INFORMATICA, 2000, Vol. 11, No. 1, 71-86 71
© 2000 Institute of Mathematics and Informatics, Vilnius

Scripting Language Open PROMOL and its
Processor

Vytautas STUIKYS, Robertas DAMASEVICIUS

Kaunas University of Technology
Studenty 50, 3031 Kaunas, Lithuania
e-mail: vystu@if-ktu.lt, damarobe@soften. ktu.lt

Received: December 1999

Abstract. We present the capabilities of the scripting language Open PROMOL and its processor.
The intention of the language is to pre-program specifications for modifying programs written in
a target language. We use its processor either as a tool for developing the stand-alone reusable
components or as a ‘“‘component-from-the-shelf” in generative tools for generating domain specific
programs. The processor itself uses the module (lexical analyser and parser) produced by Lex &
Yacc as a reusable component. We describe the generation, computation, control, parameterization
and gluing capabilities of the language. We compare our approach with the similar approaches
known in the literature.

Key words: scripting language, target language, program modification, component-based reuse,
generative reuse, VHDL, domain specific program.

1. Introduction

The very nature of any program requires the predefined changes, modifications or trans-
formations. A program can be or have to be modified in two different ways: at its running
time phase or at its construction phase. We consider the program modification at its con-
struction phase.

A very important reason why we need to modify a program is the need to increase
its reusability adapting the program to the different contexts of its use. Program reuse or
more generally, software reuse, is widely believed to be a key in achieving higher pro-
ductivity, better quality and reliability. Software reuse rely on the use of well-established
reusable components and composition of a software system from those components.

The composition process, as well, can be implemented in the tools that generate a
software system. Software system generators are the foremost achievements in software
reuse. Both, the stand-alone reusable components and the software system generators,
require sophisticated modifications and adaptations of the components read from the
reuse libraries.

The generally accepted way to produce a reusable component is to apply some ab-
straction and generalisation at the component construction phase. We argue in this paper
that the component generalisation can be achieved at its construction phase through the

72 V. Stuikys and R. Damasevicius

pre-programmed modifications and adaptations of its instance given in the target lan-
guage.

The natural way to express modifications is to write a specific external program, other
(higher) than a target program that we need to modify. But this external program can’t
be dealt with separately from the given instance to be modified. To support the imple-
mentation of this concept, we need to have a specific language (sometimes referred to
as scripting, glue, system integration or composition language (Ousterhout, 1998)) for
specifying the target program modifications. Both languages, the scripting language and
the target language, are complementary.

In this paper we suggest the scripting language called Open PROMOL (PROgram
MOdification Language) and its processor for the development of stand-alone reusable
components described in any domain-specific language, as well as for incorporating it
into domain-specific program generators.

The structure of the paper is as follows. In Section 2 we analyse the related works.
In Section 3 we deliver the main concept and basic features of the language with the il-
lustrative examples to demonstrate its modification capabilities. In Section 4 we present
the Open PROMOL processor. In Section 5 we present the extended examples to demon-
strate gluing capabilities for building of monolithic components (internal gluing), as well
as structural composition of independent separate components (external gluing). In Sec-
tion 6 a reader can find the description of preliminary experiments executed in different
domains and carried out with the Open PROMOL Processor. In Section 7 we evaluate the
achieved results. Finally, in Section 8 we formulate concluding remarks and problems for
further consideration.

2. Analysis of the Related Works

In recent years the component-based software engineering attracted much attention from
researchers (Sametinger, 1997; Kozaczynski ef al., 1998; Brown et al., 1998; Broy et al.,
1998; Bassett, 1999) as a separate direction in software reuse, as well as a generative
approach (Batory ef al., 1994; 1995; 1997; 1998; Terry, 1997; Czarnecki et al., 1999).
Many different viewpoints exist of what software reuse is (Bassett, 1997; Jacobson et al.,
1997; Sametinger, 1997). Cooper, for example, defines software reuse as “the capability
of a previously developed software component to be used again, in part or in its entirety,
with or without modifications” (Sametinger, 1997).

