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Abstract. In this paper two popular time series prediction methods – the Auto Regression Moving
Average (ARMA) and the multilayer perceptron (MLP) – are compared while forecasting seven
real world economical time series. It is shown that the prediction accuracy of both methods is poor
in ill-structured problems. In the well-structured cases, when prediction accuracy is high, the MLP
predicts better providing lower mean prediction error.
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1. Introduction

Forecasting the economical times series is an important task in modern data analysis.
The problem can be formulated as follows. Let X1,X2, . . . ,XR be a multivariate time
series consisting ofR p-variety vectors. An objective is to forecast the first component of
a vector

Xj =


X1j

X2j

. . .

Xpj


on a basis of information contained in a sequence of p-variety vectors Xj−1, Xj−2,

. . . Xj−K , where K is the number of vectors in a past we want to use. Usually for pre-
diction of each particular value Xj we use only a finite number (K) of “history” vectors
Xj−1, Xj−2, . . . , Xj−K , where K << R. For prediction of parameter Yj = X1j one
seeks for a functional relationship Yj = f(Xj−1, Xj−2, . . . , Xj−K).

There is a number of methods for solving time series forecasting problem. Most popu-
lar are Regression Trees, Neural Networks, the Auto Regression and Memory Based Rea-
soning. We concentrate on two of them: the Auto Regression Moving Average (ARMA)
model and the Multilayer Perseptron (MLP).
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In the ARMA prediction model, it is supposed the vectorsX1, X2, . . . , XR are sam-
ples of a stationary Gaussian process (see, e.g., Box and Jenkins, 1974), and

Y ∗t =
K∑
l=1

p∑
i=1

ap(l−1)+iXit−l +

q∑
i=1

biεt−i + εt. (1)

We assume that

Xit−l = 0, if t 6 l,

and

εt−i = 0, if t 6 i,

and where Y ∗t is tth day (a moment of the time series) prediction, Xi is ith day vector,
εt is tth day prediction error, K is a number of “history” moments, p is vector size, q is
number of Moving Average (MA) parameters.

The training consists in finding unknown coefficients ai, bi from a “learning-set” data.
The multilayer perceptron calculates an output as follows

Y ∗t = φoutput

( h∑
j=1

vjφhidden
( K∑
l=1

p∑
i=1

wp(l−1)+iXit−l + w0

))
, (2)

where φ(x) is a non-linear activation function, e.g. φ(x) =
1

1 + e−x
, Y ∗t is tth day (a mo-

ment of the time series) prediction,wi is MLP hidden layer coefficients, vj is MLP output
layer coefficients, p is vector size (dimensionality), h is number of hidden neurones, K
is number of “history” moments.

The prediction task is to find the coefficients wi, vj .
An objective of the paper is to apply both the ANN and the ARMA prediction meth-

ods to several real data sets and to compare their accuracy. In the next section, the de-
tails about the methods are presented. In the Section 3, the economical data sets used
in the experiments are given, in the Section 4 the criteria to compare accuracy of differ-
ent prediction methods are discussed. The Section 5 contains the results of experimental
analysis.

2. Prediction Methods

2.1. ARMA

We define residuals in prediction by recurrent expressions:

εt = Y ∗t − Yt, (3)
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where Y ∗t are forecasted values, Yt are real values.
In order to find unknown coefficients of the ARMA model the following sum of

squares is minimized

f(x) = log fm(x), fm(x) =
R∑
t=1

ε2
t , (4)

where εt is the prediction error of the day t, R is the number of moments.
An advantage of residual minimisation is that one may see directly how the objective

depends on unknown parameters The logarithm of the sum is often used to decrease the
objective variation by improving the scales (see, e.g., Mockus, 1997).

2.2. Multilayer Perceptron

The MLP consists of several layers of neurons. The neurons are connected with each
other as shown in Fig. 1.

The input signals are submitted to hidden layer neurons. One can use several hidden
layers where the outputs of each layer are submitted to inputs of the next layer neurons. In
terms of the standard regression models, each single neuron uses a non-linear activation
function:

Y ∗t = φ
( h∑
j=1

wjXit + w0

)
, (5)

where Y ∗t is the output of the neuron (the forecasted value),Xit are inputs of the neuron
(the values used for forecasting), wi are the neuron’s parameters (weights).

