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Abstract. The aim of the given paper is development of a joint input-output approach and its
comparison with a direct one in the case of an additive correlated noise acting on the output of the
system (Fig. 1), when the prediction error method is applied to solve the closed-loop identification
problem by processing observations. In the case of the known regulator, the two-stage method,
which belongs to the ordinary joint input-output approach, reduces to the one-stage method. In
such a case, the open-loop system could be easily determined after some extended rational transfer
function (25) is identified, including the transfer functions of the regulator and of the open-loop
system, respectively, as additional terms. In the case of the unknown regulator, the estimate of the
extended transfer function (27) is used to generate an auxiliary input. The form of an additive noise
filter (36), that guarantees the minimal value of the mean square criterion (35), is determined. The
results of numerical simulation and identification of the closed-loop system (Fig. 5) by computer,
using the two-stage method and the direct approach are given (Figures 6–12, Table 1).
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1. Introduction

The closed-loop identification approaches can be divided into three main groups: the di-
rect approach, the indirect approach, and the joint input-output, which are worked out
to identify the open-loop system (Forsell and Ljung, 1999; Gevers, Ljung and Van den
Hof, 2001). The direct approach is realized, using the input and noisy output observations
when the feedback is ignored and, in such a case, the open-loop system is identified if the
respective identifiability conditions are satisfied according to Isermann (1982). The in-
direct approach is used, first, to identify some closed-loop system transfer function and,
second, to determine the open-loop system parameters, assuming that the regulator is
known beforehand. The joint input-output approach regards the input and output both to-
gether as the output of some augmented system excited by some extra input or a set-point
signal and noise. It determines the open-loop system parameters, applying the estimate
of the transfer function of the augmented system (Forsell and Ljung, 1999). In this con-
nection, in the case of linear feedback, the two-stage method (Van den Hof and Schrama,
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1993) is proposed, provided that the system is in the same set of models that is consid-
ered. Recently a projection method for closed-loop identification has been worked out by
Forsell and Ljung (2000), which belongs to the framework of the two stage method, too.

The joint input-output approach usually uses the well known ordinary prediction error
method to solve the closed-loop identification problem (Ljung, 1978). Here, there arises
a problem of well-grounded determination of the form of the input-output relashionship
of some system transfer function, because many of its models, such as the finite impulse
response (FIR), a high order autoregressive model with external input (ARX), a finite
number of alternative orthogonal functions, such as Laguerre functions or generalized
versions, or a noncausal FIR model could be used (Wahlberg, 1991; Van den Hof and
Schrama, 1993; Forsell and Ljung, 2000) in order to create the auxiliary input of the sys-
tem. It is also important here to analyse the effect of the correlated aditive noise on the
accuracy of the estimates of unknown parameters, obtained by processing the observa-
tions (Tontiruttananon and Tugnait, 2001).

In this paper, a two-stage method, applying the prediction error model, will be ana-
lyzed in respect of the form of an additive correlated noise transfer function. We deter-
mine here the input-output system transfer function used to generate the auxiliary input in
the case of the known regulator as well as in the opposite case. In this connection, the op-
timal structure of an additive noise filter, that ensures the minimal value of the minimized
criterion, is obtained. The accuracy of current estimates of the parameters, determined by
using the two-stage method and the direct approach, both based on the prediction error
method, will be investigated by computer and the Matlab package applied to generate
discrete-time systems and signals (V.K. Ingle and J.G. Proakis, 1997; Pupeikis, 2000a,
b, c).

