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Abstract. The PC software AMCE is proposing building actors (owner, project authors. . . ) a Mul-
tiple Criteria Decision Aid procedure (MCDA) to optimise the building envelope about cost and
energy performances, during the sketch design.

Two main modules are linked, where the user interactively goes:
– the first one manages parameters describing the project requirements;
– the graphic pen-based module allows to draw the sketch; it calculates geometric parameter

values and put them back in the first module.
Permanently informed on forseeable performances, the user can any time search for optimal sce-

nario giving best satisfaction (monoactor optimisation) or most preferred compromise (muliactors
optimisation).
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1. Introduction

This paper presents the last update of the one written with G. Colson (1999) for Como
49th Meeting of the European Working Group MultiCriteria Aid for Decisions, first up-
dated for the 51st Meeting held in Madrid (Hauglustaine, 2000) and later for the publica-
tion in the 49th and 50th Meeting Proceedings (Colson and Hauglustaine, 2000).

The approach is an attempt to cope with the difficult problem of ameliorating the
dialog between the several actors intervening in the design of a building envelope, using
MCDA methodologies. The main purpose is to present the MCDA framework which can
help the sketch design, the earliest step, besides being a crucial one, in the whole building
envelope design.

We can consider three stages that lead actors to the sketch design (see Fig. 1). The first
is a definition and negotiation stage between several private and public actors, where they
express their requirements and preferences, based on several criteria, parameters, regula-
tions and constraints. In the second stage, the actors build several scenarios by defining
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Fig. 1. The preliminary stages of the design process.
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parameters and assessing their values, with some imprecision and tolerance. The archi-
tect or some expert system then computes performances on the various selected criteria.
This second stage is called the feasibility stage, because it results in two questions: Is the
scenario feasible? Is the scenario acceptable to the stakeholders?

Loops are introduced in the process when negative responses are given to these ques-
tions, until entering the third stage, the actual sketch design, becomes possible. After a
first drawing of the project, performance calculations can be refined. The stakeholders
then judge these performances as acceptable or not, and improvable or not.

Loops are envisaged in the case of non-acceptability or improvability, using a genetic
algorithm procedure:

• each actor is able to search for the optimal set of strategic parameters, which
corresponding scenario gives the most satisfactory performances according to the
criteria he considers as relevant;

• all the actors may try to find the preferred compromise, defined by the values of
strategic parameters which scenario is giving the best performances that equally
satisfy all the actors together.

2. Multiple Actors Feature of the Building Design Process

The design process of a building is typically interactive, requiring the participation and
mandatory satisfaction of several actors, each facing to multiple criteria decisions:

• The client initiates the whole operation; he may be the property developer, the
owner, but also a future occupant or a future user. . . He is increasingly involved
in the design process and in the search for design fitness to correspond to his re-
quirements. Furthermore, the client’s legal responsibility continuously increases,
as does his responsibility in the building act. He’s well personally responsible for
his building’s energy performance, the environmental protection, etc.

Faced with these new duties, the client requests increased help from the design
team. The project should allow the client to assume his new responsibilities, while
reaching his objectives of cost, building period duration, comfort and functionality.
The client is considered, however, as having no technical capacity, so the software
should ask soft questions, using familiar vocabulary.

• The project author is a generic term that more often designates the architect, but
also the consulting engineers (for structure, equipment. . . ), the quantity surveyor,
the project manager, etc. The project author’s mission is so heavy, he often neglects
matters he considers as non-essential, e.g., the energy aspects. Though a great deal
of software is available to compute energy performance, it is, unfortunately, rarely
used by architects, in practice. Software should help project authors in their task,
while maintaining their particular objectives, e.g., their expressed needs and their
wish for increased notoriety.
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Fig. 2. Influence of decisions taken along a project on their corollary adjustment cost, in function of the moment
when they are taken.

• The public authorities, representing the country or the region, are authors of con-
straining lawful and normative standards (thermal, urbanistic or environmental reg-
ulations, etc.); some public policies are translated into constraining levels of energy
performances.