Many different approaches have been proposed and analysed in the various contexts
for the program modification. In (Pfleeger, 1998), for example, the nature of the soft-
ware system changes are dealt with in the context of its life cycle. A modification based
on formal calculus has been introduced in (Mili ef al., 1997). Bassett distinguishes very
clearly the program modifications at its construction phase from the run time modifica-
tions (Bassett, 1997). He has suggested the adaptive reuse concept based on the model
that composes a module from the hierarchically adapted frame-components using exter-
nal commands. These commands control parameters for the modification of an external
text.

Scripting Language Open PROMOL and its Processor 73

Papers (Batory et al., 1994; 1995) describe another model, called P+, that can be
treated as a C++ extension for component generalisation with the intention to modify
it at the application generation. Other author suggests the pre-processing commands to
extend C++ in order to enhance the modification capabilities of the language (Arney,
1998). Authors (Stuikys, 1998; Stuikys ef al., 1998) apply the external function concept
for describing modification of a target program in VHDL.

The papers (Ousterhout, 1993; 1998) drew attention to TCL (Tool Command Lan-
guage). The author categorises that language as a scripting language for composing com-
ponents. He defines the roles of the scripting language and the target language with which
program is to be modified. A target language serves for the development of components.
A scripting language serves for gluing components into system (Schneider, et al., 1999).

More specifically, the target language might be a domain specific language (DSL).
Such languages have a long history of own evolution that starts from the manufacturing
applications (Rembold ef al., 1986). In recent publications (Batory et al., 1998; Hudak,
1998) authors analyse DSL as tools for the development of reusable components. The
increased attention to DSL can be explained by two reasons. The first reason is that reuse
is much easier to implement for the narrow well-defined domain. The second reason is
the less cost at the latest life cycle phase of a software system implemented with DSL
(Hudak, 1998).

We use VHDL (Chang, 1997; IEEE Std. 1076, 1996) as a target language for the
case study. Our research interests combine both the generative and component-based
reuse for the domain-specific applications including VHDL application domains. VHDL
(Very High Speed Integrated Circuits (VHSIC) Hardware Description Language) is ex-
cellent for the reuse demonstration. The language supports gluing capabilities (a con-
figuration, composition of components, processes, packages and libraries). This allows
us better evaluate the gluing capabilities of the PROMOL which is the target language-
independent.

3. The Basic Characteristics of the Open PROMOL

Open PROMOL is a representative of the scripting languages (ScL). Its main intention
is to specify program modifications of a target language (TL). The PROMOL syntax is
based on external functions formally described in (Stuikys, 1998). After half-a-year ex-
periments with the processor (Stuikys ef al., 1998), we have made serious improvements
in the previous work. Those include the new functions, more powerful computation ca-
pabilities, revised interface, etc. But the main concept of the language has been preserved
because external functions allow to perform a composition for modifications in a sim-
ple and natural way. They always return strings of the TL that are to be composed in
some pre-programmed way. The list of the function names is: sub, b2d, d2b, base, move,
include, change, if, gen, for, case, macro, prompt. The underlined functions are the
newly introduced ones. The list is still open for extensions (that explains why we use the

74 V. Stuikys and R. Damasevicius

word open before PROMOL). The scripting program is a particular composition of the
functions. A function has the format as follows:

@function_namelargument,, arguments, . . ., argument,]; here n > 0.

Note that the symbol @means the beginning of the function and the square brack-
ets “[]”enclose the argument list of the function. An argument in the list may be either
a constant, variable (parameter), expression or function. A constant may be either a nu-
meric literal of the language or string literal written in a target language (for example, in
VHDL). The constant length in this case may vary from one symbol to the largest frag-
ment. The latter can be a syntactically complete or incomplete. Furthermore, a function
is allowed to be incorporated inside of the string literal.

The language has only two types: string and enumerated. Because they can be recog-
nized from the context, there are no attributes for the explicit declaration of the type. So,
the language may be regarded as a typeless language (Ousterhout, 1998), this is a feature
of the ScL. A value of the string type may be interpreted as a number or text; the decimal
and binary numbers can be recognized from the context, too.

We analyse the capabilities of external functions to perform modifications below.
These capabilities are: generative, parameterization, internal gluing, computation and
control. In Section 5, we will present more advanced capabilities, such as the external
gluing.