2. Statement of the Problem

Assume that a control system to be observed is causal, linear, and time-invariant (LTI)
with one output {y(k)} k = 1, 2, . . . and one input {u(k)} k = 1, 2, . . . and given by the
equation

y(k) = G0(q, θ )u(k) + v(k),
v(k) = H0(q, ϕ)ξ(k),

(1)

that consists of two parts: a process model G0(q, θ) and a noise one H0(q, ϕ).
Here θ, ϕ are unknown parameter vectors, q is the time-shift operator (i.e., q−1u(k) =

u(k − 1)), the initial signal {ξ(k)} k = 1, 2, . . . used to generate unmeasurable noise
{v(k)} k = 1, 2, . . . is assumed to be statistically independent and stationary with

E{ξ(k)} = 0,
E{ξ(k)ξ(k + τ)} = σ2

ξδ(τ).
(2)
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E{·} is a mean value, σ2
ξ is the variance, δ(τ) is the Kronecker delta function,H0(q, ϕ)

is an inversely stable, monic filter, the input {u(k)} k = 1, 2, . . . , N is given by

u(k) = Ψ
(
k, yk, uk−1, r(k)

)
, (3)

where yk =
[
y(1), . . . , y(k)

]
, uk−1 =

[
u(1), . . . , u(k−1)

]
. The reference signal {r(k)}

k = 1, 2, . . . is a quasi-stationary signal, independent of the stochastic disturbance {v(k)}
k = 1, 2, . . ., andΨ is a given deterministic function such that the closed-loop system (1),
(2) with the controller GR(q, α) (see Fig. 1), which is designed for disturbance {v(k)}
k = 1, 2, . . . by minimizing a quadratic performance function

J = lim
N→∞

E

{
1
N

N−1∑
k=0

y2(k) + ρ u2(k)

}
, (4)

is exponentially stable (Forsell and Ljung, 1999). Here α is the parameter vector of the
controller, the factor 0 < ρ � 1.

The basis of identification is the data set

ZN = {r(1), . . . , r(N), u(1), . . . , u(N)},

when the regulatorGR(q, α) is known, and the data set

Z̃N =
{
r(1), . . . , r(N), u(1), . . . , u(N), y(1), . . . , y(N)

}
, (5)

in the opposite case. The first data set consists of measured observations of the reference
signal {r(k)} and input {u(k)} k = 1, 2, . . . , N , while the other one consists of the same
observations, including the measurements of the noisy output {y(k)} k = 1, 2, . . . , N ,
too. The aim of the given paper is to investigate the two-stage approach in the case of
additive correlated noise {ν(k)} k = 1, 2, . . . , N , acting on the output of the system
G0(q, θ) to be identified.

Fig. 1. A closed-loop system to be observed.
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3. The Joint Input-Output Approach

An ordinary input-output approach is worked out for a closed-loop system, that, in com-
parison to the system shown in Fig. 1, has one difference: the controller has to be in the
feedback. Therefore the augmented system according to Forssell and Ljung, 1999, is[

y(k)
u(k)

]
= G0(q)r(k) +H0(q)

[
e(k)
d(k)

]
, (6)

supposing that the regulator is linear and of the form

u(k) = r(k) −GR(q)y(k) + d(k). (7)

Here

G0(q) =

[
Gc

0(q)
Si

0(q)

]
, H0(q) =

[
S0(q)H0(q) G0(q)Si

0(q)
−GR(q)S0(q)H0(q) Si

0(q)

]
, (8)

Gc
0(q) = S0(q)G0(q), S0(q) =

(
1 +G0(q)GR(q)

)−1
,

Si
0(q) =

(
1 +GR(q)G0(q)

)−1
,

(9)

e(k), d(k) are independent noise sources (d(k) does not necessarily have to be white).
The idea is to identify the augmented system (8) using a model of the form (Forsell and
Ljung, 1999)[

y(k)
u(k)

]
= G(q, θ)r(k) +H(q, ϕ)

[
e(k)
d(k)

]
, (10)

where parametrizations of the transfer functionsG(q, θ) andH(q, ϕ) are not further spec-
ified, and to compute open-loop estimate ĜN and ĤN . It is shown in (Forsell and Ljung,
1999) that different parametrizations lead to different methods. There are methods in
which the reference signal {r(k)} for k = 1, 2, . . . , N is assumed to be equal to zero and
where yk = [y(1), . . . , y(k)], uk−1 = [u(1), . . . , u(k − 1)] are modelled jointly as time
series. Then the open-loop system is reconstructed from the estimate of H0 (Gustavsson
et al., 1977).

