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Abstract. The object of the present paper is to study certain subclasses J∗p (a, b, σ) and Cp(a, b, σ)
of analytic p-valent functions, and obtain coefficient bounds and distortion properties for functions
belonging to these subclasses. Further results include distortion inequalities and radii of close-to-
convexity, starlikeness and convexity for these classes of functions.
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1. Introduction and Preliminaries

Let Jp denote the class of functions defined by

f(z) = zp −
∞∑
n=1

ap+nz
p+n (ap+n > 0; p ∈ N), (1.1)

which are analytic and p-valent in the unit disk U = {z: |z| < 1}. A function f(z) ∈ Jp
is said to be in the class J∗p (a, b, σ) if and only if∣∣∣∣∣∣∣

zf ′(z)
f(z)

− p

bzf ′(z)
f(z)

− ap

∣∣∣∣∣∣∣ < σ (z ∈ U), (1.2)

(−1 6 a < b 6 1 and 0 < σ 6 1).

Also, we denote by Cp(a, b, σ) the class of functions f(z) ∈ Jp, if and only if
zf ′(z)
p ∈ J∗p (a, b, σ). The classes J∗p (a, b, 1) = τ∗p (a, b) and Cp(a, b, 1) = cp(a, b) were
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studied in (Goel and Sohi, 1981). The extended form of fractional derivative operator
Jλ,µ,η0,z invoked in this paper is the one defined by (see, Raina and Srivastava (1996)):

Jλ,µ,η0,z f(z) =
dk

dzk

{
zλ−µ

Γ(k − λ)

·
∫ z

0

(z − t)k−λ−1
2F1

(
µ− λ, k − η; k − λ; 1− t

z

)
f(t)dt

}
, (1.3)

(k − 1 6 λ < k; k ∈ N and µ, η ∈ R),

where the function f(z) is analytic in a simply connected region of the z-plane containing
the origin, with the order

f(z) = O (|z|r) (z → 0), (1.4)

for

r > max(0, µ− η)− 1. (1.5)

The multiplicity of (z − t)k−λ−1 is removed by requiring log(z − t) to be real when
z − t > 0. The operator Jλ,µ,η0,z includes the well-known Riemann-Liouville and Erdélyi-
Kober operators of fractional calculus (see (Raina and Saigo, 1993) and (Samko et al.,
1993)).

Indeed, we have

Jλ,λ,η0,z f(z) =
dk

dzk

{
1

Γ(k − λ)

∫ z

0

(z − t)k−λ−1f(t)dt

}
(1.6)

= 0D
λ
z f(z),

(k − 1 6 λ < k; k ∈ N)

and

Jλ,k,η0,z f(z)

=
dk

dzk

{
zλ−η

Γ(k − λ)

∫ z

0

(z − t)k−λ−1tη−kf(t)dt

}
=

dk

dzk

(
Ek−λ,η−λ0,z

)
. (1.7)

(k − 1 6 λ < k; k ∈ N).

In the present paper we first establish some coefficient bounds and distortion prop-
erties for the functions belonging to the subclasses J∗p (a, b, σ) and Cp(a, b, σ). Also,
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further distortion inequalities involving the fractional derivative operators of the func-
tion in the subclass Cp(a, b, σ) are obtained. The radii of close-to-convexity, starlikeness
and convexity for functions belonging to the classes J∗p (a, b, σ) and Cp(a, b, σ) are also
investigated.

2. Coefficient Bounds

In this section we prove two theorems giving the coefficient bounds for the function f(z)

belonging to classes J∗p (a, b, σ) and Cp(a, b, σ).

Theorem 1. The function f(z) defined by (1.1) belongs to the class J∗p (a, b, σ) if and
only if

∞∑
n=1

{(1 + bσ)n+ (b− a)pσ} ap+n 6 (b− a)pσ. (2.1)

The result (2.1) is sharp.