Finally, we see that the goal of the MCDA process and the linked software is to help
each actor express his particular needs, either in the form of constraints or multiple ob-
jectives as well as to build an interactive tool, capable of dialoguing with each actor in
his own language, while providing useful performance indicators.

Every architectural project is progressively defined, necessitating frequent interroga-
tions to the actors and making the corresponding adjustments (Conan, 1989). The soft-
ware should thus be able to allow for these frequent data adjustments.

When adjustments essential to the project viability are discovered too late in the de-
sign process or during the construction itself, they lead to additional costs, very often out
of proportion when compared to their actual importance. Fig. 2 gives an expression of
the influence, on the corollary adjustment cost, of the decisions taken along a project, in
function of the moment when they are taken (Ali Mohamed and Hens, 1999).

A first feasibility check of the project is important, in order to ensure that at least one
solution exists. The feasibility study enriches the negotiation and/or incites the actors to
negotiate the objectives and the associated means again, when the solution set is empty.

While remaining very imprecise in the feasibility stage, project data may be sufficient
to define a “scenario” (Roy, 1993; Maystre and Bollinger, 1999) that characterises the
architectural choices and allows evaluating resulting performances.

3. AMCE Software: an Interactive Tool for Introducing Technical and Preferences
Data and Evaluating Sketch Design Performance

AMCE is an acronym for “Aid to the Multiple criteria Conception of the building
Envelope” (in French: Aide Multicritère à la Conception de l’Enveloppe de bâtiment).
The software is developed in both French and in English, with the programming lan-
guage Allegro c© Common Lisp (Franz Inc.). It runs on a common PC, with the following
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minimal characteristics: a 120 MHz Pentium microprocessor, Windows 95, 98 or NT
4.0 operating system, 15 Mb hard disk capacity, 32 Mb RAM storage capacity (64 Mb
recommended) and a SVGA graphic card with a palette of 64.000 colours.

The usual starting point in energy software is the drawing of the sketch design itself:
this approach lacks a first parametric phase, which allows defining a set of feasible so-
lutions, among them, the preferred choice (Crawley et al., 1998; De Wilde et al., 1998;
Rivard et al., 1995). In our proposed design procedure, each actor chooses – and man-
ages – the values of the main parameters, in order to satisfy selected criteria, based on
individual preferences and requirements.

AMCE has been built to facilitate an interactive introduction of technical and pref-
erence data by each actor, based on his individual needs and capacity, and to compute
performance criteria.

3.1. Selected Criteria: Project Performances

The software evaluates performances concerning energy aspects for heating, air-
conditioning, domestic hot water and artificial lighting, as well as construction and use
costs of the project:

• four regulation performances: K-level (as required in Flanders and Wallonia), Be
heating energy needs (in Wallonia), G/Gref, B/Bref, C/Cref (in France);

• yearly energy consumption expressed in physical units (kWh), for heating and
domestic hot water (DHW), air-conditioning (HVAC), and artificial lighting;

• associated energy consumption costs, i.e., use costs;
• project construction cost, VAT and fees excluded.

3.2. Actor’s Preferences: Choice of Criterion Types and Thresholds

The architect, owner, tenant, property developer, etc., anyone intervening in the building
process, can participate in its elaboration. Each actor defines a “scenario” summarising
his desiderata and requirements. With the button “Actor’s preferences”, he defines his
preferences (Fig. 3):

Fig. 3. Actor’s preferences for criteria: the case of the owner – Choice of relevant performance criteria.
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• he chooses the background colour that identifies him in all windows generated by
the software;

• he chooses the preferred monetary unit (Euro or the monetary unit of the country
where the project is located).