If the transfer functionG(q, θ) in equation (10) is parametrized as

G(q, θ) =

[
Gyr(q, θ)
Gur(q, θ)

]
, (11)

and the parameter vector α is estimated using a fixed noise modelH(q, ϕ) = H∗(q), then
the straightforward approach, according to the formula

ĜN (q) = Ĝ
yr
N (q)

(
Ĝur

N (q)
)−1

, (12)



On System Identification Using the Closed-Loop Observations 443

that simply divides the estimates Ĝyr
N and Ĝur

N could be used in order to obtain an open-
loop estimate ĜN . A prefilter could also be introduced here for shaping the bias distribu-
tion of the resulting models.

Recently, as noted in (Forsell and Ljung, 1999), the two-stage method (Van den Hof
and Schrama, 1993) and the related projection method (Forsell and Ljung, 2000), which
fall in the framework of the joint input-output approach, have been proposed. Both of
them could be explained by using the following two steps (Forsell and Ljung, 1999):

(1) estimate the µ−parameters in the model

u(k) = S(q, µ)r(k) +H1(q)e(k) (13)

and generate a signal û = ŜNr, where ŜN is the estimate of the sensitivity function
S(q, µ) of the augmented system determined by using N pairs of observations of the
reference signal {r(k)} and input {u(k)} k = 1, 2, . . . , N ;

(2) identify the open-loop system using the model

y(k) = G(q, λ)û(k) +H2(q)e(k). (14)

These methods could be seen as joint input-output methods where the correlation between
the noise sources in equations (13), (14) is ignored. It could be mentioned that the two-
stage method will fail in the case of the nonlinear controller. In such a case, this problem
could be avoided if the projection method is used (Forssell and Ljung, 2000).

4. The Two-Stage Approach for the Prediction Error Model

The input signal {u(k)}and the output signal {y(k)} k = 1, 2, . . . of the closed-loop
system given in Fig. 1 are determined according to

u(k) =
[
r(k)− y(k)

]
GR(q, α) (15)

and

y(k) = G0(q, θ)u(k) +H0(q, ϕ)ξ(k), (16)

respectively. By combining (15) and (16) we obtain the closed-loop relations

y(k) = Φ0(q, β)G0(q, θ)GR(q, α)r(k) + Φ0(q, β)H0(q, ϕ)ξ(k), (17)

u(k) =W0(q, β)GR(q, α)r(k) −W0(q, β)GR(q, α)H0(q, ϕ)ξ(k), (18)

with the output and input sensitivity functions

Φ0(q, β) =
[
1 +G0(q, θ)GR(q, α)

]−1
, (19)

W0(q, β) =
[
1 +GR(q, α)G0(q, θ)

]−1
, (20)
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correspondingly. Rewriting relation (18) in such a form

u(k) =W0(q, β)GR(q, α)
[
r(k)−H0(q, ϕ)ξ(k)

]
, (21)

we get

r(k) = C(q, c)u(k) +H0(q, ϕ)ξ(k), (22)

or

r∗(k) = C(q, c)u∗(k) + ξ(k), (23)

where

r∗(k) = H−1
0 (q, ϕ)r(k), u∗(k) = H−1

0 (q, ϕ)u(k), (24)

C(q, c) =W−1
0 (q, β)G−1

R (q, α) = G
−1
R (q, α) +G0(q, θ). (25)

The system, corresponding to expression (25), is presented in Fig. 2.
Introducing

GR(q, α) =
g0 + g1q−1 + . . .+ gν q

−ν

r0 + r1q−1 + . . .+ rvq−v
,

G0(q, θ) =
b0 + b1q−1 + . . .+ bmq−m

1 + a1q−1 + . . .+ amq−m
,

(26)

we could rewrite (25) in such an extended form

C(q, c) =
r0 + r1q−1 + . . .+ rvq−v

g0 + g1q−1 + . . .+ gνq−ν
+
b0 + b1q−1 + . . .+ bmq−m

1 + a1q−1 + . . .+ amq−m

=
p0 + p1q−1 + . . .+ pnq

−n

d0 + d1q−1 + . . .+ dwq−w
=
P (q, p)
D(q, d)

