
INFORMATICA, 2000, Vol. 11, No. 1, 65–70 65
 2000 Institute of Mathematics and Informatics, Vilnius

An Algorithm for Transformation of Finite
Automata to Regular Expressions

Larisa STANEVICHENE, Aleksei VYLITOK
Department of Computational Mathematics and Cybernetics
Moscow State University, Moscow, Russia
e-mail: stanev@ccas.ru, vytolik@cs.msu.su

Received: January 2000

Abstract. An original algorithm for transformation of finite automata to regular expressions is
presented. This algorithm is based on effective graph algorithms and gives a transparent new proof
of equivalence of regular expressions and finite automata.

Key words: regular sets, finite automata, construction of regular expressions.

1. Introduction

Regular sets play an important role in mathematics and applications. There exist many
papers devoted to research and application of regular sets. We note here only (Marty-
nenko, 1998). The last treatise presents a technique of syntax controlled data processing
and uses notions of regular expression and finite automaton.

The work (Martynenko, 1998) along with some others demonstrates an importance
of constructions, which prove Klenee’s theorem on equivalence of regular expressions
and finite automata. There exist many proofs of Klenee’s theorem; one of the latest of
them is contained in (Melnikov, 1998). The present paper gives a construction of a reg-
ular expression from finite automaton based on effective graph algorithms. For example,
an algorithm of strongly connected components selection (Reingold, 1977) is used as
important part of the construction.

Our construction is recursive as Klenee’s one. It interprets an automaton as quite nat-
ural system of subautomata. This system indicates a method of automaton partition and
allows to reduce automaton processing to a processing of its smaller parts. Presented here
algorithm implies the idea of processing of D-graphs (Stanevichene, 1997; Gomozov,
1999) by parts.

In Section 2 of this paper some useful notions and denotations are introduced. Section
3 defines a subautomata hierarchy for a finite automaton. In Section 4 the algorithm for
transformation of finite automata to regular expressions is formulated.

66 L. Stanevichene and A. Vylitok

2. Preliminaries

Let us introduce notations and terms that are used in the next sections of the paper.

DEFINITION 1. A finite automaton (over the alphabet Σ) is a quintuple

A = (K,Σ, δ, p0, F),

where
K is a finite set of states, or vertices;
Σ is an input alphabet (finite, also);
δ ⊆ K × (Σ ∪ {Λ}) ×K is a set of commands, or edges (the second element of an

edge is its label);
p0 ∈ K is an initial state; F ⊆ K is a set of final states.

So, a computation of a finite automatonA over a word x may be regarded asA’s path
with the label x. The label of a path is defined as the natural sequence of its edge labels.

DEFINITION 2. Let T be a path of a finite automaton. Then its label is noted by ω(T),
its initial vertex is noted by beg(T), and its terminal vertex is noted by end(T).

DEFINITION 3. Let T be a path of a finite automatonA =(K, Σ, δ, p0, F). Let beg(T) =

p0, end(T) ∈ F . Then T is called a sentence.

DEFINITION 4. Sentences(A) is defined as the set of all sentences of the finite automa-
ton A.

Note that the language L(A) may be defined by: L(A) = {ω(T) | T ∈
Sentenses(A)}.

DEFINITION 5. Let Σ be an alphabet. Let Σ∩ {∗,+, ε, ∅, (,)}=∅. Let us define recur-
sively a regular expression γ over Σ (as a specific word over the alphabet Alph =

Σ∪{∗,+, ε, ∅, (,)}) and the regular language L(γ):

1) a ∈ Σ∪{ε, ∅} is a regular expression; L(a) = {a} for a ∈ Σ; L(ε) = {Λ}, where
Λ denotes the empty word; L(∅) = ∅;

2) if α and β are regular expressions, then:

a) α+ β is a regular expression; the subexpressions α and β are called addends of
this expression, the expression itself is called a sum; L(α+ β) = L(α) ∪ L(β);

b) (α)(β) is a regular expression; the subexpressions α and β are called factors,
the expression itself is called a product; if a factor is not a sum, then parentheses
are not required; L((α)(β)) = L(α)L(β);

c) (β)
∗ is a regular expression that is called an iteration of β; L((β)

∗
) = (L(β))

∗;

3) all regular expressions over Σ are constructed by 1–2.

An Algorithm for Transformation of Finite Automata to Regular Expressions 67

3. An Hierarchy in a Finite Automaton

DEFINITION 6. An oriented graph is strongly connected iff, for every its vertices u and
v there exist paths from u to v and from v to u.

DEFINITION 7. Let Ĝ = (V̂ , Ê) be an oriented graph, G = (V,E) be a strongly con-
nected subgraph of Ĝ. Let V ⊆ V ′ ⊆ V̂ , E ⊆ E′ ⊆ Ê, (V,E) 6= (V ′, E′) imply that
(V ′, E′) is not strongly connected graph. Then G is called a strongly connected compo-
nent of Ĝ.

DEFINITION 8. Define a trivial graph as one that has a unique vertex and empty set of
edges.

DEFINITION 9. Let B be a subgraph of a finite automaton over Σ. Let C = (V,E) be
a nontrivial strongly connected component of the graph B, π ∈ E. Then denote a finite
automaton (V,Σ, E − {π}, end(π), {beg(π)}) by Automaton(B, π).

DEFINITION 10. Let C be a connected subgraph of a finite automaton. Let us define
recursively a rank rank(C) of this subgraph:

1) rank(C)=0, if C is a trivial strongly connected component;
2) rank(C) = 1 +min{rank(Automaton(C, π)) | π is an edge of C}, if C

coincides with its nontrivial strongly connected component;
3) rank(C) = max{rank(B) | B is a strongly connected component of C}.

