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Abstract. An algorithm for updating the evidence in the Dempster-Shafer theory is presented. The
algorithm is based on an idea of indices. These indices are used to code the process of reasoning
under uncertainty (the combination of evidence)using the Dempster-Shafer theory. The algorithm
allows to carry out the reasoning with updating the evidence in much more efficient way than using
the original Dempster-Shafer theory. Updating the evidence is necessary among others in systems
that are based on changing data – adaptive and distributed reasoning systems.
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1. Introduction

The first tool developed for dealing with uncertainty was the probability theory (“the true
logic for this world is the calculus of probabilities” – James Maxwell said in 1850). Initial
results of applying probabilistic techniques in expert systems were promising. However,
the existing systems did not scale up because of exponential numbers of probability val-
ues required in the full joint distribution (belief net algorithms were not known at that
time). As a result between 1975 and 1988 a variety of alternatives were tried. The best
known ones were default reasoning, rule-based approaches (certainty factor), fuzzy logic
and Dempster-Shafer theory. These approaches deal with different aspects of uncertainty.

One of the most important aspects is the distinction between uncertainty and igno-
rance. Let us consider the following example. Given are three competing propositions
(hypotheses): X , Y and Z. If we have no information we have to assert to these hypothe-
ses some values of probability and their sum must be equal to 1 – the classical approach.
The only reasonable solution is to assign to each hypothesis the same probability equal to
1/3. If we do it we will not be able to make any distinction between this situation, when
we have no knowledge, and the case when we know that all hypotheses are equally likely
to happen. This distinction is possible to make using the Dempster-Shafer theory (Demp-
ster, 1968; Klopotek, 1998; Shafer, 1976; Shafer and Logan, 1987; Shenoy and Shafer,
1986), which rejects one of the axioms of the Bayesian theory: P (A) + P (¬A) = 1 for
any proposition A. If we have no evidence at all, for or against A, then it is appropri-
ate to assume that both degrees of belief for propositons A and ¬A are equal to zero:
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P (A) + P (¬A) = 0. To model this the Dempster-Shafer theory needs two values that
describe the degree of belief in A and in ¬A respectively.

The main part of this theory is the algorithm of combining different pieces of evi-
dence. It allows only to add new evidence. However, there are very often cases we would
like not only add evidence but also change or even remove some pieces which were previ-
ously added. Because these processes are not defined in the original model we can not do
it directly. The only possible way is to perform the whole process of combining all these
pieces of evidence with the piece changed or without the one removed again. In cases it
should be done regularly there is a very strong motivation for less time consuming so-
lutions. This work presents some properties of the Dempster-Shafer theory that can be
used to define these both aforementioned processes of changing and removing evidence
pieces.

2. Dempster-Shafer Theory

Main Idea

Contrary to the classical probabilistic approach the Dempster-Shafer theory assigns to
every proposition (hypothesis) an interval: [Belief, Plausibility], in which this degree of
belief must lie, instead of a single degree of belief. Belief (usually denoted Bel) measures
the strength of evidence in favour of a set of propositions. It ranges from 0 (indicating no
evidence) to 1 (denoting certainty). Plausibility (Pl) is defined to be:

Pl(A) = 1− Bel(¬A). (1)

It also ranges from 0 to 1 and measures the extent to which evidence in favour of ¬A
leaves space for belief in A. In particular, if we have certain evidence in favour of ¬A,
then Bel(¬A) will be equal to 1 and Pl(A) will be equal to 0. This tells us that the only
possible value for Bel(A) is also 0. In other words, Belief and Plausibility represent the
lowest and the highest value of possible degree of belief in some proposition A.

This interval indicates not only our level of belief in some propositions but also the
amount of information (evidence) we have. The width of this interval can be a good aid
in deciding when we need to acquire more evidence. As evidence is accumulated this
interval can be expected to shrink. As we can see, this interval approach makes it clear
that we have no information when we start the process of reasoning (Bel = 0, Pl = 1),
what is not possible in classical probabilistic approach.