3.1. Generative Capabilities

The language contains a specific function, the gen (generate) function, that allows to
generate “look-alike” strings in a TL. The formal definition of the function is:

@gen|< argl >, {< arg2 >} , {< arg3 >}, < arg4 >|
< argl >::= < decimal_constant > | < variable > | < expression >
< arg2 >u:= < string_of_tl > | < promol_function > |

< arg2 >< string_of tl > | < arg2 >< promol_function >
< arg3 >u:= < string_of _tl > | < promol_function > |

< arg3 >< string_of tl > | < arg3 >< promol_function >
< arg4 >::= < decimal_constant > | < variable > | < expression >

The arguments have the following meaning:

o the first argument specifies the number of substrings to be generated,;
o the second argument is a “separator” for separating the adjacent substrings;
o the third argument can be considered as an “initial symbol”;

o the fourth argument is an “initial extension” for the “initial symbol”.

Scripting Language Open PROMOL and its Processor 75

Let us consider the following strings that might be fragments of a particular TL:

X1, X2, X3, X4, (1)
Y(1) +Y(2) + Y(3),)
A10 AND A11 AND A12 AND A13 AND Al4. 3)

These strings can be produced by the adequate descriptions in Open PROMOL as
follows:

@gen[4,{, }, {X},1],
@gen(3, {)+},{Y(}, 1)),
@gen [5, {AND}, {A}, 10].

From the first glance there are no advantages in writing these strings in a specific
way. The power of that function, however, can be understood if we take into account the
following. To produce any string of the type (1)—(3), we need the only gen function. For
this purpose, we should substitute each argument-constant with the argument-variable in
the gen function and use the sub function, as illustrated below:

@gen [m, {@sub[n]}, {@subp|},r]. %)

The parameter values should be selected as indicated: for m in {3,4,5}; for n in
{AND,)+,0R,, }; for pin {X, A, Y(,ZZ}; and for r in {0..10}. As the string (2) has a
little difference from the rest, we should write (note that k = 0 or 1; see example below):

@gen|[m, { @sub[n|}, { @sub[p|}, r|@if[k = 1, {)}].

The given fragment of the ScL can be called a string generator. Such a generator
produces strings of similar structure. The only action should be done before its use: a
parameterization in a right way. That means that the syntax of the string can be modified
by an external agent (human or program) through parameterization. Each function com-
bined or glued together with the gen function can contribute significantly to the generative
capabilities of the gen function.

3.2. Parameterization Capabilities

A function has a list of arguments. An argument may be either the ScL parameter or the
TL parameter. The pair of braces “{ }” allows to distinct those parameters types: they
always enclose a TL parameter. The ScL parameter may be given as constant, variable,
expression or even as a function of the ScL. Note that from the standpoint of the ScL
concept any TL parameter can’t be changed directly. However, a function can bring a
particular value of the TL as illustrated by (4). A parameter must have a value to be
assigned. For achieving this, we need to add inferface to the previous example as follows:

76 V. Stuikys and R. Damasevicius

$

“ Enter the length of the string ” {3,4,5,6,7,8} m :=5;

“ Enter the ‘separator symbol’ for the string” { AND,)+, OR,,} n := AND;

“ Enter the ‘initial symbol’ for the string” {X, A, Y(, ZZ} p := A,

“ Enter initial value for the initial symbol extension” {0..10} r := 10;

“ Do you need the symbol °)’ at the end of the string? (yes=1, no=0)" {0, 1} k := 0;
$

@gen[m, { @sub[n]}, {@sub[p]}, r|@if[k = 1,{)}]

Again, a parameterization in this example seems to be too complicated. Note that
this complexity can be hidden and, in some cases, eliminated using such a technique as:
default values, automatic parameterization from the context, using the same parameters
for different subcomponents, etc.

3.3. Gluing Capabilities

A gluing scenario for composition may be very rich because a function allows nesting,
i.e., other functions can be inserted as its argument(s) (Fig. 1). Note that any function
returns a value that is usually a modified fragment of the TL.

This presents a view of the infernal gluing. As no restrictions exist neither on the
length of the target program nor on the number, type and nesting depth of the functions,
this can lead to a very sophisticated description presented in two languages as a mono-
lithic structure. It is not an easy task to read and understand such a structure. The latter
disadvantage can be eliminated with external gluing that uses the external decomposition
(the basic principle of structural programming).

