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Abstract. The distribution of neutron population in nuclear reactor is described by using transport
equations. One of possible approximations of neutron transport equation is given by the neutron
diffusion equation. The paper presents numerical solution method of one group neutron diffusion
equation with one group of delayed neutrons.
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1. Introduction

Nuclear fission discovered in 1939, showed great promise as a new source of energy,
which could be converted into inexpensive electricity. In a nuclear reactor power, which
is generally utilized to produce steam for the generation of electricity, appears due to
nuclear fission. The fission process is associated with the release of a large amount of
energy per unit mass of nuclear fuel. The fission reaction is initiated by neutrons and is
accompanied with the liberation of neutrons. This phenomenon is implemented by the
design of a nuclear reactor. Once the fission reaction has been started in a few nuclei
by means of an external source of neutrons, it can be maintained in other nuclei by the
help of neutrons produced in the reaction. The neutron population distribution in nuclear
reactor is described by transport equations.

One of the simplest approximations to neutron transport that has been widely used
in research and practice is the approximation given by diffusion theory. The diffusion
equation describes the behavior of a large amount of neutrons when individual properties
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of separate neutron trajectories in matter are “averaged”. Neutrons released in fission, can
be divided into two categories namely, prompt neutrons and delayed neutrons. Prompt
neutrons are released within about 10−14 s of the instant of fission. The emission of
prompt neutrons ceases immediately after fission has occurred, and the delayed neutrons
continue to be expelled over a period of several minutes.

2. Statement of the Problem

The purpose of this paper is to present a numerical solution method of one group neutron
diffusion equation when delayed neutrons are averaged by one group of delayed neutrons
(Almenas and Lee, 1992):

1
vc

∂ ϕ (x, t)
∂ t = D∇2ϕ(x, t) + (γΣf − Σa)ϕ(x, t) + λC(x, t),

∂ C(x, t)
∂ t = βγΣfϕ(x, t) − λC(x, t),

(1)

with the initial ϕ(x, 0) = ϕ0(x), C(x, 0) = C0(x) and boundary conditions ϕ(xb, t)=0.
Here vc – neutron velocity, ϕ = ϕ(x, t) – neutron flux, C(x, t) – the density of pre-

cursors, D – neutron diffusion coefficient, γ – average number of neutrons produced per
fission, Σf – macroscopic fission cross section, Σa – macroscopic absorption cross sec-
tion λ-radioactive decay constant, β – fraction of the fission neutrons which are delayed,
x = (x1, x2) – point in the region V , xb – point of V boundary.

Neutron diffusion equation is obtained under assumptions that scattering is isotropic
in the laboratory system of coordinates, all neutrons have the same energy and region V

is homogeneous. This leads to diffusion coefficient to be independent from the position
in space.

3. Algorithm Description

To obtain the solution of system of equations (1) we will use the method of summary
approximation. The aim of method is to replace multi-dimensional differential equa-
tion with partial derivatives by the system of one-dimensional differential equations
(Samarskij, 1983).

Denoting Σ = γΣf − Σa, B = βγΣf , from the system of equations (1) we can
obtain a parabolic type equation

1
vc

∂ ϕ (x, t)
∂ t

= D∇2ϕ(x, t) + Σϕ(x, t) + λe−λ t

t∫

0

Beλ t1ϕ (x, t1)d t1,

which is a partial case of equation with the memory:
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∂u

∂t
(x, t) + Au(x, t) =

t∫

0

f(t, s, x, u(x, s))d s,

where A is self-adjoint elliptic type operator.
Using the method of summary approximation we obtain:

1
vc

∂ ϕ (1)

∂ t
− D

∂ 2ϕ (1)

∂ x2
1

− 1
2Σϕ(1) = 1

2λe−λ t
t∫
0

Beλ t1ϕ (1)d t1,

1
vc

∂ ϕ (2)

∂ t
− D

∂ 2ϕ (2)

∂ x2
2

− 1
2Σϕ(2) = 1

2λe−λ t
t∫
0

Beλ t1ϕ (2)d t1,

(2)

ϕ(1)(x, 0) = ϕ0(x),

ϕ(1)(x, tj) = ϕ(2)(x, tj), tj � t � tj+1,

ϕ(2)(x, tj) = ϕ(1)(x, tj+1),

where ϕ(2)(x, tj+1) is the solution of this system at the time moment tj+1.
Let τ be a time step and h – a space grid step. Applying the Euler scheme for time

discretization and choosing the approximation by spatial coordinates

∂2ϕ

∂x2
=

ϕ(x + h, t) − 2ϕ(x, t) + ϕ(x − h, t)
h2

,

we obtain a system of equations

1
vc

ϕ(1)(x, t) − ϕ(1)(x, t − τ )
τ

−D
ϕ(1)(x + h1, t) − 2ϕ(1)(x, t) + ϕ(1)(x − h1, t)

h2
1

− 1
2Σϕ(1)(x, t)

= 1
2λe−λtτ

n−1∑
j=0

Beλ jτϕ (1)(x, jτ ),

1
vc

ϕ(2)(x, t) − ϕ(2)(x, t − τ)
τ

−D
ϕ(2)(x + h2, t) − 2ϕ(2)(x, t) + ϕ(2)(x − h2, t)

h2
2

− 1
2Σϕ(2)(x, t)

= 1
2λe−λtτ

n−1∑
j=0

Beλjτϕ(2)(x, jτ),

(3)

ϕ(1)(x, 0) = ϕ0(x),

ϕ(1)(x, t) = ϕ(2)(x, t),

ϕ(2)(x, t − τ) = ϕ(1)(x, t). (4)

This system of equations (3) approximates that of (2) with accuracy O(τ + h2)
(Sapagovas and Vileiniškis, 1998).