Belief Function

So far, we have been talking intuitively about Believe as a measure of our belief in some
proposition (hypothesis) given some evidence. Let us now define it more precisely. To do
this, we need to start, just as with Bayes’ theorem, with an exhaustive universe of mutually
exclusive hypotheses – θ. It is called the frame of discernment. Our goal is to attach some
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measure of belief to elements of θ. However, not all evidence supports single hypothesis.
Often evidence supports sets of hypotheses (subsets of θ). So Dempster-Shafer theory
introduces a probability density function (m) which is defined not just for elements of θ
but for all subsets of it:

m : 2θ → [0, 1],

m[�] = 0, (2)∑
A⊆θ

m(A) = 1.

Having defined m, we can now define Bel(A) for a set A as the sum of the values of
m for A and for all of its subsets B:

Bel(A) =
∑
b⊂A

m(B). (3)

Moreover we need a mechanism for performing the combination of different subsets
and their probability density functions. Suppose we are given two sets X and Y (subsets
of θ) and corresponding to them two probability density functions m1 and m2. Let X
be to which m1 assigns a nonzero value and let Y be the corresponding set for m2. We
define the combination of X and Y (m1 and m2) to be:

m3(Z) =

∑
X∩Y=Z

m1(X) ∗m2(Y )

1−
∑

X∩Y=�
m1(X) ∗m2(Y )

. (4)

EXAMPLE 1. Let us consider the following example. Given are four hypotheses:
A,F,C, P so θ = {A,F,C, P}. Let us assume that we have no information about how to
choose among these hypotheses. So we start the diagnosis withm1(θ) = 1. Now suppose
we acquire a piece of evidence that suggests at a level of 0.6 that the correct answer is in
the set {A,F,C}. So we have m2({A,F,C}) = 0.6. Because the sum of m2 for all sub-
sets must be equal to 1, we conclude that m2(θ) = 0.4. We can compute the combination
using the following table:

1st combination:

m2({A,F,C}) = 0.6 m2(θ) = 0.4

m1(θ) = 1 m3({A,F,C}) = 0.6 m3(θ) = 0.4

The combination consists in generating all intersections of both probability density
functions (m1 andm2) according to (4). Although it did not happen in this simple case, it
is possible for the same subset to be derived in more than one way during the combination
process. If that does occur, then in order to compute m for that subset, it is necessary to
sum all values that are generated for the same subset (thus the summation sign in the
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numerator of the combination formula 4). The denominator of this formula is equal to 1
except the situations when the intersection gives us the empty set – we will show it later.

Suppose we acquire another piece of evidence that m4({F,C, P}) = 0.8 and
m4(θ) = 0.2. We can again compute the combination:

2nd combination:

m4({F,C, P}) = 0.8 m4(θ) = 0.2

m3({A,F,C}) = 0.6 m5({F,C}) = 0.48 m5({A,F,C}) = 0.12

m3(θ) = 0.4 m5({F,C, P}) = 0.32 m5(θ) = 0.08

A slightly more complex situation arises when some of the subsets generated during
the combination process are empty. We assumed, that θ is exhaustive and the true value
of any hypothesis must be contained in some nonempty subset of θ. If this situation
happens, we must scale values of the probability density function according to (4). Let us
add another piece of evidence: m6({A}) = 0.75 and m6(θ) = 0.25:

3rd combination:

m6({A}) = 0.75 m6(θ) = 0.25

m5({F,C}) = 0.48 m7(�) = 0.360 m7({F,C}) = 0.120

m5({A,F,C}) = 0.12 m7({A}) = 0.090 m7({A,F,C}) = 0.030

m5({F,C, P}) = 0.32 m7(�) = 0.240 m7({F,C, P}) = 0.080

m5(θ) = 0.08 m7({A}) = 0.060 m7(θ) = 0.020

As we can see, we have the aforementioned case, the subset {A} is derived in
more than one way. So the m value for this subset is equal to the sum of all val-
ues: m7({A}) = 0.090 + 0.060 = 0.150. Moreover, the degree of belief equal to
0.600 (0.360+0.240 = 0.600) is associated with�. We need to scale m-function values
all remaining subsets by dividing them by 0.400 (1–0.600=0.400) – according to formula
(4). The final result, after scaling, is the following: m7({F,C}) = 0.300, m7({A}) =

0.375, m7({A,F,C}) = 0.075, m7({F,C, P}) = 0.200, m7(θ) = 0.050.