The gluing capabilities combined together with the generating capabilities of the gen
and other functions result in the modification power of the language. We will discuss
below other capabilities to pre-program modifications.

Fig. 1. An abstract representation for gluing: + means gluing, dark rectangle — a piece of target program, a
white rectangle — a function of the scripting language.

Scripting Language Open PROMOL and its Processor

1

)] 2 3 @

Process; T If F \\ ﬁ While
Process, P P, [~ Process
* 0 0 1 2 eue n

Process, PlP]..| P

Fig. 2a. Basic structures of structural programming.

D

@) $

Process;

If-then-else

@sub @move @change
@b2d @d2b @base
@if @for @case

@gen @macro @prompt

<eif

3

t = Process; |-,

_=! Process; |-

Process, =

Process, Process,
| |
4)
While
False
True
Process

Fig. 2b. Analogy of PROMOL functions and structures of structural programming.

78 V. Stuikys and R. Damasevicius

3.4. Computation and Control Capabilities

We use functions to develop the target program specifications in the structured pro-
gramming style. This means that we allow for each function having an argument
<string_of_tI> an insertion of a function inside that argument. The nested functions
significantly extend the computation power and allow to modify the fragments of TL
flexibly. In Fig. 2a and 2b we illustrate our functions by analogy with the structural pro-
gramming structures. A computation power depends mainly upon the capabilities of the
expressions used in the argument list and the nesting depth of the functions.

We use only one arithmetic type, integer type, to describe the parameters and allow the
following operations with that type: +, —, *, /, % (remainder), and " (power). Another
type we use is the string type. Only the assignment operation is allowed for that type
(function move). As both types can be easily distinguished from the context, we do not
use any attributes to denote those types.

4. The Open PROMOL Processor

The processor is a tool (actually a translator) that supports the use of the scripting lan-
guage. It has been created using the reuse principles: 1) the processor’s main module was
produced by Lex & Yacc (Manson et al.,1990); 2) its output was incorporated into the
system as a “component-from-the-shelf” (see Fig. 3).

It should be stated that about 50% of the total amount of the processor’s code has been
created automatically (using “black-box” principle). The rest 50% part has been created

Open PROMOL
grammar
description in BNF

Interactive binding
module

Automatic generation

Formal
grammar
description

={ Processor

Semantical
analyzer

% -------------------------------- Binding
’ | @

Fig. 3. The processor’s development process.

Scripting Language Open PROMOL and its Processor 79

interactively. However, those parts are not equivalent with respect to their complexity.
The first part is much more complicated (for the given list of functions (see above, Sec-
tion 3). The current version contains 358 grammar rules, 572 Finite Machine States, 1076
transitions, 1827 token actions). Furthermore, it is much more reliable than the previous
processor due to the high quality of Lex & Yacc.

5. An Extended Example: the Internal and External Gluing Capabilities

To illustrate the “gluing” capabilities of the PROMOL functions for modifying a tar-
get program, we present two examples. Firstly, we explain the internal gluing. Let be
given the VHDL component (instance) that describes the two-input and-gate functional-
ity (Fig. 4).

ENTITY GATE IS
PORT (X1, X2 : IN BIT;
Y : OUT BIT);
END GATE;

ARCHITECTURE BEHAVE_GATE OF GATE IS
BEGIN

Y <= X1 AND X2;
END BEHAVE_GATE;

Fig. 4. Initial instance in VHDL to be modified.

We need to modify the initial VHDL description according to the prescribed user’s

requirements that follow below in the gradually increasing order of their complexity.

1. A user needs to have a component with any number of inputs varying from 2 to 8.

2. Additionally to the requirement 1, any functionality must be specified from the
list {AND, OR, XOR, NOR, NAND, XNOR}.

3. Additionally to the requirement 2, an extension to the name ‘X’ must vary from 0
to 10.

4. Additionally to the requirement 3, a user needs to have some flexibility in
expressing the input-output delay in the given model. It should be described either
explicitly with the generic constant from the list {1, 2, 3, 4, 5 }, or implicitly
without that constant (delta delay).