For each criterion, he specifies:

• the maximum admissible critical value;

• an associated preference function, using the Promethee typology true (≡ usual)
criterion, quasi-criterion, pseudo-criterion, etc. (Brans et al., 1986) as illustrated
on Fig. 4;

• thresholds P and Q of the preference function: if P = 0, this is a quasi-criterion,
and if P = Q = 0, the criterion is true;

• weights he gives to the criteria: corresponding to the Promethee multicriteria ap-
proach, a weight is like a coefficient of the importance the actor attaches to each
criterion (Schärlig, 1996). Each user allocates any null or positive weight to each
criterion: the criterion receiving the highest weight is the most important one, while
the criterion with the smallest weight is the less important one. The software so
gives each criterion the relative weight it has in proportion with the sum of all the
weights accorded to the criteria set. When an actor gives a null weight to a crite-
rion, he expresses that he’s completely indifferent to this criterion he considers not
interesting at all. Weight allocating is a personal subjective matter depending on
the value scale each actor feels on performance criteria.

3.3. Actor’s Scenarios and Questionnaires for Data Introduction

An actor’s scenario is a set of values the actor gives to the parameters he can understand
and control. The introduced parameters are just necessary and sufficient to the preliminary
performance estimates. At this stage of the project, prior to any drawing of the draft, the
geometrical parameters replace the geometrical variables, which will be defined later.

In order to fit the technical capacity of the user, the collection of parameter preferred
values characterising the project uses a questionnaire, organised on two levels:

• a semantic level, fitting the client’s technical capacity; it helps the client specify his
demands and requirements;

• a more technical level is proposed to the project author, who defines the preliminary
characteristics of the project by answering no more than 60 questions.

The questionnaire is organised by items, i.e., thermal comfort, fenestration, solar ap-
titude, thermal characteristics of the envelope, equipment sophistication, etc.

For example, a screen is proposed to the client, asking him for the shape aspects
he can define (upper part of Fig. 5). The same question, but on a more technical level, is
proposed to the project author (lower part of Fig. 5). In order to facilitate user questioning,
all answers are previously filled in with default values. The user may modify them as he
chooses. In this way, the parameters necessary for other evaluations (corresponding to
criteria considered as irrelevant) will not be introduced.
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Fig. 4. Promethee preference functions.
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Fig. 5. Questionnaire proposed to the client (Geometry) and to the project author (Geometry: details).

Of course many parameters (and associated questions) may depend on other ones. For
example, when specifying that the roof is a flat roof, the user has not to answer questions
about attics or roof edge: these questions are suppressed from the questionnaire and are
not asked. But, if a positive – and not nil – angle is still chosen for the roof slope, these
questions appear again and must be asked if default values are not in accordance with
actor’s wishes.

A peculiar attention has been devoted to the mutual parameter consistency. The
choices of fenestration and of shared external walls are an example. In the beginning
of the questioning (see Fig. 6), the general situation of the project is asked to the user,
concerning the party portion of the gables and of the back facade; the main facade is
considered as having not any area shared with any other heated volume. When the user is
modifying the party portions, a notice (see below part of Fig. 6) warns him that he must
adapt the distribution of the glazed areas to the party portions he has modified.

The party portion default value is nil, which allows a uniform repartition of the glazed
areas on all the facades (Fig. 7). The glazed areas are indifferently expressed in m2 or in
percentage of the project total glazed area. The user is allowed to adapt the repartition of
the glazed areas in the “Solar details” management (see Fig. 8).

For strategic parameters, each actor specifies the accepted interval in which the param-
eter could vary. He so expresses his level of uncertainty and/or tolerance. Five different
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Fig. 6. Party portions of gables and back facade.

Fig. 7. Default fenestration distribution.

levels of “tolerance” intervals are proposed to the actor, for his chosen value v:

level 1 : v ± 50%v; level 2 : v ± 30%v; level 3 : v ± 15%v;

level 4 : v ± 5%v; level 5: no tolerance.

The level 5 corresponds to a parameter that is prescribed by conditions outside the
project and so cannot be changed by the design team. The actor thus chooses one tol-
erance interval level for each strategic parameter, according to his degree of certainty
or/and his degree of requirement. Sometimes, one or both limits of his chosen interval
is/are technically prohibited. In this case, the software introduces the largest technically
feasible values within the preferred interval. This tolerance interval mechanism is crucial
for further performance sensitivity analysis, and for the improvement step. If an actor
enlarges intervals so that they are just limited by technical intervals, he may increase the
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Fig. 8. Correction of the fenestration distributed among the facades.

set of admissible scenarios, e.g., his feasible decision space. Each time he reduces his
intervals, his decision space is reduced accordingly as well as the degree of improvement
he may hope for in the next stage.