Let us now calculate the values of Belief and Plausibility for each hypothesis:

{A} : [0.375, 0.500] {F} : [0, 0.625] {C} : [0, 0.625] {P} : [0, 0.250].

As we can see, we have little knowledge about single hypotheses F and C. For these
hypotheses intervals are relatively wide. Only for A and P we can say, that the level of
belief was calculated precisely because their intervals are relatively narrow. Having this
knowledge we can only say, that possible hypothesis with very high degree of belief is
the set of three hypotheses: {A,F,C}:

Bel({A,F,C}) = 0.075 + 0.300 + 0.375 = 0.750 Pl({A,F,C}) = 1− 0 = 1.

Interval for the subset {A,F,C} is the following: [0.750, 1]
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To reduce the possible hypothesis to two or even one hypothesis, we need additional
pieces of evidence.

Let us add another piece of evidence: m8({A,F}) = 0.8 and m8(θ) = 0.2:

4th combination:

m8({A,F}) = 0.75 m8(θ) = 0.25

m7({F,C}) = 0.300 m9({F}) = 0.240 m9({F,C}) = 0.060

m7({A}) = 0.375 m9({A}) = 0.300 m9({A}) = 0.075

m7({A,F,C}) = 0.075 m9({A,F}) = 0.060 m9({A,F,C}) = 0.015

m7({F,C, P}) = 0.200 m9({A}) = 0.160 m9({F,C, P}) = 0.040

m7(θ) = 0.050 m9({A,F}) = 0.040 m9({θ}) = 0.010

Again, some subsets are derived in more than one way. So the m-function val-
ues according to formula (4) are the following: m9({A}) = 0.535, m9({F}) =

0.240, m9({A,F}) = 0.100, m9({F,C}) = 0.060, m9({A,F,C}) = 0.015,
m9({F,C, P}) = 0.040, m9({θ}) = 0.010.

Let us now calculate the values of Belief and Plausibility for each hypothesis:

{A} : [0.535, 0.660] {F} : [0.240, 0.465] {C} : [0, 0.125] {P} : [0, 0.050].

Comparing to the previous result we can say, that all intervals are narrower and pos-
sible diagnosis with very high degree of possibility consists in two hypotheses A and F :

Bel({A,F}) = 0.775

Pl({A,F}) = 1− Bel({C,P}) = 1− 0 = 1

3. Problem Formulation

The main part of the Dempster-Shafer theory is the process of combining different pieces
of evidence. We can interpret this process as knowledge updating. As a result we obtain
new (updated) subsets of propositions (hypotheses) with new (updated) values of the
probability density function (m). This process may be performed as far as we are able to
obtain new knowledge and update the result.

Let us consider the following situation. We obtained same pieces of evidence and
updated subsets of hypotheses and their values of the probability density function (m). It
may happen that we would like to change parameters of some previously added piece of
evidence or even remove it. There are many important reasons for such actions. Firstly,
after obtaining some piece of evidence and knowledge updating we may get information
that this piece of evidence have to be changed because the evaluation of its parameters
(sets of hypotheses or the value of the probability density function – m) was made not
precisely. The correct new values are given and we have to calculate the correct result
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again. Sometimes, despite the fact that the evidence parameters were estimated precisely,
the surrounding world may change and we also have to change or even remove this piece
of evidence. Thirdly, we may add some piece of evidence to see what happens if we
do it (some kind of experiment). Then other pieces are added. After that this additional
piece of evidence should be changed (to continue the experiment) or removed (to end this
experiment).

Such a change of evidence parameters may happen more than once. For example it is
possible in adaptive systems whose natural feature is a multiple testing of some values.
Such testing may change degrees of belief in evidences, what may cause to activate a
reasoning process again. Sometimes all values of belief degrees coming from this testing
process are valid, but in most cases only the last value, the newest one is correct and
all the previous ones must be removed (detailed discussion is presented in Lukaszewski,
1998).