. (27)

The estimate

ĉ(N) =
(
p̂(N), d̂(N)

)T

=
(
p̂0(N), p̂1(N), . . . , p̂n(N), d̂0(N), d̂1(N), . . . , d̂w(N)

)T
(28)

Fig. 2. The block scheme of the system, when the regulator is known.
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Fig. 3. The block scheme of the system, when the regulator is unknown.

of the vector

c = (p, d)T = (p0, p1, . . . , pn, d0, d1, . . . , dw)T (29)

of parameters of the system with the transfer function C(q, c), shown in Fig. 3, could be
found as follows

ĉN = argmin
c∈ Ω

QN (c), (30)

by minimizing the criterion

QN (c) =
1
N

N∑
k=1

ε2(k, c). (31)

Here

ε(k, c) = D(q, d)r∗(k)− P (q, p)u∗(k) (32)

is a prediction error (Fig. 4), Ω is the area of permissible parameter values, restricted by
the stability conditions of the respective linear difference equation.

Let us introduce the optimal solution

c∗ = (p∗, d∗)T = (p∗0, p
∗
1, . . . , p

∗
n, d

∗
0, d

∗
1, . . . , d

∗
w)

T , (33)

Fig. 4. The prediction error model for the system shown in Fig. 3.
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consisting of the true values of the parameters. Then we get

ε(k, c∗) = D(q, d∗)r(k) − P (q, p∗)u(k) = ξ(k) (34)

and,

QN (c∗) =
1
N

N∑
k=1

ε2(k, c∗) = σ2
ξ , (35)

respectively, if and only if

H0(q, ϕ) = D−1(q, d∗). (36)

In such a case, the prediction error (34) has the zero mean E{e(k, c∗)} = 0, is noncorre-
lated and its correlation function could be expressed by the formula

Kεε(τ) = σ2
εδ(τ), δ(τ) =

{
1 for τ = 0,
0 for |τ | �= 0. (37)

It follows, that the prediction error model, presented in Fig. 4, gives the minimal value of
criterion (35) for c = c∗ whenH0(q, ϕ) is of the form (36). It also means that the stochas-
tic disturbance {v(k)}k = 1, 2, . . . is an autoregressive (AR) process that is generated by
filtering a white noise sequence {ξ(k)} k = 1, 2, . . . by a filter of the form (36).

5. The Recursive Estimation Procedure

For the estimation of unknown parameters, the ordinary prediction error method, based
on the RLS of the form

ĉ(k) = ĉ(k − 1) + P (k − 1)z(k − 1)
1 + zT (k)P (k − 1)z(k)

[
r(k) − zT (k)ĉ(k − 1)

]
, (38)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)
1 + zT (k)P (k − 1)z(k) , k = 1, 2, . . . , N (39)

could be used with the vector of observations

zT (k) =
(
r(k − 1), . . . , r(k − w), u(k − 1), . . . , u(k − n)

)
(40)

and some initial values of the vector ĉ(0) and matrix P (0).
Here

ĉT (k) =
(
p̂0(k), p̂1(k), . . . , p̂n(k), d̂1(k), d̂2(k), . . . , d̂w(k)

)
(41)
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is a current estimate of the parameter vector

cT = (p0, p1, . . . , pn, d1, d2, . . . , dw), (42)

assuming that d0 = 1. The next step is to calculate the current k-th value of the auxiliary
input according to the formula

û(k) = C−1
(
q, ĉ(k)

)
r(k), (43)

assuming that C(q, ĉ(k)) is inversely stable on each k-th iteration. Then the current esti-
mates of the parameter vector

θT = (aT , bT ) = (a1, a2, . . . , am, b0, b1, . . . , bm) (44)

could be determined by the next RLS of the form

θ̂(k) = θ̂(k − 1) + Γ (k − 1)z̃(k − 1)
1 + z̃T (k)Γ (k − 1)z̃(k)

[
y(k)− z̃T (k)θ̂(k − 1)

]
, (45)