The idea of the ANN model is that the activation function roughly represents the
activation of a real neuron. Outputs of the highest hidden layer neurons are submitted to

Fig. 1. Model of MLP.
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the output layer neurons. In our analysis, only one hidden layer perceptron was used with
following data processing function:

Y ∗t = φoutput

( h∑
j=1

vjφhidden
( K∑
l=1

p∑
i=1

wp(l−1)+iXit−l + w0

)
+ v0

)
, (6)

where Y ∗t is the prediction of the t-th day,Xi is the data of the day i (i-th day vector),K
is the “history length”, p is the dimensionality of input vector, wi are MLP hidden layer
coefficients, vj are MLP output layer coefficients, N – is a number of inputs, h is the
number of neurons in the hidden layer, φ(x) are the activation functions. In the output
layer

φoutput(x) = c
( 1

1 + e−x
− 0.5

)
, (7)

where c is a scaling parameter to fit the MLP outputs to the data.
In the hidden layer we used a traditional sigmoid function:

φhidden(x) =
1

1 + e−x
.

The non-linearity of activation function φ(x) means that the perceptron is a non-linear
forecasting algorithm. We use MLP to forecast Yt on a basis of an information contained
in K preceding vectorsXi t−l(i = 1, . . . , p, j = 1, . . . , k).

Typically in order to find unknown coefficients wj , j = 0, . . . ,K × p and vi, i =

0, . . . , h we are minimising a sum of squares cost function:

fm(x) =
R∑
t=1

(Y ∗t − Yt)2, (8)

where Yt is a real value from the learning-set data (a desired output, a target), Y ∗t is a
forecasted value, R is a size of a learning-set.

The cost function fm(x) depends on K× p+h+ 2 unknown parameters represented
as vectors (wi; i = 0, . . . ,K × p and vj ; j = 0, . . . , h). Expression (8) shows that the
residuals Yj are non-linear functions of parameters wi if the activation function φ(x) is
non-linear. The minimum conditions

∂fm(x)

∂wi
= 0, i = 0, . . . ,K × p, and

∂fm(x)

∂vi
= 0, i = 0, . . . , h (9)

result a system of non-linear equations. As usual this system has multiple solutions. To
find the perceptron’s weights an iterative training procedure is used. Most often a gradient
descent minimization is applied

w(t+1) = w(t) − η
cos tl
w

, (10)
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where w(t) is a vector composed from all component weights at iteration t, η is called a
learning step. A popular alternative optimization method is the genetic algorithm.

An important parameter in iterative MLP training is the learning step η. Typically, for
each new data set it is chosen after few preliminary experiments (see. e.g., D.E. Rumelhart
et. al., 1986), in some computer implementations (MATLAB, for example) parameter η
increases if the cost function fm(x) decreases, and is reduced if fm(x) begins to increase.

The MLP training process encounters a multi-modality problem, similarly as in the
case of ARMA model. Thus, the perceptron’s starting weights are important. Tradition-
ally while training the perceptron the starting weight vector is selected randomly. We
initialized the weights randomly, and, as a competing approach, we used our “active ini-
tialisation” technique (Raudys, 1998). Here we mapped the data into a two-variety space,
and in this space, i controlled the hidden layer weights interactively. Then gradually, step
by step, we returned to the original multivariate feature space. For the real world data
considered in this paper both initialisation approaches resulted the same accuracy. There-
fore, in tables below we present the results obtained for the traditional random weights
initialisation.

3. Real World Data Sets Used in Experiments

To compare the accuracy of both prediction methods we used several sets of real world
economical data obtained from different sources. Define a data set as a table of real num-
bers

X =


X11 X12 . . . X1n

X21 X22 . . . X2n

. . . . . . . . . . . .

Xp1 Xp2 . . . Xpn

 . (11)

Here each column represents one event in the time series data

Xj =


X1j

X2j

. . .

Xpj

 . (12)

The ith row we call as the ith feature:

[Xi1Xi2 . . . Xin]

We predict values of only one (the main) feature for the next day.
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Fig. 2. Intel data set 1-st feature (original on the left, transformed on the right).

Seven real data sets were used to compare prediction algorithms. On some data sets,
unsatisfactory results were obtained. In an attempt to improve the prediction accuracy, in
addition to the original data, we transformed outputs in a following way

Xtr
i = Xi −Xi−1, i = 2, . . . , R,

Y tri = Yi − Yi−1,
(13)

where Xtr
i is the transformed data, Xi is the original data, Y tri is transformed feature we

are trying to forecast, Y ∗tri is forecasted transformed feature,R is a number of records in
the original old data.