We have presented only main reasons for changing and removing some pieces of
knowledge. Let us concentrate on the main problem – how to change or remove a piece
of evidence in the Dempster-Shafer theory. The simplest solution is to store all pieces.
Each time we change parameters of some piece or remove it we have to combine again
all pieces respectively with this piece of evidence changed or without the one cancelled.
The computational complexity of this solution is rather high. Having n pieces of evidence
we have to make n − 1 combinations even if we change (or remove) only one piece. In
cases it should be done regularly there is a very strong motivation for less time consuming
solutions.

4. Introduction of Indices

We will present other idea of removing and changing pieces of evidence which has much
less computational complexity than the aforementioned one. Firstly, we will add some
extension to the Dempster-Shafer theory, and use it to define these processes.

Let us come back to our example of evidence pieces combination that is presented par-
tially in Fig. 1. Each combination consists in finding an intersection of “current” subsets
(subsets of hypotheses) and “new” subsets. As a result we obtain “result” subsets:

“current” subsets ⊕ “new” subsets ⇒ “result” subsets.

At the beginning we have only one subset – θ. Moreover, we assume that θ always
belongs to “new” subsets. Combination of any “current” subset and θ gives us a “result”
subset which is the same as the “current” one. We can say, that θ plays the same role in
the combination process as “0” in addition or “1” in multiplication:

“current” subset ⊕ θ ⇒ “current” subset.

This is very important remark, because it is the basis for our further considerations.
Of course probability density function (m) may be different for this “current” subset and
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Fig. 1. The idea of the indices.

“result” subset, but the elements of these subsets are the same. The processes in which θ
is a “new “ subset are presented in Fig. 1 with bold arrows.

Our main extension of the Dempster-Shafer theory are indices. We add to every “re-
sult” subset index 0 or 1:

• index 0 is added to “result” subsets when the “new” subset is θ. So the “result”
subset is the same as the “current” one;
• index 1 is added to “result” subsets when the “new” subset is not θ. So the “result”

subset is different than the “current” one (when “current” and “new” subsets are
equal the “result” subset is the same as these two ones – it is an exception).

These indices create lists which length depends on the number of combinations – see
Fig. 1. The last added indices, the underlined ones, are at the end of these lists.

5. Idea of Solution

In the previous paragraph we introduced the idea of indices. We use them to present the
idea of removing and changing pieces of evidence in the Dempster-Shafer theory. Having
defined the removing process we can change any piece of evidence by removing the old
piece of evidence and adding the correct piece of evidence.

To simplify our considerations we divide the problem of evidence pieces removing
into two cases – without empty sets and with empty sets. For each case we will consider
the same two subproblems:
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A. Which subsets should be removed?

B. How to update the values of the m-function of all the not removed subsets?

Moreover, the process of evidence pieces removing is called the combination cancelling.

5.1. Cases without Empty Sets (�)

Let us concentrate on the first subproblem – which subsets should be removed. If the last
combination should be cancelled, we can restore the state before this combination was
made from a memory. We can also use our indices – subsets that were not changed during
this combination (with index 0 at the end) should not be removed. Subsets that were
created during this cancelled combination (with index 1 at the end) should be removed.
If the cancelled combination is not the last one, we have to leave all subsets that are
the successors of the subsets not changed during this combination (with index 0 at the
position related to this combination). All subsets that are the successors of the subsets
created during this combination (with index 1 at the position related to this combination)
should be removed. We carry out these operations only for these successors that are the
“result” subsets of the last combination – only for “leaves” in the combination tree.

A. Which subsets should be removed?

Remove all the subsets with index 1 at the position that is related to this cancelled
combination

.

Let us look at our example – Fig. 2. After the second combination we have the fol-
lowing subsets:

m5({F,C}11) = 0.48, m5({A,F,C}10) = 0.12,

m5({F,C, P}01) = 0.32, m5(θ00) = 0.08.

We cancel the first combination. According to our rule, we have to remove all the
subsets that have index 1 at the first position. We obtain the following subsets:

m5({F,C, P}01) = 0.32, m5(θ00) = 0.08.