In the framework of MCDA methodology, the actor assesses a part of his preferences
on scenarios through soft constraints. The remainder constitutes the minimal require-
ments he can impose on some performances.

For each parameter, the following help will be provided on request, by the right click
of the mouse:

• a more explicit definition of the parameter;

• values encountered in previous projects: the cultural approach of the project author
is given here, consisting in a database of projects already executed by him, with
associated parameter values.

3.4. Displaying and Specifying Scenario Performances

A specific window (see Fig. 9) lists the energy and cost performances obtained by all the
scenarios defined by the actors (in bold: the actor currently using the software). Note that
any actor can try more than one scenario.

In order to clearly display the satisfaction reached on the criteria specified by each
actor, the background colour of each result cell is displayed: green when the performance
is satisfactory for the actor and red, when it is not. In Fig. 9, for instance, the “Owner” is
satisfied with all the performance values excepting that his scenario is unacceptable on:
the French G/Gref and B/Bref coefficients; the cost of energy spent on “Heating+DHW”.



Multicriteria and Multiple Actors Tool 13

Fig. 9. Performance window.

The right column of Fig. 9 displays the relative classification of scenarios for each per-
formance, in a monocriterion approach.

Fig. 10 presents a Promethee total pre-order of the scenarios: the owner’s scenario
is globally the best one, while the project author’s one is less good and the Actor 3’s
scenario is the worse.

Fig. 10. Promethee total pre-order of the scenarios.

3.5. Sensitivity Analysis Performed by AMCE

The software calculates the performance variation for the criteria considered by the ac-
tors, according to the parameter variations, thus guiding the project author towards an
improved solution.

The sensitivity of a chosen performance to the variation of one or two parameters can
easily be obtained, so.

First, AMCE produces the σ performances for each chosen tolerance interval of the
parameters and for each actor. For example, Fig. 11 displays, for each criterion, the per-
formance interval produced by the interval of values (level 1: v ± 50%v) of the net total
habitable floor area around its central value (100 m2): the construction cost is 38.2 k⊂=
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Fig. 11. Window showing performance sensitivity to the variation of net total habitable floor area around its
central value, 100 m2.

for 100 m2; it increases 43.4% for a 50% increase in area, reaching 54.7 k⊂= , while a
decrease of 50 m2 produces, ceteris paribus, a fall of 41% for a new amount of 22.5
k⊂= . On this exemplary display we observe that some values are presented in a red cell:
f.i., making variations of 50% of floor area becomes a prohibited scenario for the criteria
B/Bref and still remains unsatisfactory relating to yearly “Heating+DHW” energy cost,
of course.

Fig. 12 (3-D graph) and Fig. 13 (2-D graph) give the variation of the performance
“Energy consumption (in kWh) for heating and domestic hot water”, to both continuous
and technically acceptable variations of the net total habitable floor area and of the roof
slope together; all the other parameters are remaining unchanged at their decided central
values. When the user clicks anywhere in the 2-D graph (Fig. 13), he can obtain the
corresponding values of floor area and roof slope, with the performance obtained by this
pair of values, all other scenario parameters remaining unchanged.

At the end of the feasibility study, before any drawing has been made, two possibilities
exist:

• Actors know the certain existence of at least one solution, as defined by the satis-
factory parameter scenario. In this favourable case, they also know the sensitivity
of the performances to the different parameters. This information can be useful to
arbitrate the divergent choices or possibly to improve design.

• Or they are not able to find a scenario leading to acceptable performances. In this
case, the sensitivity analyses largely document the negotiation that must follow
evidence of an empty set of solutions. Negotiation then attempts to relax the most
sensible constraints.