Transformed vector is a difference between today ant yesterday values. Ill Structured
Data: there is no apparent structure of data, which can be utilized for the prediction.

3.1. London Stock Exchange Data

Data set name is stock; number of features (dimensionality of the time series) is 23;
number of records is 1383. Data represent London Stock Exchange closing rates in the
period of approximately three years. Data contains an information such as currency ex-
change rates, Daw Jones indexes, closing rates of stocks of some biggest companies, etc.
This data set is the largest one in this research. Therefore, in order to reduce an influence
of the high data dimensionality we performed a feature selection. Thus, our experiments
have been performed with 3 data sets containing 2, 8 and all the 23 features. Data was
obtained from Prof. A. Long from City University, London, UK.

3.2. AT&T Share Data

Data set name is att; dimensionality is 1; number of records is 488; Data contains AT&T
stock closing rates. Data was obtained from A.S. Soofi.

3.3. Intel Stock Data

Data set name is intel; dimensionality is 1; number of records is 492. Data contains
closing rates of Intel stocks (see Fig. 2). Data was obtained from A.S. Soofi.



Comparison of ARMA and Multilayer Perceptron Based Methods 237

3.4. Call Centre Data

The data set name is call, the number of features is 8. The fifth column of data set
call represents the call rate of some call center during one year (365 days). The call
rate is the main feature in this case. The rest columns show the “external” features used
to forecast the call rate. The external features include the date and a number of indicators
of special events, such as the day of mailing new information to customers, very hot or
very cold day, important sporting event etc. Data contains number of calls per day. Data
was obtained from Vidas Plačiakis.

3.5. Lithuanian Banks Stock Data

Data set name is bank; number of features is 8 (stock session code, and stock rates
of 7 major Lithuanian banks), a number of records is 120. Data was obtained from J.
Juodagalvytė, Vytautas Magnus University, Kaunas, Lithuania

3.6. Currency Exchange Data

Data set name is currency; a number of features is 4 (exchange rates to US $ of four
major world currencies – DM, FFr, UK pounds, Yen), a number of records was 464.

4. Methodology of Experiments

To evaluate the forecasting accuracy the data sets where split into three equal parts.
The first part – a learning-set – was used for training-estimation of unknown prediction
equation parameters (the perceptron weights, ARMA parameters). The second part – a
validation-set – was used to select the best variant of the prediction methods: the number
of inputs, the number of hidden neurones, an optimal stopping moment in MLP training,
the ARMA model order parameters, etc. The third part of each data set was used to test
performances of final variants of MLP and ARMA models. It is called a test-set.

ARMA software used in experiments was self-optimising (see Mockus, 1997), and the
learning and validation sets were used together to estimate both the prediction model ar-
chitecture and the model parameters. The MLP software was not self-optimising. There-
fore we applied the MLP predictor several times sequentially changing the number of
inputs (a number of previous observation vectors used for forecasting) and also the num-
ber of neurons in the hidden layer. In order to have a zero mean and unit variance of all
features, the data was normalized. The learning rate η was set to 0.1, The MLP was trained
on the learning-set. The best set of parameters was determined using the information in
the validation-set.

For evaluation of the average accuracy of both prediction methods two criteria
were used. First one is the relative efficiency of the method in comparison with the “ran-
dom walk” (random walk predicts: tomorrow-will-be-as-today) method:

ϑ =
mforecasted −mrw

mrw
100, (14)
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where m =

√√√√√ R∑
t=1

(Yt − Y ∗t )2

R
, Y0 = 0, mforecasted is a mean square prediction error

(MSPE), mrw is MSPE of the random walk method, Y ∗t is the forecasted feature value
of the day t (the moment t), Yt is the real values, R is the sample size.

Parameter ϑ is the efficiency coefficient of the method in comparison with the random
walk: when ϑ = 0 the algorithm has the same accuracy as the random walk, when
ϑ = −100, the algorithm forecast ideally, and when ϑ > 0 the algorithm is worse than
the random walk.