We have found the solution for the first subproblem – which subsets should be re-
moved. However, the second subproblem still exists – how to update the m-function
values for all the not removed subsets. This cancelled combination changed all the m-
function values of all the subsets not changed by this combination (combined with θ).
This change relies on multiplication of all the m-function values of these subsets by the
value assigned to the θ – one of the “new” subsets of this combination. This change is
propagated to all the successors of these multiplied subsets. These successors are all the
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subsets with index 0 at the position related to this cancelled combination. All the not re-
moved subsets are the successors of these multiplied subsets. Cancelling the effect of this
multiplication, we have to divide all the m-function values of all the not removed subsets
by the value assigned to this θ.

B. How to update the values of the m-function of all the not removed subsets?

Divide all the m-function values of all the not removed subsets by the m-function
value assigned to the “new” subset θ of the combination cancelled.

Let us look at our example. The m-function value assigned to the “new” subset θ in
the cancelled combination is equal to 0.4. So, we have to divide all the m-function values
of the not-removed subsets by this value. We obtain the following subsets:

m5({F,C, P}01) = 0.8, m5(θ00) = 0.2.

This is the correct result after the cancelling of the first combination. We can verify it
carrying out only the second combination (omitting the first cancelled combination):

2nd combination

m4({F,C, P}) = 0.8 m4(θ) = 0.2

m0(θ) = 1 m5({F,C, P}) = 0.8 m5(θ) = 0.2

As we can see, the results are the same.

5.2. Cases with Empty Sets (�)

In the previous section we considered only the case where each “result” subset was a
non-empty set. Now we consider more general case that allows � to be created as a

Fig. 2. The idea of the combination cancelling without empty sets.
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“result” subset. Contrary to the Section 5.1, the term subsets will mean not only non-
empty subsets but also empty sets.

We divide the process of the cancelling of the combination into the same two sub-
problems as in the previous section. The first subproblem is solved in the same way (see
Section 5.1).

A. Which subsets should be removed?

Remove all the subsets (all the non-empty subsets and all the empty sets) with index
1 at the position that is related to the combination cancelled.

The problem of updating the m-function values is much more difficult this time. As
we remember every time an empty set is created we scale all the m-function values of
all the non-empty subsets created during the combination according to formula (4). It
may happen that while cancelling some combination we have to remove some empty
sets. These empty sets may have been created by this combination cancelled or are the
successors of some non-empty subsets created during this process cancelled. In both cases
we have to remove these empty sets (Step A). These removed empty sets are used in the
scaling of the m-function values of subsets (non-empty subsets and empty sets) so we
have to cancel the scaling made by these removed empty sets. We can cancel the scaling
made by these empty sets removed in the following way: cancel the scaling made by all
the empty sets and scale by the empty sets not removed. Moreover, we have to remember
about cancelling the scaling made by θ – one of the “new” subsets of this cancelled
combination (see the case without �).

Summarising, cancelling any combination we have to carry out the following pro-
cesses: removing subsets, cancelling the scaling made by θ, cancelling the scaling made
by all empty sets and the scaling made by the empty sets not removed. These processes
can not be carried out in an arbitrary order. The idea of the solution is the following:
before we remove some empty sets we have to cancel the scaling made by them (cancel
the scaling made by all the empty sets and scale by the empty sets not removed). The
problem is when we can cancel the scaling made by θ? The cancelling of the scaling
made by all the empty sets should be performed in the opposite direction than the process
cancelled – from the “leaves” of the tree to the combination cancelled. The scaling by the
empty sets not removed should be performed in normal direction – from the combination
cancelled to the “leaves” of the tree. Between these two processes we should cancel the
scaling made by θ.

Let us now look closer at these processes and their description. We start our operations
from the “leaves” of the tree.

• Firstly, moving from the “leaves” (the last combination) towards the combination
cancelled we have to cancel the scaling made by the empty sets. We have to do it
for each group of empty sets created by the same combination C. Each group of
empty sets scales the m-function values of all the non-empty subsets created by
this combination C. This scaling relies on division of all the m-function values of
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these non-empty subsets by the value 1− SUM where SUM is the sum of all the
m-function values of all the empty sets created by combination C. This scaling is
propagated to all the successors of these scaled non-empty subsets. These
successors are all the subsets (the non-empty subsets and the empty sets) with any
index (0 or 1) at the position related to this combination C. All the “result” subsets
(all the “leaves”) are the successors of these scaled non-empty subsets. Moreover,
all the empty sets created by all the combinations made later than C are also
successors of these scaled non-empty subsets. Cancelling the effect of this scaling,
we have to multiply all the m-function values of all the successors by the value
1− SUM .