Γ(k) = Γ(k − 1)− Γ(k − 1)z̃(k)z̃
T (k)Γ(k − 1)

1 + z̃T (k)Γ(k − 1)z̃(k) , k = 1, 2, . . . , N (46)

with the vector of observations

z̃T (k) =
(
y(k − 1), . . . , y(k −m), û(k − 1), . . . , û(k −m)

)
(47)

and some initial values of the vector α̂(0) and matrix Γ(0).
Here

θ̂T (k) =
(
â1(k), â2(k), . . . , âm(k), b̂0(k), b̂1(k), . . . , b̂m(k)

)
(48)

is an estimate of the parameter vector (44).
In the case of the known regulator the system is acting according to the scheme shown

in Fig. 2. Then the estimation procedure is completely simplified, because the problem
is only in determining the parameters θT = (aT , bT ) = (a1, a2, . . . , am, b0, b1, . . . , bm),
using the RLS of the form

θ̂(k) = θ̂(k − 1) + Λ (k − 1)z̄(k − 1)
1 + z̄T (k)Λ (k − 1)z̄(k)

[
r∗(k)− z̄T (k)θ̂(k − 1)

]
, (49)

Λ(k) = Λ(k − 1)− Λ (k − 1)z̄(k)z̄
T (k)Λ (k − 1)

1 + z̄T (k)Λ (k − 1)z̄(k) , k = 1, 2, . . . , N, (50)

with the vector of observations

z̄T (k) =
(
r∗(k − 1), . . . , r∗(k −m), u(k − 1), . . . , u(k −m)

)
, (51)

r∗(k) = r(k) −G−1
R (q, α)u(k) (52)

and some initial values of the vector θ̂(0) and matrix Λ(0).
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6. Numerical Simulation

The closed-loop system to be simulated is shown in Fig. 5 and is described by the linear
difference equation of the form

y(k) = 0.75u(k − 1) + 0.985y(k− 1) + λ0ξ(k), k = 0, 1, 2, . . . , 200 (53)

where ξ(k) is a sequence of independent identically distributed variables with (2), λ0 is
a constant that determines the intensity of additive noise {v(k)}.

The controller design equation is

u(k) = e(k) + 0.1005u(k− 1)− 0.1016u(k− 2), k = 0, 1, 2, . . . , 200, (54)

where

e(k) = r(k) − y(k). (55)

In Fig. 6, the simulated input {u(k)}, noisy output {y(k)} and the reference signal
{r(k)} of the closed-loop system, shown in Fig. 5, are presented. The sequences, includ-
ing that of the noise {ξ(k)} k = 0, 1, 2, . . . , 200 with λ0 = 0.1 and λ0 = 0.5, were
generated using the respective Matlab functions. The signals {r(k)} and {u(k)}, pre-
sented in Fig. 7a, were processed by the RLS of the form (38)–(40) in order to obtain
the estimates p̂0(k), p̂1(k), p̂2(k), p̂3(k), d̂1(k) of the parameters p0, p1, p2, p3, d1 of the
transfer function

C(q, c) =
p0 + p1q−1 + p2q−2 + p3q−3

1 + d1q−1
. (56)

The estimates p̂0(k), p̂1(k), p̂2(k), p̂3(k), d̂1(k) and the true values of the parameters
p0, p1, p2, p3, d1 (dotted lines) are shown in Fig. 7b–f, respectively. Here the true values
of parameters are: p0 = 1, p1 = −0.3355; p2 = 0.2006, p3 = −0.10011, d1 = −0.985.
The estimates p̂0(k), p̂1(k), p̂2(k), p̂3(k), d̂1(k), calculated for k = 200, were substituted
into (56) instead of the true values of parameters p0, p1, p2, p3, d1, which really are un-
known. Afterwards, the auxiliary input sequence {û(k)} for k = 0, 1, 2, . . . , 200 was

Fig. 5. Simulated closed-loop system with an additive correlated noise and the reference signal.
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Fig. 6. Signals of the closed-loop sysstem (53)–(55) in the presence of additive noise on the output: x-axis –
numbers of observations, y-axis – amplitudes, input {u(k)} – a, noisy output {y(k)}, and the reference signal
{r(k)} (dotted line) – b, λ0 = 0.1.

