 
of two components (Astrom, 1970; Isermann, 1981): 

where 
(17) 

L( -1) 1 + 1 -1 1 -n/' Z = 0 l Z + ... + n/ Z , (18) , 

(19) 

nl = max{ nr, np - T} - 1 . (20) 

Then the output signal of the system may be represented as 

where 

Yt+r+llt = zr+l[1 - ii-1(z-l; h)]Yt 

+ ii-I (z-l; h)W2(z-l; ,8)j[WI (z-l; a )11.1+1; 0] 
(22) 
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is a (r + 1 )-step ahead optimal prediction of the output signal 
at the discrete time t; 

In accordance with (21), the control performance crite­
rion (10) can be transformed into 

ne 

Qt(Ut+l) = M[Yt+r+l(C) - y*j2 + (1 + Lena~ (24) 
i=l 

Therefore, the optimal current control signal U;+l at the dis­
crete time t may be determined from the condition 

Further simple transformations yield the minimum-va­
riance controller equation for stochastic extremal vViener­
Hammerstein-type systems (Kaminskas and Sidlauskas, 1985; 
Kaminskas, 1986): 

where 

- {y*, Yk -
- Yk+r+l!k(C), 

if k = t , 

if Ut+l 2::u;, 
if Ut+l < u;, 

if k = t - 1, t - 2, . . . , 

(26) 

(29) 
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and 
qt =zr+1 [1- H(Z-I; h)]etlt-r-I(C) 

. =zr+1 [E(z-I) - H(z-I; h)] etlt-I( c). 
(30) 

In the latter equation 

is the ( T + 1 )-step prediction error at the discrete time t - T -1, 
and 

etlt-I(C) = Yt - Ytlt-I(C) (32) 

represents the one-step prediction error at the time t ~ l. 
Introducing WI (z-I; it )= 1 into equation (27) gives us 

~ (h . v' 
Ut+1 = - 28

2 
± max{O, vd , (33) 

and (26), (33), (28)-(30) are the minimum-variance controller 
equations for extremal Hammerstein-type systems (Kamins­
kas and Tallat-Kelpsa, 1983; Kaminskas, 1986). 

Similarly, in the case of W2(z-I;,8) = 1, we obtain 

1 ( ~ *) Vt = 82 qt + Yt - Y , (34) 

and therefore, (26), (27), (34), (29), (30) are the minimum-va­
riance controller equations for extremal Wiener-type systems 
(Kaminskas and Sidlauskas, 1984; Kaminskas, 1986). 

The alternate sign + / - in controller equations (27),(33) 
precedes the square root operation, indicating that Ut+1 is 
obtained as the solution of a quadratic equation. The sign 
must be selected so that signal magnitude and change rate 
restricti<?ns were violated as little as possible. 
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The sequence qt is a realization of an autoregressive­
moving average process because it can be defined as 

Therefore, at random discrete time moments k with Vk < 0 
the feedback is interrupted. If the restrictions (11) are not 
taken into acco1..l.nt, we have u; = Ut, and the control error 
sequence can be represented as 

- * et = Yt - Y 

Z[W2(Z-1;,8)~do] 
xf [W1(z-1; a)z-TUt _ 1 ; 8] (36) 

-y*(l - do) + H(z-l; h)et, if Vt-l < 0 , 

if Vt-l ~ 0 . 

The control error sequence in the case of a Wiener-type system 
can be expressed in a less complex form: 

If the control signal is restricted, it is impossible to obtain 
an analytical expression for control error sequence. 

Identification in the closed loop. The current esti­
mates Ct, used instead of the unknown parameters c of the 
system (1)-(3) in the minimum-variance controller equations 
(26)-(30), (33), (34), are .obtained in the identification pro­
cess in the closed loop by the following recursive algorithm 
(Kaminskas, 1982): 
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k _ Tt~Hl 
t+l - T 

~HITt..\t+l 

Tt+1 = [l- kt+l..\T+l]Tt, To = I, 

IIHI =IIt - kt+l..\T+lIIt - IIt..\t+lk T+l + 
+ [1 + "\:+1 IIt..\Hl] kt+lki+l' IIo = 0 

for t < n c , or 

k _ IIt..\t+l 
HI - T 

1 + ..\t+l IIt..\t+l 

. IIt+l = [I - kt+l..\T+l] IIt 
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(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

for t ~ n c ; ..\t+l = V cCt+llt(Ct) is the current value of a predic­
tion error CH1It(C) gradient; IHI is a scalar factor, ensuring 
the presence of an estimate trajectory within the admissible 
area f!c, as lH-atll~Ctll is the distance in the direction ~Ct 
from the point Ct to the boundary of this area; 0, I are the 
zero and identity matrices correspondingly, their dimensions 
being nc x nc; nc = na + nb + ng + nd + nr + np + 4 is 
the number of the unknown parameters; o-y is a small positive 
constant; II II is the Euclidian norm sign. 

The identification algorithm (38)-(44) is derived by 
means of the quasi-linearization of the one-step prediction er­
ror (32) in (13). In this algorithm the pseudoinversion tech­
nique is used at the initial steps and later, when the number 
of control steps exceeds nc , a common inversion of the corre­
sponding matrices is performed. 