• We have cancelled scaling made by empty sets created by all the combinations
made later than the cancelled combination. We can now remove subsets created by
this cancelled combination (cut some “branches” of the tree). We use the idea of
indices again. All the subsets (all the non-empty subsets and all the empty sets)
with index 1 at the position that is related to this cancelled combination should be
removed.
• The previous process leaves all these subsets that are not changed by this

cancelled combination (subsets combined with θ – one of the “new” subsets of
this combination) and their successors. This cancelled combination changed all
the m-function values of all these subsets. This change relies on multiplication of
all the m-function values of these subsets by the value assigned to θ. This change
is propagated to all the successors of these multiplied subsets. These successors
are all the subsets (the non-empty subsets and the empty sets) with index 0 at the
position related to the cancelled combination. All the non-empty subsets not
removed (all the “leaves”) are the successors of these multiplied subsets.
Moreover, all the not removed empty sets created by combinations made later than
the cancelled combination are also successors of these multiplied subsets. We
cancel the scaling made by the θ. While cancelling the effect of this scaling, we
have to divide all the m-function values of all the successors of the scaled subsets
by the value assigned to θ.
• In the first process we cancelled the scaling made by the empty sets. Some of these

empty sets are not removed by the removing process. Moving from the cancelled
combination towards the “leaves” not removed (the last combination) we have to
scale the subsets by the empty sets not removed. We have to do it for each group of
not removed empty sets created by the same combination C. Each group of empty
sets scales the m-function values of all the non-empty subsets created by this
combination C. This scaling relies on division of all the m-function values of
these non-empty subsets by the value 1− SUM where SUM is the sum of all the
m-function values of all the empty sets created by combination C. This change is
propagated to all the successors of these scaled subsets. These successors are all
the subsets (the non-empty subsets and the empty sets) with any index (0 or 1) at
the position related to combination C. All the “result” subsets not removed (all the
“leaves”) are the successors of these scaled subsets. Moreover, all the empty sets
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created by all the combinations made later than C are also successors of these
scaled subsets. Carrying out subsets scaling, we have to divide all the m-function
values of all the successors of these subsets by the value 1− SUM .

Summarising:
AB1. Cancel the scaling of the m-function values of non-empty subsets and empty

sets:
For each group of empty sets created during the same combination C, starting from

the last combination and ending with the cancelled combination:

• find all the successors of all the subsets scaled by this combination C – all the
subsets (the non-empty subsets and the empty sets) with any index (0 or 1) at the
position related to this combination;
• multiply the m-function values of these successors by the value 1− SUM where
SUM is the sum of all the m-function values of all the empty sets created by this
combination.

AB2. Remove all the non-empty subsets and all the empty sets with index 1 at the
position that is related to the combination cancelled.

AB3. Divide the m-function values of all the non-empty subsets and all these empty
sets that have index 0 at the position related to the combination cancelled by the value
assigned to the “new” subset θ of the combination cancelled.

AB4. Scale the m-function values of the non-empty subsets not removed and empty
sets not removed too:

For each group of empty sets created during the same combination C, starting from
the cancelled combination and ending with the last combination:

• find all the successors of all the subsets scaled by combination C – all the subsets
(the non-empty subsets and the empty sets) with any index (0 or 1) at the position
related to this combination;
• divide the m-function values of the successors by the value 1− SUM where
SUM is the sum of all the m-function values of all the empty sets created by this
combination.

Let us now look at our example – Fig. 3. It presents the state of the problem after the
third combination of our example. The m-function values of all the “result” subsets after
scaling by the empty sets according to formula (4) are the following:

m7({F,C}) = 0.3, m7({A}) = 0.225, m7({A,F,C}) = 0.075,

m7({F,C, P}) = 0.2, m7({A}) = 0.150, m7(θ) = 0.05.

Let us cancel the first combination.