4. A Transformation of a Finite Automaton to a Regular Expression

Let us denote by Lines(A) a set of A’s sentences having no cycles: Lines(A) = {T ∈
Sentences(A) | ∀(T1, T2, T3) T = T1T2T3 ⇒ (T2 is not a cycle)}.

DEFINITION 11. Let us define recursively a regular expression E(A) over the alphabet
of edges of the automaton A; below every empty path is regarded as a synonym of the
notation Λ of empty word, every nonempty path is regarded as a word over the alphabet
of A’s edges:

E(A) =
∑

T∈Lines(A)

Addend(T),

Addend(T) =


Cycles(beg(T)) ε, T is empty,
Cycles(beg(T))π1Cycles(end(π1))...πkCycles(end(πk)),

k > 1, T = π1...πk, πi is an edge of A for i = 1, ..., k,

where auxiliary expression Cycles(p), p ∈ K, is defined below.

68 L. Stanevichene and A. Vylitok

If p is a vertex of a nontrivial strongly connected component, then

Cycles(p) =

(∑
π is an edge of a strongly

connected component,
beg(π) = p

Bound(π)

)∗
,

else Cycles(p) = p; Bound(π) = π(E(Automaton(B, π))) for an edge π of a strongly
connected component B of an automatonA.

Theorem 1. L(E(A)) = Sentences(A).

Proof. By induction on r = rank(A). For r = 0 it holds the equality Lines(A) =

Sentences(A). Consequently,

E(A) =
∑

T∈Sentences(A)

Addend(T),

where

Addend(T) =


ε, T is empty,
π1 . . . πk, k > 1,

T = π1...πk, πi is an edge of A for i = 1, ..., k,

and the theorem holds in this case.
Let r > 0. Assume the assertion for every automaton the rank of which is not greater

than r − 1. Consider an automatonA having the rank r.
For every strongly connected component B of the automatonA and every vertex p of

this component, the regular expressionCycles(p) defines all the cycles with the terminal
vertex p. Indeed, let π be an edge of the strongly connected component and beg(π) = p.
Consider the addend Bound(π) from the definition of the expression Cycles(p). By
induction hypothesis its subexpression E(Automaton(B, π)) defines all the paths from
end(π) to beg(π) = p not containing the edge π. Thus, the expressionBound(π) defines
all the cycles of the form πT , where end(T) = p and p does not appear within T .
Consequently, the sum∑

π is an edge of a strongly
connected component,

beg(π) = p

Bound(π)

defines all the cycles the first edge of which does not recur and have the initial vertex
p. Observe that every cycle with the end p may be presented by a sequence of cycles of
the form being indicated above. Hence, the iteration of the considered sum defines all the
paths from p to p.

An Algorithm for Transformation of Finite Automata to Regular Expressions 69

This fact implies that the sum E(A) defines all the paths the first vertex of which is p0

and the last one is a final vertex of the automatonA.

Define a morphism ϕ by: ϕ(π) = ω(π), π ∈ δ, ω(π) ∈ Σ; ϕ(π) = ε, π ∈ δ, ω(π) =

Λ; ϕ(a) = a, a /∈ δ. Then the regular expression ϕ(E(A)) describes the languageL(A).
The definition of a regular expression ϕ(E(A)) implies a recursive algorithm of a

transformation of a finite automaton to an equivalent regular expression. The details of
the algorithm are omitted in this paper.

References

Gomozov, A.L., L.I. Stanevichene (1999). A generalization of regular expressions. Informatica, 10(1), 27–44.
Martynenko, B.K. (1998). A syntax controlled data processing. Doctoral thesis. St Petersburg State University

(in Russian).
Melnikov, B.F., A.A. Vakhitova (1998). Some more on the finite automata. Korean Journal of Computational

and Applied Mathematics, 5(3), 495–505.
Reingold, E.N., J. Nievergelt, N. Deo (1977). Combinatorial Algorithms. Theory and Practice. Englewood

Cliffs, N.Y., Prentice Hall.
Stanevichene, L.I. (1997). D-graphs in context-free language theory. Informatica, 8(1), 43–56.

L. Stanevichene received the degree of candidate of Physical and Mathematical Sciences
from the Computer Centre of the USSR Academy of Sciences in 1972. She is a senior tu-
tor of the Computational Mathematics and Cybernetics Department of the Moscow State
University. Her research interests include formal language theory and its applications.
A. Vylitok received the degree of candidate of Physical and Mathematical Sciences from
the Moscow State University in 1998. His candidate thesis was prepared under the super-
vision of L. Stanevichene. He is a research worker of the Computational Mathematics and
Cybernetics Department of the Moscow State University. His research interests include
the theory of parsing, formal language theory and its applications.

70 L. Stanevichene and A. Vylitok

Algoritmas baigtiniams automatams išreikšti reguliariaisiais
reiškiniais

Larisa STANEVICHENE, Aleksei VYLITOK

Straipsnyje pateiktas originalus algoritmas, skirtas baigtiniams automatams išreikšti reguliariai-
siais reiškiniais. Algoritmas grindžiamas efektyviais graf ↪u apdorojimo algoritmais. Jis traktuotinas
kaip naujas konstryktyvus teoremos apie baigtini ↪u automat ↪u ir reguliari ↪uj ↪u reiškini ↪u ekvivalentum ↪a

↪irodymo būdas.