Fig. 7. Processed signals {u(k)}, {r(k)} (dotted line) (a), the estimates p̂0, p̂1, p̂2, p̂3, d̂1 and the true values
of the parameters p0, p1, p2, p3, d1 (b, c, d, e, f), respectively, x-axis – numbers of observations, y-axis –
amplitudes of signals (7a) and the values of parameters (7b–7f), λ0 = 0.1.

generated by filtering the reference signal {r(k)} by the filter C−1(q, ĉ), which was as-
sumed to be inversely stable. Then we obtain

û(k) = C−1(q, ĉ)r(k) =
1 + d̂1q

−1

1 + p̂1q−1 + p̂2q−2 + p̂3q−3 + p̂4q−4
r(k). (57)
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Fig. 8. The input sequences of the closed-loop system (53), (54), which are generated in an absence of {ξ(k)}
(continuous line), according to the formula (57) (dotted line in 8a) and according to the formula (54) in a
presence of {ξ(k)} (dotted line in 8b), λ0 = 0.1.

Fig. 9. Processed signals {û(k)}, {y(k)} (a), {u(k)}, {y(k)} (d), the estimates b̂0, â1 and the true values
b0, a1 (dotted lines) (b,c,e,f), respectively, x-axis – numbers of observations, y-axis – amplitudes of sugnals (a,
d) and the values of parameters (b, c, e, f), λ0 = 0.1.

The auxiliary input of the form (57) and inputs of the form (54), generated both in
the presence and in the absence of additive noise {v(k)}, are shown in Fig. 8. It follows (
Fig. 8a) that the auxiliary input (dotted line) approximates the true input (solid line) more
exactly than the input, generated in the presence of {v(k)} (Fig. 8b, dotted line).
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The next step is estimation of the parameters θT = (a1, b0), when a1 = −0.985
and b0 = 0.75 using the two-stage method and the direct approach. The current pairs of
signals {û(k)}, {y(k)} (Fig. 9a) and {u(k)}, {y(k)} (Fig. 9d) were used in the RLS of
the form (45)–(47) to calculate the estimates â1(k), b̂0(k) by the two above mentioned
techniques, respectively. The calculated estimates of b0 were shown in Fig. 9 b, e while
the estimates of a1 – in Fig. 9c, f. In this case, the current estimates presented in Fig. 9b,
c were calculated, using the two-stage method and signals shown in Fig. 9a while the
ones presented on Fig. 9e, f – using the direct approach and signals shown in Fig. 9d.
Similar results of parameter θT = (a1, b0) estimation by the same two approaches but
only for λ0 = 0.5 are shown in Fig. 11. It follows (Fig. 9) that for λ0 = 0.1, the accuracy
of estimates â1(k), b̂0(k), calculated by both approaches, is more or less similar. For
λ0 = 0.5, the accuracy of estimates â1(k), calculated using the direct approach (Fig. 11c)
is higher as compared to the estimates, obtained by the two-stage method (Fig. 11f). On
the other hand, in spite of this, the estimates â1(k), determined by the direct approach for
a large enough set of processed observations, are outside of stability area of the difference
equation (53).

10 experiments with different realizations of additive noise {v(k)} and different levels
of its intensity were carried out in order to investigate more precisely and to compare
the accuracy of estimates of the parameters θT = (a1, b0) obtained using the two-stage
method and the direct approach. In each i-th experiment the estimates of parameters
a1 = −0.985 and b0 = 0, 75 were calculated, using the RLS of the form (45)–(47) and
the above mentioned techniques. Figures 10, 12 and Table 1 illustrate the values ā1, b̄0
of estimates â1(k), b̂0(k), (averaged by 10 experiments), and their confidence intervals

Fig. 10. Averaged values b̄(k), ā(k) (continuous line) and ā(k)±∆1, b̄(k) ±∆2 (dotted lines); b̄(k) – (a, c),
ā(k) – (b, d), λ0 = 0.1.
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Fig. 11. The values and markings are the same as in Fig. 9, λ0 = 0.5.