In addition to the relative efficiency, for evaluating the accuracy of the MLP predictor,
we used a traditional correlation coefficient ρ between the actual and the predicted
values

ρ(Y ∗, Y ) =

R∑
i=1

(Y ∗i − Ȳ )(Yi − Ȳ ∗)√
R∑
i=1

(Y ∗i − Ȳ )2
∑R
i=1(Yi − Ȳ ∗)2

, (15)

where Yi are the original values, Y ∗i is forecasted values, Ȳ is mean of the original values

Ȳ =
1

p

p∑
i=1

Yi, Ȳ ∗ is mean of the forecasted values Ȳ ∗ =
1

R

R∑
i=1

Y ∗i .

5. Results

The first observation which follows from our experiments is that the optimisation and
the parameter estimation of the ARMA model is much faster We used several ways to
present the results of the experiments. Tables contain the correlation coefficients ρ and
the parameter ϑ of comparison of the prediction method with the RW values evaluated on
the validation and on the test sets. In the tables, the estimates obtained on the validation
set are denoted by indexes. By definition, the training set’s estimates represent well only
the training set. Therefore the efficiency of the prediction algorithm is evaluated by the
validation and by the test-set estimates. In addition to the tables, two scatter diagrams
are presented, which depict the true and the forecasted parameter values using MLP and
ARMA algorithms.

In Table 1 MS is the a number of learning epochs (an epoch is the number of learning
operations using all data set vectors in learning set). Days deep is the number of days
back used for prediction; # hidden is number of neurons in the hidden layer; ρtrain is the
correlation coefficient estimated on the learning set; ρtest is the correlation coefficient
estimated on the test set; ϑvalid, ϑtrain ϑtest are accuracy of the MLP predictions, in
comparison to the random walk method estimated on the training, validation and the test
sets (in %). The best prediction accuracy ϑvalid estimated on the validation set is shown
in bold.



Comparison of ARMA and Multilayer Perceptron Based Methods 239

Table 1

Results of experiments with MLP using different parameters, for the stock data set

MS Days # ρtrain ρtest ϑvalid ϑtrain ϑtest
deep hidden

112 1 1 0.28023 0.283288 −58.2809 −27.5862 −31.7638

112 1 2 0.283477 0.282115 −58.2816 −27.6427 −31.765

109 1 3 0.283722 0.272426 −58.2733 −27.6777 −31.5691

111 1 4 0.285586 0.278071 −58.2859 −27.6673 −31.6706

285 2 1 0.85115 0.981302 −87.9664 −56.2395 −78.7807

299 2 2 0.863091 0.981265 −87.9156 −58.174 −80.5493

299 2 3 0.865426 0.979076 −87.6547 −57.1322 −77.0033

327 2 4 0.864981 0.979685 −87.731 −58.5318 −80.2028

237 3 1 0.815711 0.975249 −85.638 −53.0071 −74.9967

237 3 2 0.821114 0.973893 −85.227 −53.1312 −73.574

268 3 3 0.835287 0.970705 −84.8299 −56.4441 −78.1757

277 3 4 0.827319 0.969812 −84.6009 −55.3923 −77.0132

308 4 1 0.815684 0.976644 −83.5278 −56.0419 −84.1125

136 1 7 0.286319 0.280904 −58.2725 −27.7822 −31.71

The Table 1 reviews several estimates and shows that the efficiency of the MLP pre-
diction depends on the number of inputs (a number of previous days used for prediction),
the number of hidden neurons and, of course, on the number of learning iterations. The
traditional criterion used to estimate the prediction accuracy – the correlation coefficient
between the true and predicted values – often fails to evaluate the prediction performance:
in some cases the MLP resulted in lower accuracy than the random walk method (see
results obtained for att, intel, currency3), nevertheless the correlation coeffi-
cient was high. A possible reason of this phenomenon can be traced by inspecting the
Fig. 3. There we see that the correlation coefficient for the MLP algorithm is rather high,
however a slope of the regression line in this figure differs from the bisector which repre-
sents an ideal prediction. It means, that while solving the real life problems one needs to
consider several accuracy measures. The most interesting estimates are ρtest and ϑtest.
These two characteristics were used in Table 2 for shorter presentation of results obtained
on several data sets.