To receive the specification in PROMOL, a designer should perform the following

actions:

A. To map the informal requirements into the abstract interface specification (see

Stuikys et al., 1998) written with the prescribed rules.

B. To specify each needed modification with the appropriate Open PROMOL function.

C. To insert (glue) the introduced functions into the given VHDL model in a “right”

manner.

80 V. Stuikys and R. Damasevicius

$
"Enter the number of inputs :" {2,3,4,5,6,7,8 num:=2;
$
ENTITY GATE IS
PORT (Qgen[num,{, },{X},1] : IN BIT;
Y : OUT RIT);
END GATE;

ARCHITECTURE BEHAVE GATE OF GATE IS
BEGIN

Y <= @gen[num, { AND } ,{X},1];
END BEHAVE GATE;

Fig. 5. A specification for implementing the requirement 1.

$
"Enter a number of inputs :" {2,3,4,5,6,7,8} num:=2;
"Enter a function’ s name :" { AND,OR, XOR,NOR,NAND, XNOR} f:=0R;
"Enter the initial value :" {0,1,2,3,4,5,6,7,8,9,10} init:=10;
"Do you want to use a generic delay (0-no, 1l-yes):"™ {0,1} use:=1;
use=1 "Enter a delay constant in ns. : " {1,2,3,4,5 delay:=1;
$
ENTITY GATE_@subl f] Is

@if[use,{ GENERIC (T : TIME := @sub[delay] NS);}]

PORT {(Qgen[num,{, },{X},init] : IN BIT;
Y : OUT BIT);
END GATE_@sub[f] ;

ARCHITECTURE BEHAVE_GATE_@sub[f] OF GATE_@sub[f] IS
BEGIN

Y <= @gen[num, { @subl f] },{¥X},init] R@case[use+l,{ },{AFTER T}];
END BEHAVE GATE_@sub[f] ;

Fig. 6. A specification for implementing the requirements 1-4.

We illustrate these actions in Fig. 5 and 6, respectively.

The latter example illustrates the use of the so-called “conditional interface”, too. To
describe the need of generic delay, the parameter use has been introduced. This parameter
is a part of the following condition in the next question of the interface (see interface
in Fig. 6). This question will be given only if the condition (use =1) is true. Another
important fact evident from this example is the number of modified instances (2,772) that
can be generated from the specification. The processor that produces those instances can
be regarded as the VHDL “look-alike” model generator. It allows to do more with less.

With the next example we wish to illustrate the external gluing capabilities. Let us
consider the two-stage-gate system described in VHDL (see Fig. 7). The requirements
for the modification specification are as follows:

1. We need to have a number of gates at the first stage selected from the list {2, 4, 8,

16, 24};
2. A component at this stage must have the same function from { AND, OR, XOR,
NOR, NAND, XNOR};

3. A component at the second stage may have any functionality from the above

mentioned list.

In Fig. 8 we deliver the solution in PROMOL received in the following sequence.

b)

Scripting Language Open PROMOL and its Processor

ENTITY GATE IS
PORT (DATA, CNTR : IN BIT_VECTOR (1 TO 2);
OUTP : OUT BIT);
END GATE;

ARCHITECTURE EXAMPLE OF GATE IS
SIGNAL S : BIT_VECTOR (1 TO 2);
COMPONENT GATE_NAND_2

PORT (X1, X2: IN BIT; Y : OUT BIT);

END COMPONENT

BEGIN

L1 : GATE_NAND_2 PORT MAP (DATA(l),CNTR(1),S(1));
L2 : GATE_NAND_2 PORT MAP (DATA(2),CNTR(2),S(2));
L3 : GATE_NAND_2 PORT MAP (S(1),S(2)),0QUTP);

END EXAMPLE;

Fig. 7. The initial instance of two-stage-nand-gate in VHDL.