Proof. Let f(z) defined by (1.1) be in the class J∗p (a, b, σ). Then, in view of (1.2), we
have ∣∣∣∣∣∣∣

zf ′(z)
f(z)

− p

bzf ′(z)
f(z)

− ap

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∞∑
n=1

nap+nz
p+n

(b− a)pzp −
∞∑
n=1

ap+n [(b− a)p+ bn] zp+n

∣∣∣∣∣∣∣∣ < σ (z ∈ U). (2.2)

Since |Re(z)| 6 |z| for any z, we get from (2.2) that

Re


∞∑
n=1

nap+nz
p+n

(b− a)pzp −
∞∑
n=1

ap+n [(b− a)p+ bn] zp+n

 < σ. (2.3)

Choosing values of z on the real axis, and letting z → 1 through real values, we arrive
at the assertion (2.1) of Theorem 1. Conversely, we assume that the inequality (2.1) holds
true. Then

|zf ′(z)− pf(z)| − σ |bzf ′(z)− apf(z)|

<
∞∑
n=1

nap+n −
{

(b− a)p− σ
∞∑
n=1

ap+n [(b− a)p+ bn]

}
6 0,
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by assumption. This implies that f(z) ∈ J∗p (a, b, σ).

It may be noted that the assertion (2.1) of Theorem 1 is sharp, and the extremal func-
tion is given by

f(z) = zp − (b− a)pσ

(1 + bσ)n+ (b− a)pσ
zp+n. (2.4)

Theorem 2. The function f(z) defined by (1.1) belongs to the class Cp(a, b, σ) if and
only if

∞∑
n=1

(
p+ n

p

)
{(1 + bσ)n+ (b− a)pσ} ap+n 6 (b− a)pσ. (2.5)

The result (2.5) is sharp.

Proof. The desired assertion (2.5) follows easily on using the definition of Cp(a, b, σ)

and (2.1).

The assertion (2.5) of Theorem 2 is sharp, the extremal function being

f(z) = zp − (b− a)pσ

(p+ n) [(1 + bσ)n+ (b− a)pσ]
zp+n. (2.6)

3. Distortion Properties

Next, we prove two results concerning distortion properties of f(z) which give upper and
lower bounds for the functions belonging to the class J∗p (a, b, σ) and Cp(a, b, σ).

Theorem 3. Let the function f(z) defined by (1.1) belong to the class J∗p (a, b, σ). Then

|f(z)| > |z|p − (b− a)pσ

(1 + bσ) + (b− a)pσ
|z|p+1, (3.1)

and

|f(z)| 6 |z|p +
(b− a)pσ

(1 + bσ) + (b− a)pσ
|z|p+1. (3.2)

Proof. Since f(z) ∈ J∗p (a, b, σ), therefore in view of Theorem 1, we have

{
(1 + bσ) + (b− a)pσ

} ∞∑
n=1

ap+n

6
∞∑
n=1

{(1 + bσ)n+ (b− a)pσ} ap+n 6 (b− a)pσ.
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This yields

∞∑
n=1

ap+n 6
(b− a)pσ

(1 + bσ) + (b− a)pσ
. (3.3)

On using (1.1) and (3.3), we easily arrive at the desired results (3.1) and (3.2).

Theorem 4. Let the function f(z) defined by (1.1) belong to the class Cp(a, b, σ). Then

|f(z)| > |z|p − (b− a)p2σ

(p+ 1) [(1 + bσ) + (b− a)pσ]
|z|p+1, (3.4)

and

|f(z)| 6 |z|p +
(b− a)p2σ

(p+ 1) [(1 + bσ) + (b− a)pσ]
|z|p+1. (3.5)

Proof. Since f(z) ∈ Cp(a, b, σ), then in view of Theorem 2, we have(
p+ 1

p

)
{(1 + bσ) + (b− a)pσ}

∞∑
n=1

ap+n

6
∞∑
n=1

(
p+ n

p

)
{(1 + bσ)n+ (b− a)pσ} ap+n 6 (b− a)pσ.

This yields

∞∑
n=1

ap+n 6
(b− a)p2σ

(p+ 1) {(1 + bσ) + (b− a)pσ} . (3.6)

On using (1.1) and (3.6), we immediately get the desired results (3.4) and (3.5).

4. Further Distortion Properties

Theorem 5. Let the function f(z) defined by (1.1) belong to the class Cp(a, b, σ). Then,
for 0 < λ 6 µ 6 1, η ∈ R+, −1 6 a < b 6 1, 0 < σ 6 1, and z ∈ U :∣∣∣Jλ,µ,η0,z f(z)

∣∣∣ > |z|p−µ
φp(λ, µ, η)

{
1− (b− a)pσ

(1 + bσ) + (b− a)pσ
|z|
}
, (4.1)

and ∣∣∣Jλ,µ,η0,z f(z)
∣∣∣ 6 |z|p−µ

φp(λ, µ, η)

{
1 +

(b− a)pσ

(1 + bσ) + (b− a)pσ
|z|
}
, (4.2)
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where