In Table 2: Data Set is the name of the data set; RW ρtest is correlation coefficient
between Random Walk (RW) forecasted values and original values; MLP ρtest is the
minimum correlation coefficient between forecasted values and original values in the test
set, during series of experiments with MLP. For MLP ϑtest is the minimal value of the
coefficientϑ between the forecasted values and original values in the test set, during series
of experiments with different architectures of the network and the number of training
epochs. For ARMA model ϑtest is ϑ coefficient between ARMA forecasted values and
original values in the test set. The best prediction accuracy ϑtest is in bold.
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Table 2

Forecasting results for all data set using the ARMA and MLP prediction methods

Data set name ARMA ϑtest MLP ϑtest MLP ρtest RW ρtest

att 0.721 4.871 0.986 0.986

bank(7) 43.940 17.244 0.704 0.743

stock1 −28.436 −28.927 0.026 0.006

stock2 −54.584 −78.780 0.981 0.006

stock8 −33.005 −86.614 0.983 0.006

stock23 − 32.264 0.519 0.006

call −19. 482 −21.399 0.665 0.535

currency(3) 43.940 89.299 0.910 0.932

intel 23.273 1356.960 0.684 0.983

intel(tra) −25.382 −26.352 0.223 0.098

intel∗ 23.273 1056.720 0.877 0.983

(tra) Transformed data set, we forecasted differences between neighbour moments
(see 3, 3.3 and 6).

stock2, stock8 – forecasting using just 2 or 8 features form all 23.
∗ means that MLP model is used, without non-linear activation function in output

layer.
" – " in the stock row means that this data set was too large to be used for our

software to estimate the ARMA model’s parameters.
Figure 3 shows two scatter diagrams of the closing rates (on a horizontal axis) and the

predicted rates (on a vertical axis). For the prediction we used only two days 2 financial
parameters. Straight line in both figures characterises an exact prediction (then we have
zero forecasting error). For the MPL forecast of architecture 4–3–1 the correlation coeffi-

Fig. 3. London Stock Exchange closing index forecasting (the test data set) by MLP (a) and ARMA (b) methods.
Points – MLP(a) or ARMA(b) prediction, plain line – ideal prediction.
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cient ρtest = 0.981, for the ARMA model the correlation coefficient ρtest = 0.898, and
for the RW prediction the correlation coefficient ρtest = 0. We see for this data set the
MLP outperforms the ARMA and RW methods in the sense of higher correlation.

The Table 2 shows that for some data sets the prediction accuracy is rather low, using
both the ARMA and MLP models. Only for four data sets (stock-2, stock-8, call and
inteltra) out from eleven ones we obtained higher accuracy than the trivial random walk
method. For these four data sets the multilayer perceptron was more efficient. Curiously,
in seven data sets, the trivial random walk outperformed more sophisticated linear ARMA
and nonlinear MLP prediction methods. In such cases, the difference between the ARMA
model and MLP was rather small. It suggests an absence of a statistical structure in these
data sets. In situations where all participants of a financial game are making their own
forecasts of variables of common interest, methods which enable to use a feedback of the
variables to be predicted, the game theory, as well as additional variables with a useful
information should be applied.

6. Discussion

MLP forecast can be made using several models of different architecture. The first one is
when the output layer neuron acts as described by equation (7). The second does not uses
the activation function at all, i.e.,

Y ∗j =
l∑
i=1

xijωi + ω0. (16)

In the first case, the predicted values are mapped into an interval (0.4, 0.6). The output
of the activation function varies between 0 and 1. Thus, a largest part of the forecasted
values in the learning set vary approximately in the linear part of the activation function.
Then influences of very large deviations of the target – true (measured) values of the
forecasted feature are reduced. Consequently, the activation function brings some stability
to MLP training.

In the another case, we do not use the activation function at all, and do not map
the forecasted feature. Thus, it may vary in a very wide interval. In this case, abnormal
deviations of the forecasted feature values in the training set (outlyers) diminished the
prediction accuracy. A reason of more successful use of the MPL predictor with the non-
linear output is that use the non-linearity in the output layer of the MLP predictor makes
this algorithm to be more robust to outlayers – atypical observations.

The Tables show that the ARMA model is slightly better when the data is ill-structured
and thus difficult to forecast. This difference, however, is not significant since the predic-
tion accuracy is low (lower than that of the random walk method). MLP exhibits better
results than ARMA in cases when the data set is well structured and thus more suitable
for prediction. On some well-structured data sets we obtained much better results com-
paring with the random walk. In these cases, the MLP forecasting accuracy was notably
higher then ARMA one.



242 A. Raudys and J. Mockus

In the ill-structured data sets, the regular methods did not outperformed RW prediction
(the highest tomorrow prediction accuracy was archived by using today values). Note that
the ARMA model implements the random walk exactly if the first AR weight is equal to
one and all the others are zero. That is not easy to do with the non-linear MLP. If the non-
linearity is involved in the well-structured data sets then MLP may show good results.