Therefore, this first stage goes beyond a simple feasibility study, which would only
show whether or not a solution to the architectural problem exists. Defining a set of solu-
tions, this parametric approach also locates a scenario space where the preferred feasible
choice exists. The combination of parameter intervals of validity/tolerance indeed de-
fines a solution space, which respects the criteria considered as relevant. Definition of
this solution space is essential for the strategy of future project improvement.
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Fig. 12. Some performance sensitivity to the variations of the floor area and the roof slope (3-D graph).

Fig. 13. Some performance sensitivity to the variations of the floor area and the roof slope (2-D graph).

3.6. Monoactor Optimisation Procedure in Order to Reach the Optimal Scenario
Corresponding to the Most Efficient Project

With an optimisation procedure using a genetic algorithm, the software generates a ran-
dom population of individuals. Each individual is so a combination of possible values
of the strategic parameters among the 8 billion possible combinations resulting from the
authorised values of the 13 (up to now) strategic parameters within varying interval the
actor has previously chosen. Each “individual” is a 13 position vector where each position
represents a strategic parameter.

The optimisation process is organised as follows:
1. A first population of individuals (which size is chosen by user) is randomly gene-

rated;
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2. The fitness fx of each individual x is calculated using:

fx =
1
d
,

where d is like a “weighted distance” to optimal performance in the 13 dimension
space of solutions:

d =

√∑n

i=1

(
Pi

Ci
·Wi

)2

,

with:

• Pi = performance obtained relating to criterion i (all performances are to be
minimised);

• Ci = maximal authorised (or wished) value related to criterion i;
• Wi = weight allocated to Pi;
• n = number of criteria.

3. Statistical evaluations: maximum, minimum and mean fitnesses are calculated; if
the maximum fitness is larger than the absolute best – obtained up to now – indi-
vidual’s fitness, the individual corresponding to the maximum fitness is saved as
the absolute best one; otherwise the previous absolute best individual is kept;

4. Stop conditions: the optimisation process is stopped if maximum number of gener-
ations is reached or if the absolute best fitness increase over several generations is
too small, so that the convergence is considered as obtained;

5. Population scaling: the population fitnesses are scaled in order to avoid any prema-
ture convergence, i.e., any local optimum;

6. Reproduction loop:

• Selection procedure: fitnesses are distributed on a pie and the Russian roulette
randomly selects a fitness, with a larger chance to come across a high fitness;
the corresponding individual (parent) is selected by the software and a second
one with the same way;

• Croosover operator is applied to the selected pair of parents, giving children
individuals;

• Mutation operator is also applied to children individuals resulting from
crossover;

A new population is so obtained, of new individuals. The process returns to Step 2
(fitness evaluation).

The software so finds the best combination of strategic parameter values (Fig. 14) that,
in fact, generates the most efficient scenario whose performances are the best satisfactory
in accordance with the actor’s preferences.
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Fig. 14. One-actor optimisation using a genetic algorithm.

In this monoactor optimisation, the actor’s satisfaction is the convergence rule of the
genetic algorithm.

On Fig. 9, the Actor 3’s scenario gave worst performances when compared to the other
ones. After the optimisation, the new Actor 3’s performances (displayed on Fig. 15) have
been largely improved. Not only G/Gref and B/Bref are now acceptable, but all this sce-
nario performances are largely better than those obtained with the other scenarios, even
for the “Heating+DHW” energy cost, remaining beyond the admissible value previously
defined by Actor 3.

Fig. 15. Optimised performances of Actor 3’s scenario.
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3.7. Multiple Actors Optimisation Procedure in Order to Reach the Most Preferred
Compromise

All the actors concerned by the project may to find their most preferred compromise,
by using the multiple actors optimisation procedure. This optimisation routine is similar
to the monoactor one, except of its convergence rule: the software must search for the
scenario giving in the same time:

• as best performances as possible;

• most equal satisfaction of all the actors: when a project obtains good performances
but gives actors too much different satisfactions, this project further life is threat-
ened by the unsatisfied actor(s).