3 @- component : ‘this is a comment’
"Enter number of inputs :" {2,4,8,16,24} in:=4;
"Enter the first function :" {AND,OR, XOR,NAND,NOR,XNOR} £:=NAND;
$
COMPONENT GATE_@sub[f]_@sub(in]
PORT (@gen(in,{,},{X},1] : IN BIT; Y : OUT BIT);

END COMPONENT;

$

@include[component] @- to read external component
$

"Enter number of gates at the first stage :" {2,4,8,16,24} in:=4;

"Enter the first stage function:" {AND,OR,XOR,NAND,NOR,XNOR} fl:=NAND;
"Enter the second stage function:" {AND,OR, XOR,NAND, NOR,XNOR} f2:=NAND;
$
ENTITY SYSTEM IS
PORT (DATA, CNTR: IN BIT_VECTOR(1l TO @subl[in]);
OUTP : OUT BIT);
END SYSTEM;

ARCHITECTURE EXAMPLE OF SYSTEM IS
SIGNAL S : BIT_VECTOR (1 TO @sublin]);

@macro[component, {2}, {Gsub[£fl]}) @- to insert the component
@if[[in=2] and [fl eq £2],{ },{@macro[component, {@subl[in]}, {@sub[£f2]}]}]
@- a conditional insertion

BEGIN
@for(i,1l,in,{
L@subli] : GATE_@sub([fl]_2 PORT MAP (DATA(@sub([i]), CNTR(@sub[i])
S(@sublil});
1]
L@sublin+l] : GATE_@Gsub[f2]_@sublin] PORT MAP (Ggen([in, {),},{S{(},1])
OUTP) ;

END EXAMPLE;

Fig. 8. External gluing: a) external component; b) gluing capabilities.

81

82 V. Stuikys and R. Damasevicius

ENTITY SYSTEM IS

PORT (DATA, CNTR : IN BIT_VECTOR (1 TO 4);
OUTP: OUT BIT);

END SYSTEM;

ARCHITECTURE EXAMPLE OF SYSTEM IS
SIGNAL S : BIT_VECTOR (1 TO 4);

COMPONENT GATE_NAND_2
PORT (x1, x2 : IN BIT; y: OUT BIT);
END COMPONENT;
COMPONENT GATE_NAND_4
PORT (x1, x2, x3, x4 : IN BIT; y: OUT BIT);
END COMPONENT;
BEGIN
L1 : GATE_NAND_ 2 PORT MAP (DATA(1), CNTR(1), S(1));
L2 : GATE_NAND_2 PORT MAP (DATA(2), CNTR(2), S(2));
L3 : GATE_NAND_2 PORT MAP (DATA(3), CNTR(3), S(3));
L4 : GATE_NAND_2 PORT MAP (DATA(4), CNTR(4), S(4));
L5 : GATE_NAND_4 PORT MAP (S(1), S(2), S(3), S(4), OUTP);

END EXAMPLE;

Fig. 9. An instance in VHDL produced with PROMOL processor from the description given in Fig. 8.

Firstly, we have developed a generalised subcomponent: component. Secondly, we have
described reading of the component with the include function. Note that the parameter of
the function is the subcomponent name (file name). And finally, we have developed the
system for gluing the external subcomponent with macro and other functions.

As a result, we can produce 180 different instances from that model using PROMOL
processor. We present the generated instance in Fig. 9 (this example corresponds to the
description in VHDL of the circuit given in Milne’s book, page 37 (Milne, 1994)).

6. Preliminary Experiments with the Open PROMOL Processor

Preliminary experiments with the processor include 23 tests developed for teaching and
testing purposes, VHDL packages for multiplexer, generation of the formal description
in BNF of Open PROMOL subsets, data types generation for C++-, Pascal and Java.
With those experiments we receive an approval that our processor is the target language-
independent.

Scripting Language Open PROMOL and its Processor 83

7. Evaluation of the Results: Comparison with Other Approaches

We have compared our results with the cases known from the literature (see Table 1).
The different authors use slightly different approaches for achieving the same aim: com-
ponent generalization. What is new in our approach is that our language is built on the
external function concept, and we have suggested specific functions. Another distinction
is in the component vision. Components, either the syntactically complete or incomplete
structures, are the building “bricks” for composition. The functional capabilities of our
approach are similar to those given in the literature. For example, we regenerated the
examples described in Bassett’s book (Bassett, 1997) with our functions easily.