It seems that many economical data sets are ill structured. The results are discourag-
ing, not better than the trivial random walk. Just occasionally we outperformed RW (see
intel ϑtest = 23.273, att ϑtest = 0.721 data sets). That means the structure of the
currency exchange rates, stock values and similar data sets changes in time in a hardly
predictable way therefore one needs additional information to make a good economical
forecasting.

We obtained very low prediction accuracy for the Intel data set using both the MLP
and ARMA methods. Therefore, we made an attempt to forecast first differences between
values (14), and later return to the original variables. This strategy did not improved
the accuracy. The forecasted (using both MLP and ARMA) differences (Y ∗tr) was so
tiny that after transformation back it seems that this values have no difference from RW
forecasted values. As expected, if data in its original form is pour, it cannot be improved
by forecasting the differences.

7. Conclusions

• The ARMA method is much faster than the MLP one.
• In average, the MLP model predicts well-structured data notably better as

compared with the ARMA model.
• In average, the ARMA model predicts ill-structured data slightly better as the

MLP.
• The MLP without non-linear activation function in the output layer is more robust

to outlyers and adapts better in the case of non-stationary time series.
• The economical time series describing the highly competitive processes cannot be

expected to be well-structured ones because the real results may depend on their
predictions. Therefore, the additional features such as “inside information” are
essential for the accurate predictions of such date.
• The average accuracy of the predicted differences is approximately the same as

that of predicted values. This is rather unexpected observation because while
predicting the differences one eliminates the linear trend.

Above conclusions are based on comparatively small number of the real life data sets.
In a future research, it would be desirable to make experiments using more sets of real
life data and the artificial data sets, too. A special attention should be paid to cases when
the prediction equations are non-linear with respect to input parameters.



Comparison of ARMA and Multilayer Perceptron Based Methods 243

References

Box, G.E.P., and G.M. Jenkins (1974). Time Series Analysis. Forecasting and Control. Mir, Moscow (in Rus-
sian).

Mockus, J. (1997). The set of examples of global and discrete optimisation, I. Informatica, 8, 237–264.
Mockus, J. (1997). The set of examples of global and discrete optimisation, II. Informatica, 8, 495–526.
Raudys, A. (1998). A non-parametric data mapping technique for active initialisation of the multilayer persep-

tron. In Advances in Pattern Recognition. Springer Lecture Notes in Computer Science, Vol. 1451. Springer
Verlag. pp. 989–996 (Proc. Joint IAPR Int. Workshops SSPR’98 and SPR’98, Sydney, Australia, August
11–13, 1998).

Rumelhart, D.E., G.E. Hinton and R.J. Williams (1986). Learning internal representations by error propaga-
tion. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, I. Bradford Books,
Cambridge, MA. pp. 318–362.

Soofi, A., and J. Mockus (1996). Long memory process and exchange rate forecasting. In Proceedings of the
Conference on Forecasting Financial Markets. Chemical Bank and Imperial College, London.

A. Raudys graduated Vilnius University, Lithuania, in 1993 and was awarded bache-
lor degree. In 1999 he graduated Kaunas University of Technology, Lithuania and was
awarded master degree. Currently he is working in Institute of Mathematics and Infor-
matics in Data Analysis Departament.

J. Mockus graduated Kaunas University of Technology, Lithuania, in 1952. He got his
Doctor habilitus degree in the Institute of Computers and Automation, Latvia, in 1967.
He is a head of Optimal Decision Theory Department, Institute of Mathematics and In-
formatics, Vilnius, and professor of Kaunas University of Technology.



244 A. Raudys and J. Mockus

Daugiasluoksnio perceptrono ir ARMA modelio parametr ↪u
ekonomini ↪u laiko eiluči ↪u prognozavimo tikslumo palyginimas

Aistis RAUDYS, Jonas MOCKUS

Straipsnyje, naudojant šeši ↪u reali ↪u, daugiamači ↪u, ekonomini ↪u laiko eiluči ↪u duomenis, lyginami
daugiasluoksniu perseptronu ir ARMA modeliu paremti prognozavimo metodai. Parodoma, kad
sunkiai prognozuojamuose uždaviniuose ARMA modelio tikslumas aukštesnis negu perseptrono,
o gerai prognozuojamuose uždaviniuose – perseptrono tikslumas aukštesnis.