Before the procedure, a checking routine displays the parameter(s) conflicting with
actors, i.e., the parameter(s) whose actors’ authorised intervals have no intersection
(Fig. 16). When it happens, one can say that the scenarios are not comparable, so that
any preferred compromise does not exist. The conflict parameters must so be first nego-
tiated between actors, before any optimisation.

In this way, the individual fitness fx is differently defined than in the monoactor pro-
cedure:

fx =
1

dmax
· 1
(dmax − dmin)

,

where dmax is the maximum value (the worst performance) encountered in daj values
related to actor aj and dmin the minimum daj value. The fitness optimisation has two
parallel objectives, corresponding to the two terms in the fx expression:

• maximising the performances is similar as minimising their maximum weighted
distance (dmax). Because no performance is nil and at least one mandatory regu-
lation performance always remains, the denominator dmax may approach to 0, but
cannot be nil.

Fig. 16. Display of conflict parameters (here the floor area) between the owner and the project author who’s
choice is similar to the Actor 3’s one.
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• equalising the actors’ satisfactions is the same as minimising the difference be-
tween dmax and dmin values. The actors’ satisfactions are equal when dmax = dmin

and the corresponding individual gives the parameter values of the preferred com-
promise.

4. Sketch Design: Drawing the First Draft and Performance Evaluation

The third stage of the decision process will allow a sketch design, but, at any time, the
drawing of the first draft could be realised by the project author, using the EsQUIsE
module, developed in LEMA (Leclercq, 1999).

EsQUIsE software is an experimental computer-based prototype interface for captur-
ing and interpreting the architect’s sketch, by locating its architectural concepts: border
line, functional space and topology. The aim of this prototype is to compose a spatial
semantic representation of the architectural project, in order to feed diverse computer ar-
chitectural design evaluation routines and to serve as a tool with interface that complies to
the designer’s working technique. The EsQUIsE pen-based module performs the capture
and the synthesis of the lines drawn on the digital tablet. These lines are drawn in black
(opaque walls), in blue (glazed walls) or in magenta (comments) (see Fig. 17).

The project author names the functional spaces; on this basis, the programme fixes
their characteristics necessary for the evaluations. For example, the default comfort tem-
perature assigned to each occupied space is fixed according to its function as described
in the captions: 18◦C for the kitchen, 24◦C for the bathroom, etc.; the user may change it
if he prefers another value.

Fig. 17. Original sketch (ground floor) drawn on a digital tablet or with the mouse.
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Fig. 18. Synthesised sketch of the ground floor.

Fig. 19. Spaces topology of the ground floor.

The project author names the functional spaces; on this basis, the programme fixes
their characteristics necessary for the evaluations. By studying the contacts between the
synthesised lines, EsQUIsE materialises the spaces to be occupied (Fig. 18).

Several procedures then deduce the topological relationships of the described archi-
tectural project (see Fig. 19).

The advantage of using a man-machine interface based on the semantic analysis of an
architectural sketch is that one is spared the fastidious measuring work of the architect’s
blueprint. Instead of the two or three days usually required to measure and encode, energy
and cost performances are supplied directly after the drawing of the last line of the sketch.
On the other hand, it avoids any accidentally wrong numerical values when input by
human user.

This drawn support constitutes a preliminary basis for discussion with the client,
whose understanding requires a graphic expression. This constitutes the only means of
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checking how well the project corresponds to his desiderata, including implicit ones (non-
verbalised). This first response is already rich, particularly with regard to evaluations.

The application tested in the late stages of EsQUIsE is a classical module MZS (for
MultiZone Stationary) also previously developed in LEMA: it makes the multizone eval-
uation of the building energy needs, taking internal and solar gains into account (see
Fig. 20).

After the drawing of the draft by the project author, the user can go back to the parame-
ter module, where geometrical data previously defined are replaced by the ones generated
by the drawn sketch (Fig. 21). Other thermal or economical data of the questionnaire are
unchanged.