Table 1

The comparison of generic (reuse) component development technologies

Basic Implementation Language
Supporting Model complexity characteristics independent Application
Tools (command of the (Y) or domain
number) component dependent (N) for approval
Preprocessor External 8 Monolithic N VHDL
functions component models
Open PROMOL PROMOL 13* Structural Y VHDL and
Processor functions component other
TL models
Frame commands Frame >5 Frame Y Commercial
processor (Bassett) [commands composition systems
P-++ translator GenVoca Unknown Component’s N Data structures
(Batory, et al.) | model (P++) realm & others
Extended C++ TCL About Reuse N Universal
processor (Arney) | commands 30 component (non-specified)

The first finding that we received from the preliminary experiments is the processor’s
reliability. This has been achieved due to the Lex & Yacc module, the “component-from-
the-shelf”. The processor is a system that generates the “look-alike” program models in
a given TL from the specification that describes the needed modifications. The processor
allows to do more with less. It seems that it is not an easy task to develop the models
(to pre-program modifications) using two languages at the same time. We should have in
mind that an instance of a target program is always given. This instance must be syntacti-
cally and semantically correct. It is easier to introduce changes (if they are well-specified)
than to develop the model from scratch. Of course, some experience of working with the
Open PROMOL functions is needed.

84 V. Stuikys and R. Damasevicius

The second finding is the system openness. This regards to the language and its pro-
cessor. As syntax of the language is well-defined and simple, it is an easy task to introduce
new functions (for implementing new applications more efficiently) and re-program the
processor, because we apply reuse methodology.

The third finding is the language capabilities for modifying and gluing pieces of a
target language. Each function returns a value that is usually the modified fragment of a
target language. As a scripting program is a composition of the functions, gluing takes
place in a natural way automatically. Modifying capabilities depend on a parameteriza-
tion. As a parameter of a function may be a constant, variable, expression, other function
and even name of a component, modifications can be performed flexibly.

8. Concluding Remarks

The proposed language is a tool for developing of the generalized components. The lan-
guage supplies capabilities for composing a target program, too. The external functions of
the language allow to perform a composition in a simple and easy way. We are convinced
of the independence of the proposed script language from target languages.

The Open PROMOL processor can be considered as a generative tool for generating
“look-alike” programs in a target language. It allows to do more with less. The reliability
of the processor rely on the use of Lex & Yacc as a tool for developing the processor.

This work and recent works of other authors convinced us that generative approach
should be based on the relatively small generic library. Its components should be accessed
through processor. This work should be regarded as a case study in this direction.

We formulate the problems for further consideration as follows:

1) Applications for the language and its processor;

2) Various generator models based on the use of Open PROMOL and its processor.

Acknowledgements

Authors would like to thank to the anonymous reviewer whose notes served for an im-
provement of the paper.

References

Arney, J. S. (1998). C Preprocessing with TCL. Dr: Dobb’s Journal, August, 46-49.

Bassett, P. G. (1997). Framing Sofiware Reuse: Lessons from the Real World. Prentice Hall, Inc.

Bassett, P. G. (1999). Is Reuse a Transient Issue? Component Strategies, January, 64.

Batory, D., V. SinGhal, J. Thomas, S. Dasari, B. Geraci, M. Sirkin (1994). The GenVoca model of software
system generators. [EEE Software, September, 89-94.

Batory, D., V. SinGhal, J. Thomas, S. Dasari, B. Geraci, M. Sirkin (1995). Achieving reuse with software system
generators. [EEE Software, September, 89-94.

Batory, D., B. J. Geraci (1997). Composition validation and subjectivity in GenVoca generators. /EEE Trans-
actions on Software Engineering, 2(23), 67-82.

Scripting Language Open PROMOL and its Processor 85

Batory, D., B. Lofaso, Y. Smaragdakis (1998). JTS: Tools for implementing domain-specific languages. Pro-
ceedings of 5th International Conference on Software Reuse, IEEE Computer Society, 143-153.

Brown, A. W., K. C. Wallnau (1998). The current state of CBSE. /EEE Software, September/October, 37-46.

Broy, M., A. Deimel et al. (1998). What characterizes a (software) component? Sofiware — Concepts & Tools,
19(1), 49-56.