φp(λ, µ, η) =
Γ(1− µ+ p)Γ(1 + η − λ+ p)

Γ(1 + p)Γ(1 + η − µ+ p)
. (4.3)

Proof. Let a functionH(z) be defined by

H(z) = φp(λ, µ, η)zµJλ,µ,η0,z f(z). (4.4)

Then, in view of (1.1) and the formula (Raina and Srivastava 1996; see also Srivastava et.
al., 1988):

Jλ,µ,η0,z zk =
zk−µ

φk(λ, µ, η)
, (4.5)

(λ > 0; µ, η ∈ R; k > max{0, µ− η}− 1) where φk(λ, µ, η) is given by (4.3), we have

H(z) = zp −
∞∑
n=1

δp+nz
p+n, (4.6)

where

δp+n =
(p+ n)(p)n(1− µ+ p+ η)n
p(1− µ+ p)n(1− λ+ p+ η)n

ap+n, (4.7)

(p)n etc. denote the usual factorial function.
It may be observed that

(p)n(1− µ+ p+ η)n
(1− µ+ p)n(1− λ+ p+ η)n

= 1, for λ = µ = 1, (4.8)

and

(p)n(1− µ+ p+ η)n
(1− µ+ p)n(1− λ+ p+ η)n

< 1, for 0 < λ < µ < 1; (4.9)

η ∈ R+; ∀n ∈ N.

Hence

(p)n(1− µ+ p+ η)n
(1− µ+ p)n(1− λ+ p+ η)n

6 1, for 0 < λ 6 µ 6 1; η ∈ R+; ∀n ∈ N. (4.10)

From (4.7), it follows that

δp+n 6
p+ n

p
ap+n. (4.11)
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In view of (2.5) and (4.11), we have

∞∑
n=1

{(1 + bσ)n+ (b− a)pσ}δp+n 6 (b− a)pσ. (4.12)

This implies that H(z) belongs to J∗p (a, b, σ) by virtue of Theorem 1. Therefore,
using (3.1) and (3.2), we get

|H(z)| > |z|p − (b− a)pσ

(1 + bσ) + (b− a)pσ
|z|p+1, (4.13)

and

|H(z)| 6 |z|p +
(b− a)pσ

(1 + bσ) + (b− a)pσ
|z|p+1. (4.14)

This leads to assertions (4.1) and (4.2) in conjunction with (4.4).

COROLLARY 1. Let f(z) defined by (1.1) be in the class Cp(a, b, σ). Then Jλ,µ,η0,z f(z)

is included in a disk with its centre at the origin and radius R given by

R =
1

φp(λ, µ, η)

{
1 +

(b− a)pσ

(1 + bσ) + (b− a)pσ

}
, (4.15)

where φp(λ, µ, η) is given by (4.3).

REMARK 1. On setting λ = µ = α in Theorem 5, and noting the relation from (1.6) that

Jα,α,η0,z f(z) = 0D
α
z f(z), (4.16)

and

φp(α, α, η) =
Γ(1− α+ p)

Γ(1 + p)
, (4.17)

where 0D
α
z f(z) is the Riemann-Liouville fractional derivative (Samko et al., 1993), we

get the known results (Srivastava and Owa, 1984, Theorem 1, Eqs. (2.4), (2.5), pp. 385–
386).

5. Radii of Close-to-convexity, Starlikeness, and Convexity

A function f(z) in Jp is said to be p-valently close-to-convex of order ρ in U if

Re
{f ′(z)

zp−1

}
> ρ, (0 6 ρ < p; z ∈ U). (5.1)
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A function f(z) in Jp is said to be p-valently starlike of order ρ in U if

Re
{zf ′(z)

f(z)

}
> ρ, (0 6 ρ < p and z ∈ U). (5.2)

A function f(z) in Jp is said to be p-valently convex of order ρ in U if

Re
{

1 +
zf ′′(z)

f ′(z)

}
> ρ, (0 6 ρ < p and z ∈ U). (5.3)

Theorem 6. If f(z) ∈ J∗p (a, b, σ), then f(z) is p-valently close-to-convex of order
ρ (0 6 ρ < p) in |z| < r1, where

r1 = inf
n∈N

{ (p− ρ)[(1 + bσ)n+ (b− a)pσ]

(p+ n)(b− a)pσ

}1/n

. (5.4)

The result is sharp with the extremal function f(z) given by (2.4).