The same evaluation routines check project performances of the drawn project, that
are displayed in the performance window:

• either the performances are reached;

• or the performances are not reached. Any actor could try to satisfy each requested
performance by using the parameter sensitivity analyses or the optimisation proce-
dure. In the case of a conflict between reached and desired performances, a negoti-
ation would be initiated, in order to refine objectives and parameter values.

The project author presents the draft to the building owner, who is now able to react
and intervene on parameters and desired performance values.

Improvement (and/or optimisation) of the draft, by its iterative modification and/or by
the drawing of new drafts, will take the procedure back to previous stage.

Fig. 20. Monthly and yearly heating (and cooling) energy needs of the drawn sketch.
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Fig. 21. Geometrical data replaced by the ones resulting from the sketch drawn with the EsQUIsE module.

5. Continuation of the Project Design

The result of the feasibility stage is a sketch which parameters – accepted by the several
actors – give the best performances. It circumscribes the most efficient choices related to
the energy and cost performances of the future building.

It now constitutes the project basis to be used in the continuation of the design process
during the detailed design, that falls under topics currently developed and commonly used
in architecture.

6. Conclusion and Further Advances of the Sketch Design Tool

With respect to usual architectural practice, our new methodology tracks provide the
following advantages:

• they alleviate the work load of the project author and increase energy and cost
performances of the project;

• they supply a multiple criteria decision aid for elaboration and negotiation of a
preferred compromise between the several actors;

• they give enhanced help to the client within an uneasy technical context, where his
responsibility is increasing, especially regarding environmental regulations.

In conclusion, the final product will be used to interest more architects and help them
in building energy performance, both a present and future ecological concern.
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Interaktyvi ↪u priemoni ↪u, skirt ↪u pastato konstrukcijai pirmosiose
architektūrinio projektavimo stadijose parinkti, daugiakriterini ↪u
ir grupini ↪u sprendim ↪u aspektai

Sleiman AZAR, Jean-Marie HAUGLUSTAINE

Studijoje nagrinėjamos daugiakriterini ↪u sprendim ↪u priėmimo procedūros, taikytinos pastato
pradinėse architektūrinio projektavimo stadijose, kuomet yra parenkama didelė dalis galim ↪u al-
ternatyv ↪u, ↪itakojanči ↪u pastato kain ↪a ir eksploatacij ↪a. Projekt ↪u autoriai dažniausiai energetines
s ↪anaudas vertina retai, skirdami didžiausi ↪a dėmes ↪i kaštams. Straipsnyje nagrinėjamos interak-
tyvinės daugiakriterini ↪u ir grupinio sprendim ↪u priėmimo priemonės, ↪igalinančios pagerinti ar-
chitekt ↪u darb ↪a atsižvelgiant ↪i klient ↪u pageidavimus bei esam ↪a teisin ↪i reguliavim ↪a. Projekto au-
toriai gali pasitelkti architektūrines priemones, užtikrinant klientams kainos, pastato gyvavimo,
komforto bei funkcionalumo tikslus ir priimtinus energetinius bei ekologinius reikalavimus. Pro-
jektavimo technologija susideda iš dviej ↪u nepriklausom ↪u moduli ↪u. Prieš pradedant projektavim ↪a,
sudaromas klausimynas, atitinkantis kiekvieno dalyvio technines užduotis, kuriame pateikiamos
nepriklausomos versijos, ↪ivertinus kaštus bei energetines s ↪anaudas. Antrajame modulyje optimiza-
vimo procedūroje genetiniu algoritmu nustatoma efektyviausia parametr ↪u aibė ir ruošiama pro-
jektinė dokumentacija, atitinkanti lanksčiausi ↪a ir priimtiniausi ↪a kompromis ↪a, pateikiant j ↪a klientui
suprantamu būdu. Atitinkama programinė ↪iranga ↪igalina sudaryti s ↪amatas ir reikalingus brėžinius
bei grafin ↪e medžiag ↪a. Projekto autoriai gali lanksčiai naudotis pirmuoju bloku parametrams patik-
slinti leistin ↪u sprendim ↪u erdvėje.