Czarnecki, K., U. Eisenecker, R.Gluck, D. Vandervoorde, T. Veldhuizen (1999). Generative Programming and
Active Libraries (Extended Abstract),
http://extreme.indiana.edu/tveldhui/papers/dagstuhl1998/dagstuhl.html.

Chang, K.C. (1997). Digital Design and Modeling with VHDL and Synthesis. IEEE Computer Society Press.

Hudak, P. (1998). Modular domain specific languages and tools. Proceedings of 5th International Conference
on Software Reuse, IEEE Computer Society, 134—142.

IEEE Std. 1076 (1996). VHDL Interactive Tutorial: A Learning Tool for IEEE Std. 1076 VHDL. IEEE, CD-
ROM.

Jacobson, 1., M. Griss, P. Jonsson. (1997). Software Reuse (Architecture, Process and Organization for Business
Success). Addison-Wesley.

Kozaczynski, W., G. Booch. (1998). Component-based software engineering. [EEE Software, Septem-
ber/October, 34-36.

Manson, T., D. Brown (1990). Unix Programming Tools. Lex & Yacc. O’Reilly & Associates, Inc.

Mili, R., J. Desharnais, M. Frappiers, A. Mili (1997). A calculus of program modifications. Symposium on
Software Reuse’97, ACM, 157-168.

Milne, G. (1994). Formal Specification and Verification of Digital Systems. McGRAW HILL Book Company.

Ousterhout, J. K. (1993). Tcl and the Tk Toolkit. Addison-Wesley Publishing Company.

Ousterhout, J. K. (1998). Scripting: higher level programming for the 215t century. IEEE Computer, 31(3),
23-30.

Pfleeger, S. L. (1998). The nature of system change. /EEE Sofiware, May/June, 87-90.

Rembold, U., R. Dillman. (1986). Computer-aided Design and Manufacturing (Method and Tools). Springer-
Verlag.

Sametinger, J. (1997). Software Engineering with Reusable Components. Springer.

Schneider, J.G., O. Nierstrasz (1999). Components, scripts and glue. In Barroca L., J. Hall and P. Hall (Eds.),
Software Architectures — Advances and Applications, Springer, pp. 13-25.

Stuikys, V. (1998). Design of reusable VHDL component using external functions. Informatica, 4(9), 491-506.

gtuikys, V., O. Olsen, G. Ziberkas. (1998). Building of VHDL reusable components for DSP-oriented architec-
tures. Information Technology & Control, 3(9), 43-53.

Terry, P. D. (1997). Compilers and Compiler Generators: an Introduction with C++-. International Thomson
Computer Press.

V. Stuikys received Ph.D. degree from Kaunas Politechnic Institute in 1970. He is
currently Associate Professor at Computer Department, Kaunas University of Techno-
logy, Lithuania. His research interests include domain-specific reuse, high level domain-
specific languages, expert systems, digital signal processing and CAD systems.

R. Damasevicius received a bachelor degree in informatics from Kaunas University of
Technology in 1999. He is currently MSc student at Informatics faculty, Kaunas Univer-
sity of Technology. His research interests include software reuse, scripting and program-
ming languages, development of kits for supporting reuse.

86 V. Stuikys and R. Damasevicius

Scenariju kalba Open PROMOL ir jos procesorius
Vytautas STUIKYS, Robertas DAMASEVICIUS

Straipsnyje apraSomos scenarijy kalbos Open PROMOL ir jos procesoriaus galimybes. Si kalba
yra skirta specifikacijoms (scenarijams) kurti, kai norima modifikuoti kita iSorine kalba uZrasytus
programy tekstus. Mes vartojame Sitos kalbos procesoriu kaip iranki, kurti savarankiSkus atsikar-
tojancius komponentus arba kaip programu generatoriaus moduli (“komponenta i$ lentynos™). Pa-
¢iame procesoriuje yra iterptas Lex & Yacc sugeneruotas modulis, kitas Zemesnio lygmens ‘“kom-
ponentas i§ lentynos”. Mes pateikiame Sitokias sitilomos kalbos ir jos procesoriaus galimybes: ge-
neravimo, skaiciavimo, valdymo, parametrizavimo ir “klijavimo” (komponavimo). Mes lyginame
siiloma metoda su panasiais literatiiroje aprasytais metodais.