Step AB1 – we have to cancel scaling made by the empty sets. There is only one
combination carried out after the combination cancelled that created any empty set – the
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last combination. So we have to multiply all non-empty subsets by the value 1 − SUM
where SUM is equal to 0.6. We do it only for the subsets that will not be removed. Values
before multiplying:

m7({F,C, P}) = 0.200, m7({A}) = 0.150, m7(θ) = 0.050.

Values after multiplying:

m7(�) = 0.240, m7({F,C, P}) = 0.080, m7({A}) = 0.060, m7(θ) = 0.020.

Step AB2 – we remove the non-empty subsets and the empty sets that have index 1 at
the first position – Fig. 3.

Step AB3 – we have to divide all the m-function values of all the non-empty subsets
and all the empty sets (they have index 0 at the first position) by the value assigned to
the “new” subset θ of this cancelled combination. In this combination the m-function
value assigned to θ is equal to 0.4. So, we have to divide the m-function values of all the
non-empty subsets and the empty sets by this value. Values before dividing:

m7(�) = 0.240, m7({F,C, P}) = 0.080, m7({A}) = 0.060, m7(θ) = 0.020.

Fig. 3. The idea of the combination cancelling with empty sets.
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Values after dividing:

m7(�) = 0.6, m7({F,C, P}) = 0.2, m7({A}) = 0.15, m7(θ) = 0.05.

Step AB4 – There is only one combination carried out after the cancelled combination
that created any empty set – the last combination. So we have to divide all the non-empty
subsets with any index at the position of this combination by the value 1− SUM where
SUM is equal to 0.6. Values after dividing:

m7({F,C, P}) = 0.5, m7({A}) = 0.375, m7(θ) = 0.125.

This is the correct result. It can be verified by carrying out only the second and the
third combination.

2nd combination:

m4({F,C, P}) = 0.8 m4(θ) = 0.2

m0(θ) = 1 m5({F,C, P}) = 0.8 m5(θ) = 0.2

3rd combination:

m6({A}) = 0.75 m6(θ) = 0.25

m5({F,C, P}) = 0.8 m7(�) = 0.6 m7({F,C, P}) = 0.2

m5(θ) = 0.2 m7({A}) = 0.15 m7(θ) = 0.05

Values after scaling by the empty set (after dividing by 0.4):

m7({F,C, P}) = 0.5, m7({A}) = 0.375, m7(θ) = 0.125.

As we can see, the results are the same.

6. Conclusions

We have presented two solutions of the evidence pieces removing (the cancelling of the
combination). These solutions allow removing or changing pieces of evidence in much
more effective way comparing to the idea of carrying out of all combinations again except
the removed or changed one. This improving of effectiveness is possible by defining the
process of removing that have to be much more effective than the substitution of this
process by repeatedly carrying out combinations of all not removed pieces of evidence.

These solutions base on some properties of the combination process in the Dempster-
Shafer theory. It is possible to define the removing process representing all the combi-
nations using the combination tree. This tree can be coded with indices. We proved that
storing only the last result (as it is in the Dempster-Shafer theory) and indices attached
to them, and all the empty sets with their indices we can cancel any combination much
more effective than without this removing process.
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There is very strong practical motivation for defining such the effective process of
evidence pieces removing: adaptive reasoning systems, systems that allow changes in the
data, experimenting with data (add data to see what happens and remove this data).
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Informacijos atnaujinimas Dempsterio ir Šaferio teorijoje
Tomasz LUKASZEWSKI

Straipsnyje pateiktas algoritmas informacijai atnaujinti Dempsterio ir Šaferio teorijoje. Algorit-
mas grindžiamas indeks ↪u naudojimu. Indeksais koduojamas Dempsterio ir Šaferio teorija pagr ↪istas
samprotavim ↪u neapibrėžtumo s ↪alygomis procesas. Jis leidžia, palyginti su klasikiniais Dempste-
rio ir Šaferio teorijos metodais, atnaujinti informacij ↪a daug efektyviau. Tai ypač svarbu kuriant
sistemas, kuriose duomenys nuolat kinta, pavyzdžiui, adaptyvi ↪uj ↪u arba išskirstyt ↪u samprotavim ↪u
sistemas.