Proof. Let f(z) ∈ J∗p (a, b, σ). Then, by virtue of (5.1), the function f(z) is p-valently
close-to-convex of order ρ (0 6 ρ < p) in U , provided that∣∣∣∣− ∞∑

n=1

(p+ n)ap+nz
n

∣∣∣∣ 6 ∞∑
n=1

(p+ n)ap+n|z|n 6 p− ρ. (5.5)

In view of (2.1), the assertion (5.5) is true if

(p+ n)|z|n
(p− ρ)

6 [(1 + bσ)n+ (b− a)pσ]

(b− a)pσ
(∀n ∈ N). (5.6)

On solving (5.6) for |z|, we get the desired result (5.4).

Theorem 7. If f(z) ∈ J∗p (a, b, σ), then f(z) is p-valently starlike of order ρ

(0 6 ρ < p) in |z| < r2, where

r2 = inf
n∈N

{
(p− ρ)[(1 + bσ)n+ (b− a)pσ]

(n+ p− ρ)(b− a)pσ

}1/n

. (5.7)

The result is sharp with the extremal function f(z) given by (2.4).

Proof. Let f(z) ∈ J∗p (a, b, σ). Then by virtue of (5.2), the function f(z) is p-valently
starlike of order ρ (0 6 ρ < p) in U , provided that∣∣∣∣∣∣∣∣

−
∞∑
n=1

nap+nz
n

1−
∞∑
n=1

ap+nzn

∣∣∣∣∣∣∣∣ 6
∞∑
n=1

nap+n|z|n

1−
∞∑
n=1

ap+n|z|n
6 p− ρ. (5.8)
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In view of (2.1), the assertion (5.8) is true if

(n+ p− ρ)|z|n
(p− ρ)

6 [(1 + bσ)n+ (b− a)pσ]

(b− a)pσ
(n ∈ N). (5.9)

On solving (5.9) for |z|, we get the desired result (5.7).

Similarly, by using the definition (5.3) of p-valently convex functions of order ρ, we
easily arrive at the following result:

Theorem 8. If f(z) ∈ J∗p (a, b, σ), then f(z) is p-valently convex of order ρ (0 6 ρ < p)

in |z| < r3, where

r3 = inf
n∈N

{ p(p− ρ)[(1 + bσ)n+ (b− a)pσ]

(p+ n)(2 + p− n− ρ)(b− a)pσ

}1/n

. (5.10)

The result is sharp with the extremal function f(z) given by (2.4).

Proof. Let f(z) ∈ J∗p (a, b, σ). Then, by virtue of (5.3), the function f(z) is p-valently
convex of order ρ (0 6 ρ < p) in U , provided that

∣∣∣∣∣∣∣∣
−p+

∞∑
n=1

ap+nz
n(p+ n)(1− n)

p−
∞∑
n=1

ap+nzn(p+ n)

∣∣∣∣∣∣∣∣ 6

6
p+

∞∑
n=1

ap+n(p+ n)(1− n)|z|n

p−
∞∑
n=1

ap+n(p+ n)|z|n
6 1 + p− ρ. (5.11)

In view of (2.1), the assertion (5.11) is true if

(p+ n)(2 + p− n− ρ)|z|n
p(p− ρ)

6 [(1 + bσ)n+ (b− a)pσ]

(b− a)pσ
, n ∈ N. (5.12)

On solving (5.12) for |z|, we get the desired result (5.10).

We conclude this paper by remarking that several results giving the coefficient bounds,
distortion inequalities, radii of close-to-convexity, starlikeness and convexity of functions
which belong to various subclasses of Jp can be obtained by suitable choices of param-
eters a, b, σ and p, including some of the results obtained in (Goel and Sohi, 1981) and
(Srivastava et al., 1984).
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Kai kurios analizini ↪u p-valenči ↪u funkcij ↪u su neigiamais koeficientais
poklasės

Ravinder Krishna RAINA ir Tej Singh NAHAR

Analizinė vienetiniame skritulyje |z|61 funkcija F (z) = zp −
∑∞

n=1
ap+nz

n, p =
1, 2, . . . , ap+n>0, vadinama p-valente. Gauti toki ↪u funkcij ↪u, priklausanči ↪u ↪ivairiems p-valenči ↪u
funkcij ↪u poklasiams, koeficient ↪u ir j ↪u deformacij ↪u ↪iverčiai. Atskirai ↪ivertintos deformacijos, atsi-
randančios paveikus funkcij ↪a diferencialiniu operatoriumi. Nustatyti uždarojo iškilumo, iškilumo
ir žvaigždėtumo spinduliai.