The admissible area nc is a set of such parameter values 
which provide stable and minimum-phase transfer functions of 
control and disturbance channels in (15) and convex charac­
teristic (3). Different modifications and properties of recursive 
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Fig. 2. The diagram of self-tuning minimum-variance 
control system. 
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algorithms of the same kind as (38),(39) were considered by 
Kaminskas (1982). 

The control and identification algorithms employ the pre­
diction error (32) as the input information. This property is 
illustrated by Fig. 2, where a self-tuning minimum-variance 
control system for stochastic extremal Wiener--Hammerstein­
type systems is shown. 

Simulation results. Because of the nonlinear charac­
teristics of the system (1 )-(3) and of the minimum-variance 
controllers, an analytical investigation of the self-tuning con­
trol system properties becomes complex. For this reason, the 
efficiency of self tuning algorithms was examined by means of a 
statistical simulation using typical examples of extremal sys­
tems under discussion. 

In this work the self-tuning control process is illustrated 
on the example of a stochastic extremal Wiener-Hammerstein­
type system 

Yt = 1 + ~·.~z-l (2vt - vi) + 1 _ 0.~5z-1 ~t } 
(45) 

0.6 -2 . 
Vt = 1 _ 0.4z- 1 Z Ut 

The current estimates of the system parameters were calcu­
lated by means of the component version of the recursive 
identification algorithm (38)-(44) with the initial zero val­
ues (Kaminskas, 1982). The control signal was determined 
according to the algorithm (26)-(30) in which the unknown 
parameters were substituted by their current estimates. The 
admissible area for the control signal was 

u min=-l, u max =3, 8t =8=4. (46) 

Fig. 3 illustrates the identification process in the closed 
loop. The sign before the square root in (26}-(30) was being 
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Fig. 3. The convergence of current parameter estimates 
for the system (45) in the self-tuning control pro­
cess. 

constantly alternated with the purpose of improving the con­
vergence of parameter estimates (thus the informativity of the 
input (control) .signal was increased). 

In Fig. 4 the estimates of control error autocovariance 
functions are shown. Fig. 5 demonstrates the diagrams of con­
trol and output signals. The stages I and II represent a self­
tuning control process. At the first (initial) stage parameter 
estimation errors are large and at the second stage parameter 
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Fig. 4. The autocovariance function estimates for the 
system (45): 1 - for the white noise, 2 - for the 
disturbances at the output, 3 - for the control 
error: a - control with genuine system param­
eters without restrictions (46), b - self-tuning 
control without restrictions (46), c - self-tuning 
control with restrictions (46). 

estimates are close to their genuine values in (45). The stage 
III illustrates the case of the self-tuning controller being dis­
connected, i.e., the argument value u* of the extremal charac­
teristic being applied to the input. Control efficiency degrades 
because the compensation of uncontrolled disturbances is ter­
minated. 
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Fig. 5. Processes in the system (45) under self-tuning 
control. 

Application. The designed self-tuning control algo­
rithms were applied for the optimization of fuel combustion 
and steam condensation processes in power units of a ther­
mal power plant. The main characteristics of power unit sub­
systems are for the most extremal. In the course of oper­
ation process these characteristics change due to the ageing 
of equipment, contamination of working surfaces and under 
the influence of other uncontrolled disturbances. Therefore, it 
is possible to provide optimal operation regimes for separate 
subsystems and for the whole power unit only by applying self­
tuning control. The control aim is to minimize the deviations 
of the given to a user active power from its highest possible 
value at a fixed fuel expenditure level. 

In Fig. 6 the results of a numerical experiment on self-
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Fig. 6~ The results of a numerical experiment on self-
tuning control of fuel combustion process. 

tuning control of a fuel combustion process in a power unit are 
given. The control is executed by means of changing the fan 
wings angle, influencing the oxygen concentration in smoke 
gases, the latter being considered as an input signal. The 
active power given to a user (pure power) is considered as the 
output signal. 

According to the results of the first stage of experiment 
(I), the controlled plant model from real,data is designed in 
the form of a stochastic extremal Hammerstein-type system 

Ut = 
0.16 2 

1 _ 0.83z-1 (286.8 + 3.05Ut - 3.4llt ) 

1 + 0.44z-1 

+ 1 - 0.97z-1 tt , 
(47) 

where Ut is the oxygen concentration (%); and Yt is the pure 
power (1VIVll). Off-line identification algorithms (Kaminskas, 
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1985) and pseudorandom input sequences are used for this 
purpose. 

At the second stage (II) self-tuning control of a fuel com­
bustion process, described by (47), is simulat~d using a com­
puter. The self-tuning control algorithms (26)-(30), (38)-(44) 
are applied. 

Conclusions. Methods for self-tuning control of SISO 
stochastic extremal systems with time delay are considered. 
The systems can be represented as various interconnections of 
linear dynamic and extremal static parts. The system output 
is disturbed by a coloured noise. The technique of minimum­
variance controller synthesis for these systems, considering 
possible restrictions for control signal magnitud~ and/or chan­
ge rate is presented. Parametric identification algorithms in 
the closed loop are designed to estimate the unknown param­
eters in the controller equations. 