Since the matrix of equation system (3) is tridiagonal, we use a double sweep method
(Samarskij, 1983) for its solution.
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4. Numerical Results

The described method has been tested to calculate the neutron flux in two-dimensional
rectangular region 50 × 50 cm, placed in a vacuum (i.e., ϕ(xb, t) = 0). In all cases
h1 = h2 = h. Macroscopic cross sections and other initial data for thermal neutrons
were taken from (Langenbuch et al., 1977). Results are presented in Tables 1–4. These
tables show maximal value of neutron flux reached in a center of region. In all cases
initial conditions ϕ(x, 0) = 1.0.

Table 1 shows the results for time moment t = 0.003 sec obtained by employing
several different time step sizes when D = 0.356 cm, B = 0.000735 cm−1, λ = 0.08
s−1, h = 2.5 cm. We can see from Table 1 that results agree well when time step is less
than 2.0· 10−05 in both cases, for negative Σ values and for positive ones. Therefore we
used the time step equal to 1.0· 10−05, for the analysis of mesh size influence.

Table 1

Dependence of solution on time-step size

Σ = 0.005 cm−1 Σ = −0.005 cm−1

τ (s) ϕmax τ (s) ϕmax

2.5· 10−06 8.3778 2.5· 10−06 0.4664· 10−02

5.0· 10−06 8.3825 5.0· 10−06 0.4697· 10−02

1.0· 10−05 8.3919 1.0· 10−05 0.4764· 10−02

2.0· 10−05 8.4109 2.0· 10−05 0.4899· 10−02

4.0·10−05 8.4491 4.0·10−05 0.5176·10−02

Table 2 presents results for the time moment t = 0.003 sec, when the time step is
equal to 1.0· 10−05 and D = 0.356 cm, B = 0.000735 cm−1, λ = 0.08 s−1, Σ = 0.005
cm−1.

We can see from Table 2 that neutron flux differs slightly in all cases calculated with
different mesh sizes. For calculations, presented in Tables 3 and 4 therefore, mesh size is
set to be 2.5 cm.

Table 2

Dependence of solution on mesh size

h (cm) ϕmax

1.0 8.3906

1.25 8.3907

2.5 8.3919

5.0 8.3958

8.33 8.3975
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Table 3

Dependence of solution on physical properties

Σ (cm−1) ϕmax

0.0025 1.2841

0.005 8.3919

−0.0025 0.3060· 10−01

−0.005 0.4764·10−02

Table 3 presents neutron flux for the time moment t = 0.003 sec and D = 0.356 cm,
B = 0.000735 cm−1, λ = 0.08 s−1, τ = 1.0· 10−05 s, h = 2.5 cm, and for different Σ
values.

We can see from Table 3 that maximal neutron flux variation depends on region
physical characteristics. For positive Σ values (i.e., more neutrons are generated than
absorbed), flux value increases when Σ value increases. For negative Σ value, flux value
decreases when absolute Σ value increases.

Table 4 shows the influence of delayed neutrons for the time moment t = 0.003
sec when D = 0.356 cm, B = 0.000735 cm−1, Σ = 0.005 cm−1, τ = 1.0· 10−05 s,
h = 2.5 cm.

Influence of delayed neutrons to the neutron flux is less than 1% as expected (Table 4).

Table 4

Influence of delayed neutrons

λ (s−1) ϕmax

0.08 8.3919

0.0 8.3205

5. Conclusion

Nuclear reactor will be safe only if we control the reactor operation. We must under-
stand processes in the reactor core therefore. The neutron flux is one of the main reactor
parameters. The aim of this paper is to present numerical algorithm for solution of two-
dimensional neutron diffusion equation, which describes the neutron transport in nuclear
reactor. Our suggestion is to replace a system of differential equations by one integro-
differential equation and use method of summary approximation for numerical solution
of this integrodifferential equation. The proposed method has been tested for rectangular
area, placed in vacuum. Numerical solution results received agree well with theoretical
neutron flux behavior in rectangular region placed in vacuum.
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Dvimatės neutron ↪u difuzijos lygties su vėluojančiais neutronais
sprendimas

Mifodijus SAPAGOVAS, Virginijus VILEINIŠKIS

Neutron ↪u sklaidos pasiskirstymas atominiame reaktoriuje aprašomas difuzijos lygtimi, atsižvel-
giant ↪i vėluojanči ↪u neutron ↪u ↪itak ↪a. Dviej ↪u diferencialini ↪u lygči ↪u sistema sprendžiama baigtini ↪u
skirtum ↪u metodu. Aprašomas sprendimo algoritmas, pateikti skaičiavimo rezultatai bei išvados.