Fig. 12. The values and markings are the same as in Fig. 10, λ0 = 0.5

obtained by the formulas

∆1 = ±tα
σ̂a√
L
, ∆2 = ±tα

σ̂b√
L
. (58)
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Table 1

Averaged values ā1, b̄0 of estimates â1(k), b̂0(k) and their confidence intervals (58) for different k and differ-
ent intensity of additive noise

k ā1 ± ∆1 b̂0 ± ∆2

λ0 = 0.1

50 −0.9564 ± 0.0318 0.7884 ±0.2350

−0.9830 ± 0.0389 0.7791 ±0.1526

100 −0.9569 ± 0.0207 0.8083 ±0.1085

−0.9878 ± 0.0315 0.7730 ±0.0870

150 −0.9575 ± 0.0222 0.7887 ±0.1056

−0.9853 ± 0.0284 0.7605 ±0.0882

200 −0.9567 ± 0.0223 0.7868 ±0.0915

−0.9809 ± 0.0232 0.7579 ±0.0591

λ0 = 0.5

50 −0.6933 ± 0.1890 0.8920 ±0.9324

−1.0221 ± 0.2498 0.8295 ±0.3575

100 −0.6729 ± 0.1361 0.8253 ±0.5218

−0.9867 ± 0.1477 0.7858 ±0.1886

150 −0.6739 ± 0.0935 0.7600 ±0.3281

−0.9982 ± 0.1122 0.7807 ±0.1889

200 −0.6815 ± 0.0629 0.7256 ±0.3709

−1.0077 ± 0.1015 0.7756 ±0.2111

Here σ̂a, σ̂b are estimates of the variances σa and σb; respectively, α = 0.05 is the signif-
icance level; tα = 2.26 is the 100(1−α)% point of Student’s distribution with ν = L− 1
degrees of freedom; L = 10 is the number of experiments.

In this connection, in Table 1, the first line for each number k of the processed ob-
servations corresponds to the estimates, calculated using the two-stage method and the
signals {û(k)}, {y(k)}, while the second line – to the estimates, obtained using the di-
rect approach and the signals {u(k)}, {y(k)}, respectively. It should be noted that from
the simulation results, presented in Figures 10, 12 and Table 1, imply that the accuracy of
the estimates ā1, b̄0, calculated by the direct approach, is higher for both values λ0. On
the other hand, in this case, there is a possibility to obtain the unstable model of system
(53) because of the current values of â1(k). It appears that with an increase of λ0 the
instability grows and may become almost real.

7. Conclusions

The additive correlated noise in observations to be processed strongly influences the qual-
ity of the closed-loop identification. Therefore the simplicity of the direct approach and
the accuracy of estimates calculated by it could be the main advantage in comparison with
the joint input-output approach if not for one problem: with an increase of intensity of
additive noise, the estimates of the parameter in the denominator of the open-loop system
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transfer function take the values outside of the stability area of parameters. On the other
hand, the estimates obtained by the two-stage method are less accurate but they satisfy
the stability conditions even under intensive noise.
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Apie sistemos identifikavim ↪a, taikant uždarojo ciklo stebėjimus

Rimantas PUPEIKIS

Straipsnyje plėtojamas jungtinis ↪iėjimo-išėjimo metodas sistemoms su gr ↪ižtamuoju ryšiu (1)–(4),
kai sistemos išėjime veikia adityvusis koreliuotasis triukšmas. Nustatytos uždarojo ciklo bei adi-
tyviojo triukšmo sistem ↪u perdavimo funkcijos (27), (36), suteikiančios kriterijui (35) minimali ↪a
reikšm ↪e. Gauti dinaminės sistemos (53)–(55) (5 pav.) signal ↪u bei parametr ↪u skaičiavim ↪u rezultatai
(6–12 pav., 1 lentelė), taikant jungtinio ↪iėjimo-išėjimo ir tiesioginio metod ↪u algoritmus.