Convergence of self-tuning control algorithms is shown 
experimentally. On the basis of the proposed methods adap­
tive systems for optimization of processes in power units are 
being designed. 

REFERENCES 

Astrom, K.J. (1970). Introduction to Stochastic Control Theory. 
Academic Press, New York. 

Astrom, K.J. (1983). Theory ~nd applications of adaptive control 
- a survey. Automatica, 19,471-486. 

Isermann, R. (1981). Di9,ital Control Systems. Springer, Berlin. 

Kaminskas, V. (1982). Dynamic System Identification via Discrete 
Time Observations. Pt. I - Statistical Method Foundations. 
Estimation in Linear Systems. Mokslas, Vilnius (in Russian). 

Kaminskas, V. (1985). Dynamic System Identification via Discrete 



V.K aminskas et al. 51 

Time Obse1"lJations. Pt. II - Estimation in Nonlinear Systems. 
Mokslas, Vilnius (in Russian). 

Kaminskas, V. (1986). Predictor-based self-tuning control systems. 
In A. Zukauskas (Ed.), Fiziko-tekhnichesl."'ge problemy ener­
getiki, Kaunas. pp. 317-325 (in Russian). 

Kaminskas, V., and K. Sidlauskas (1984). Co~trol of single input­
single output Wiener-type systems. In C.Paulauskas (Ed.), 
Statisticheskiye prob.lemy upravleniya,. Vol.63. Inst. Math. Cy­
bern. Lith. Acad. Sci., Vilnius. pp. 146-156 (in Russian). 

Kaminskas, V., and K Sidlauskas (1985). Control of extremal dy­
namic systems by using optimal predictors. Trudy Akademii 
Nauk Litovskoi SSR, Ser. B, 3(148),91-101 (in Russian). 

Kaminskas, V., KSidlauskas, and C.Tallat-Kelpsa(1988). Self­
tuning minimum-variance control of nonlinear Wiener-Hammer­
stein-type systems. In Preprints 8th IFAC/IFORS Symp. on 
Ident. and Syst. Par. Est., Vol.l. Beijing. pp. 384-389. 

Kaminskas, V., and C. Tallat-Kelpsa (1983). Control of extremal 
Hammerstein-type systems. In A. Nemura (Ed.), Statistich­
esl.'iye problemy upravleniya, Vo1.60. Inst. Math. Cybern. Lith. 
Acad. ScL, Vilnius. pp. 27-51 (in Russian). 

Kaminskas, V., C. Tallat-Kelpsa, and K Sidlauskas (1986). Self­
tuning control of stochastic extremal plants. In Proc. 2nd IFAC 
Symp. on Stoch. Contr., Vol.2. Pergamon Press, Oxford-New 
York-Toronto. 37-42. 

Kaminskas, V., C. Tallat-Kelpsa, and K. Sidlauskas (1987). Self­
tuning minimum-variance control of extremal systems. Avtoma-. 
tika i Telemekhanika, 9, 84-94 (in Russian). 

Keviczky, 1., I.Vajk, and J. Hetthessy (1979). A self-tuning ex­
tremal controller for the generalized Hammerstein model. In 
Preprints 5th IFAC'Symp. on Ident. and Syst. Par. Est., 
Pergamon Press, Darmstadt. pp. 1147-1151. 

Received Ma.rch 1990 



52 Constrained self-tuning control 

V. Kaminskas was born in 1946. He graduated from 
the Department of Automatics of the Kaunas Poly technical 
Institute in 1968. He received the Candidate Degree in Tech­
nical Sciences in 1972, and the Doctor Degree in Technical 
Sciences in 1983. In 1984 he was awarded the title of the 
Professor. From 1968 until 1989 he worked at the Physical 
and Technical Energy Research Institute of the Lithuanian 
Academy of Sciences. Now he is the Director of the Scientific 
Research Centre "Informatika" of Vytautas Magnus Univer­
sity and Lithuanian Acad. of Sci. His research interests are in 
the areas 9f dynamic system identification and adaptive com­
puter controlled systems. He is the author of 4 monographs 
and about 150 scientific papers on these topics. 

K. Sidlauskas was born in 1955. He graduated from 
the Department of Automatics of the Kaunas Poly technical 
Institute in 1978. He received the Candidate Degree in Tech­
nical Sciences in 1986. From 1978 until 1989 he worked at the 
Kaunas Poly technical Institute and at the Physical and Tech­
nical Energy Research Institute. Now he is a senior research 
worker at the Scientific Centre "Informatika". His research 
interests include self-tuning control of nonlinear dynamic sys­
tems. 

C. Tallat-Kelpsa was born in 1953. He graduated 
from the Department of Automatics of the Kaunas Poly tech­
nical Institute in 1976. He received the Candidate Degree in 
Technical Sciences in 1983. From 1976 until 1989 he worked 
at the Physical and Technical Energy Research Institute, and 
now he is a senior research worker at the Scientific Centr,e "In­
formatika". His research interests are in the areas of extremal 
dynamic system identification and power plant control. 


